
Chapter 2
Problems and Effective Procedures

What does computable mean? What problems do we consider?

To a computer science student the question “what does computable mean?” might
appear frivolous.We use computers every day, so don’t they—obviously—“compute
things” for us, although one might say, very often they mainly retrieve and display
information, for instance when we are browsing web pages or watching videos. And
“computable” means “being able to be computed”, so what is the point?

The ACM1 Computing Curricula [11, Sect. 2.1] states “computing to mean any
goal-oriented activity requiring, benefiting from, or creating computers. Thus, com-
puting includes . . . processing, structuring, and managing various kinds of informa-
tion; finding and gathering information relevant to any particular purpose, and so on.
The list is virtually endless, and the possibilities are vast.” This is uncontroversial
but quite generic and does not really define what “computable” means.

It should be clear that we need to pin down what computable means precisely
and formally if we want to explore the limits of computation in a scientific man-
ner. The same issue arises with the definition of problems. Everybody has their own
understanding of what a problem is: from not being able to pay the rent to finding
the shortest path in a graph. Also in that respect we will have to restrict the defin-
ition in order to be able to apply formal reasoning so that we can prove results. It
is also important to understand the difference between a problem and a program.
Computable problems will be the ones for which there are programs that “solve”
them. All these concepts will be carefully defined below.

We begin with a very short historical perspective (Sect. 2.1) introducing the notion
of “effective procedure”. Sets and structures on sets, i.e. relations and functions,

1The Association for Computing Machinery (ACM), “the world’s largest educational and scientific
computing society, delivers resources that advance computing as a science and a profession” [1]. It
was founded in 1947 and has its headquarters in New York.

© Springer International Publishing Switzerland 2016
B. Reus, Limits of Computation, Undergraduate Topics in Computer Science,
DOI 10.1007/978-3-319-27889-6_2

13

14 2 Problems and Effective Procedures

together with their basic operations, are defined in Sect. 2.2 and some basic reasoning
principles recalled. Finally, we define precisely what we mean by a “problem” in
Sect. 2.3.

2.1 On Computability

In order to define the term “computable” we need to have a look at what is to be com-
puted and how “computed” is actually defined. What is to be computed is generically
called a problem.As computing in the 21st century is ubiquitous andmicroprocessors
are not only in computers, but also in games consoles, mobile phones, music players
and all kinds of consumer products, even washing machines, we need to restrict the
problem domain since the “problem” in the context of washing will be very different
from the “problem” in the context of game playing, or other areas.2

But first we address the “computable” question as the kind of problems we will
look at depends on this definition.

2.1.1 Historical Remarks

Kleene wrote that the origin of algorithms3 goes back at least to Euclid4 ca. 330
B.C. according to [10] which provides an excellent historic overview. There have
been many machines designed for calculation, from Gottfried Leibniz5 to Charles
Babbage6 who wanted to automate calculations done in analysis.

The Entscheidungsproblem, the decision problem for first order logic, was raised
in the 1920s byDavidHilbert7 andwas described in [6]. The problem is to give a deci-
sion procedure “that allows one to decide the validity (respectively satisfiability) of a
given logical expression by a finite number of operations” [6, pp. 72–73]. For Hilbert
this was a fundamental problem of mathematical logic and played an important part

2And every reader may have their own problems, i.e. their own idea of what a “problem” is.
3The name “algorithm” dates back to the name of the ninth century Persian mathematician
Al-Khwarizmi.
4Euclid (ca. 300 BC) was a Greek mathematician often called the “Father of Geometry” who also
worked in number theory. He is the inventor of the common divisor algorithm.
5Gottfried Wilhelm von Leibniz (July 1, 1646–November 14, 1716) was a German mathematician
and philosopher, credited with the independent invention of differential and integral calculus. He
also invented calculating machines.
6Charles Babbage, (December 26, 1791–October 18, 1871) was an Englishmathematician, philoso-
pher, inventor and mechanical engineer (and a Fellow of the Royal Society). He is also known for
originating the concept of a programmable calculating machine. The London Science Museum has
constructed two of his machines where they are on display.
7David Hilbert (January 23, 1862–February 14, 1943) was a world-renowned German mathemati-
cian.

2.1 On Computability 15

in his program of finding a finite axiomatisation of mathematics that is consistent,
complete and decidable (in an automatic way).

Gödel8 then proved in 1931 that no axiomatic system of arithmetic can exist
that is consistent and complete. This result proves a significant inherent limitation of
mathematical logic anddeductive systems.Hegave the definition ofgeneral recursive
functions on natural numbers based on previous work by Herbrand, Skolem, Hilbert,
and Péter.

At the age of only 22 and still a student, Alan Turing . . .

. . . worked on the problem for the remainder of 1935 and submitted his solution to the
incredulous Newman onApril 15, 1936. Turing’s monumental paper 1936 was distinguished
because: (1) Turing analyzed an idealized human computing agent (a computer) which
brought together the intuitive conceptions of a function produced by a mechanical procedure
which had been evolving for more than two millenia from Euclid to Leibniz to Babbage and
Hilbert; (2) Turing specified a remarkably simple formal device (Turingmachine) and proved
the equivalence of (1) and (2); (3) Turing proved the unsolvability of Hilberts Entscheidung-
sproblem which established mathematicians had been studying intently for some time; (4)
Turing proposed a universal Turingmachine, . . . an idea which was later to have great impact
on the development of high speed digital computers and considerable theoretical importance.
[10, Sect. 3]

Turing used the term a-machine for his theoretical computing device but we now
call them Turing machines in his honour.

Independently, Alonzo Church9 proposed Church’s Thesis “which asserts that
the effectively calculable functions should be identified with the recursive func-
tions” [10].10 Church had initially intended this to be the definition of “effectively
computable”. Nowadays one uses the term “Church-Turing thesis” which amalga-
mates both theses, identifying all the intuitive notions of computation and all the
various formal definitions. What is to be subsumed under the notion of “intuitively
computable”, is obviously up to interpretation. There have been suggestions that
there are computational models much more powerful than Turing machines, called
hypercomputation, but this is currently hotly debated. We will discuss this in more
detail in Chap. 11 dedicated to the Church-Turing thesis.

Despite general recursive functions and Turing machines being the first formal
definitions of computability, this book will not use the former and only briefly look at
the latter. The reason is that the former needs somemathematical background and the
latter is tedious to program. We follow the idea of Neil Jones [7] and use a high-level
programming language which will be introduced in the next chapter. Thus, we need
to justify that our language qualifies as “intuitive notion of computability”. We must
therefore understand what is required for such an intuitive notion of computation.

8Kurt Friedrich Gödel (April 28, 1906–January 14, 1978) was an Austrian (and American) logician,
mathematician, and philosopher and is considered one of the most significant logicians in history.
He proved many important results, relevant here is the Incompleteness Theorem.
9Alonzo Church (June 14, 1903–August 11, 1995) was an important American mathematician and
logician.
10Church’s first version that the computable functions are those definable byλ-terms [3]was initially
rejected.

http://dx.doi.org/10.1007/978-3-319-27889-6_11

16 2 Problems and Effective Procedures

2.1.2 Effective Procedures

Effective Procedures, or effective algorithms are the programs that we understand to
performcomputations. The naming goes back toAlan Turing: “A function is said to be
effectively calculable if its values can be found by some purely mechanical process. . . .
We may take this statement literally, understanding by a purely mechanical process
one which could be carried out by a machine [12, p. 166]. Note that Turing uses the
word “calculable” here. In the 1930s computations usually referred to mathematical
calculations. The machines he suggested have been called Turing machines and we
will look at them more carefully in Chap.11.

So what is an effective procedure? Copeland gives the following definition in [4]:

‘Effective’ and its synonym ‘mechanical’ . . . do not carry their everydaymeaning. Amethod,
or procedure, M, for achieving some desired result is called ‘effective’ or ‘mechanical’ just
in case

1. M is set out in terms of a finite number of exact instructions (each instruction being
expressed by means of a finite number of symbols);

2. M will, if carried out without error, always produce the desired result in a finite number
of steps;

3. M can (in practice or in principle) be carried out by a human being unaided by any
machinery save paper and pencil;

4. M demands no insight or ingenuity on the part of the human being carrying it out.

The instructions of an effective procedure must therefore be executable in a mechan-
ical way. This means that instructions (or commands) in programs must not be
“vague”. For instance “find a number that has property P” which cannot be car-
ried out effectively. How do we find the number? We need instructions that produce
a number effectively such that it has the desired property. Therefore we cannot use
oracles or choice axioms in our effective procedures. Moreover, we must be able
to carry out the procedures in a finite amount of time. Infinite computations are by
definition not effective. However, all notions of computation allow the definition of
infinite computations as well. It will become clear in Chap. 8 why it is difficult to
separate finite from infinite computations.

The exact meaning of “intuitive” computable is to a certain degree subject to
interpretation. Some researchers insist that the mechanical computability by Turing
machines does not include the so-called interactive computation, where humans (or
other potentially non-computable oracles) interact with the program (see [5]). This
appears to be equivalent to Turing’s o-machines, Turing machines with an “oracle
tape”, an extra tape on which the Turing machine can write a word w and then
ask the environment, the oracle, to answer whether w is in a certain set A which
can be arbitrarily complicated (in particular it does not have to be decidable by
an a-machine). The resulting definition of computability by o-machines is called
relative computability. Relative computabilitywill not be covered in this introductory
book. Also we will not discuss computability of infinite objects (e.g. real number
computation).

http://dx.doi.org/10.1007/978-3-319-27889-6_11
http://dx.doi.org/10.1007/978-3-319-27889-6_8

2.1 On Computability 17

Turing’s machine model extends the concept of a finite state automaton with
extra memory. This memory is organised as a tape on which symbols can be written
and read sequentially by a head that moves along the tape and that is controlled
by the finite state automaton. Programming Turing machines is therefore a tedious
and error-prone undertaking. For this reason, we don’t want to use them to prove
anything in this book, but rather use a programming language close to what we use
on a daily basis. In Chap. 3, a more convenient notion of “effective procedure” will
thus be presented. Turing machines will, for the sake of completeness and historical
importance, be presented in detail in Sect. 11.3.

The following definition will be useful to compare languages later (for instance
in Chap.11 and Sect. 10.2).

2.2 Sets, Relations and Functions

Before we continue and define problems and solutions more formally, we recall
some basic definitions that allow us to make formal statements throughout this book.
Readers well familiar with those concepts can skip this section. We will discuss sets
and structures on sets, namely relations and functions. We introduce operations on
sets, fix notation, and recall some basic reasoning principles, which will be used
throughout the book. A proper introduction to sets and logic for computing can be
found e.g. in [8].

2.2.1 Sets

Sets are collections of objects. The collections can be finite or infinite.Wewill usually
only consider homogeneous sets which means that the objects in a set are all of the
same type.11 For each element of this type one must be able to say whether the
element is in the given set or not. An example of a set of natural numbers is the set
S10 containing the numbers from 1 to 10. In this case, number 3 is in the set S10 but
number 42 is not. It is important to observe that one does not care how many times
the objects appears in the set as one would do in a list or an array. A set thus abstracts
away from the number of occurrences. An object simply is either in or out. If we
have such knowledge for all objects of the given underlying type we have uniquely
defined a set.

Let us now fix some notation:

Definition 2.1 (Sets) A finite set containing n different objects e1, e2, . . . , en is writ-
ten

{e1, e2, . . . , en}

11This type may be a set again.

http://dx.doi.org/10.1007/978-3-319-27889-6_3
http://dx.doi.org/10.1007/978-3-319-27889-6_11
http://dx.doi.org/10.1007/978-3-319-27889-6_11
http://dx.doi.org/10.1007/978-3-319-27889-6_10

18 2 Problems and Effective Procedures

We call those objects contained in a set, the elements of this set. The empty set is the
unique set that contains no elements at all and is usually denoted {} or ∅.

Let A be a set of elements of type T . The elementhood operation is a statement

x ∈ A

stating that element x is in set A (“belongs to A”, “is contained in A”). If the set
is infinite, we cannot write down all the elements. In this case we usually write the
“law” that states which elements are in the set as follows (which can also be used to
describe finite sets). If S is a type and P(x) denotes a condition on variable x then

{x ∈ S | P(x)}

describes the set of all elements of type S that have property P . The type of all natural
numbers is denoted N (which contains 0), the integer numbers is denoted Z and the
real numbers is denoted R. The type of Boolean values {true, false} is denoted B.

Example 2.1 Here are some examples of finite sets with objects (elements) in N:

1. {1, 10, 100}: the set of natural numbers containing the three elements 1, 10 and
100.

2. ∅: the empty set containing no natural number.
3. {x ∈ N | x is even}: the infinite set of all even natural numbers, which is the

set {0, 2, 4, 6, 8, 10, 12, . . .}. The notation with . . . followed by a closing } is
sometimes used to indicate an infinite set when the condition P used to define
it is clear from the context. Note that in this example the condition P(x) is “x
is even”.

4. {x ∈ N | x = 10n, 0 ≤ n ≤ 2}: the finite set containing the first three powers of
10, namely 1 = 100, 10 = 101 and 100 = 102. So in fact this set is equal to the
first. More about equality of sets follows these examples.

Definition 2.2 (Set equality and subsets) Let S1 and S2 be two sets ranging over the
same type T of objects. We say that two sets S1 and S2 are equal, short S1 = S2, if,
and only if, they contain exactly the same elements. This confirms that it is enough
to know which elements are in the set and which are not to uniquely define a set.

We say that a set S1 is a subset of a set S2 (or S1 is contained in S2) if, and only
if, every element of S1 is also an element of S2. More formally we can also write

S1 ⊆ S2 ⇐⇒ ∀x ∈ T . x ∈ S1 ⇒ x ∈ S2
S1 = S2 ⇐⇒ ∀x ∈ T . x ∈ S1 ⇔ x ∈ S2

where ⇒ denotes implication and ⇔ denotes equivalence and ∀x ∈ T . P denotes
universal quantification over all elements of type T .

2.2 Sets, Relations and Functions 19

In the above definition we used the phrase “if, and only if” (in the formal version
⇔) and not just “if” (formally⇐) for a good reason. For a definition, it is important
to cover all cases exactly. Consider the following statement: “Sets A and B (over
natural numbers) are equal if S and T are both the empty set.” This is obviously a
correct statement about equality of sets A and B. But it is far from a definition of
equality. The statement does not specify anything about the equality of non-empty
sets. Clearly, its contraposition “if A and B are equal sets then A and B are both
empty” is wrong. Thus the statement “sets A and B (over natural numbers) are equal
if, and only if, S and T are both the empty set.” is equally wrong.

As explained above the use of phrase “if, and only if” is important and we will
encounter it often throughout the book. Therefore, we sometimes abbreviate it and
simply write “iff” instead of “if, and only if”.

In order to show equality of two sets, an important reasoning principle is often
used:

Proposition 2.1 Let S1 and S2 be sets of objects in T , then S1 = S2 if, and only if,
S1 ⊆ S2 and S2 ⊆ S1. In other words, S1 equals S2 if, and only if, S1 is a subset of
S2 and vice versa.

Proof We need to show the two directions of the “if, and only if”. The “only if” (⇒)
and the “if” (⇐) direction.
“⇒”: If S1 = S2 then by definition S1 ⊆ S2, as being equal is a special (degenerated)
case of being a subset of. Analogously, S2 ⊆ S1.
“⇐”: Assume S1 ⊆ S2 and S2 ⊆ S1. To show that both sets are equal we must show
that they contain exactly the same elements, i.e. for all x ∈ T it must hold that x ∈ S1
iff x ∈ S2.Unfolding themeaning of “iff”weget two conditions for all x ∈ T , namely
x ∈ S1 ⇒ x ∈ S2 and x ∈ S2 ⇒ x ∈ S1. We can move the quantifier ∀x around both
conditions separately without changing the meaning of the formula, so it suffices to
show:

∀x ∈ T . x ∈ S1 ⇒ x ∈ S2 and
∀x ∈ T . x ∈ S2 ⇒ x ∈ S1

and thus by Definition 2.2 that S1 ⊆ S2 and S2 ⊆ S1 which were our assumptions.

Definition 2.3 (Set operations) We will use the following standard operations on
sets: union (S1 ∪ S2) intersection (S1 ∩ S2) and set difference (S1\S2). They are
defined as follows:

x ∈ S1 ∪ S2 ⇐⇒ x ∈ S1 ∨ x ∈ S2
x ∈ S1 ∩ S2 ⇐⇒ x ∈ S1 ∧ x ∈ S2
x ∈ S1\S2 ⇐⇒ x ∈ S1 ∧ ¬(x ∈ S2)

where ∨ denotes logical disjunction (“or”), ∧ denotes logical conjunction (“and”),
and ¬ denotes logical negation (“not”). If x is not contained in A, we usually abbre-
viate ¬(x ∈ A) by simply writing

x /∈ A.

20 2 Problems and Effective Procedures

If S is a set of elements of type T , we call T \S the complement of S, which is
sometimes also abbreviated S.

Example 2.2 Here are some concrete examples of set operations and their results:

{3, 5, 7} ∪ {2, 4, 6, 8} = {2, 3, 4, 5, 6, 7, 8}
{3, 5, 7} ∩ {2, 4, 6, 8} = {}
{3, 5, 7}\{3, 5, 8, 16} = {7}
N\{x ∈ N | x is even} = {x ∈ N | x is odd}

Definition 2.4 (Cartesian product) Let S1 and S2 be sets. Then S1 × S2, the Carte-
sian product12 of S1 and S2, is the set of pairs (i.e. tuples) (s, t) where a ∈ S1 and
b ∈ S2. In other words:

S1 × S2 = {(s, t) | s ∈ S1 ∧ t ∈ S2}

Based on the cartesian product one can also form sets of tuples of length k over
a given set or type:

Definition 2.5 (k-tuples) Let S be a set. Then Sk , the k-tuples over S, is defined
as follows:

Sk = S × S × S . . . × S
︸ ︷︷ ︸

k times

such that elements of Sk are tuples of length k, i.e. (s1, s2, . . . , sk−1, sk)where si ∈ S
for all 1 ≤ i ≤ k.

If we consider sets from a programming perspective as a kind of datatype then
we would like to nest the set data type constructor. In other words, we would like to
have set of sets, and so on.

Definition 2.6 (Powerset) Let S be a set. Then Set(S), the powerset of S, denotes
the set of all subsets of S, including the empty set, and the set S.

Set(S) = {set s | s ⊆ S}

Example 2.3

Set({1, 10, 100}) = {∅, {1}, {10}, {100}, {1, 10}, {1, 100}, {10, 100}, {1, 10, 100}}
Set(N) = {set s | ∀x ∈ s. x ∈ N}

12The Cartesian product is named in honour of Reneé Descartes (31 March 1596–11 February
1650), a Frenchmathematician and philosopher, who spent most of his life in the Netherlands, and is
famous for his saying “I think therefore I am” aswell as for the development of (Cartesian) analytical
geometry. He was invited to the court of Queen Christina of Sweden in 1649. “In Sweden—where,
Descartes said, in winter men’s thoughts freeze like the water—the 22-year-old Christina perversely
made the 53-year-old Descartes rise before 5:00 am to give her philosophy lessons, even though
she knew of his habit of lying in bed until 11 o’clock in the morning” [9]. Consequently, Descartes
caught pneumonia and died.

2.2 Sets, Relations and Functions 21

Another standard set used in this book is the set of words over a finite alphabet
Σ as used for instance by finite state automata. These words are just finite strings of
letters of the alphabet, including the empty string.

Definition 2.7 (Set of words) LetΣ be a finite alphabet of symbols (or letters). Then
we define a new set Σ∗ by providing the rules to generate elements of this set and
state that these are the only rules to generate elements of the set. The rules are as
follows:

ε ∈ Σ∗
aw ∈ Σ∗ if a ∈ Σ ∧ w ∈ Σ∗

This is an inductive definition. The first rule states that the empty word ε is a word
which provides the termination case of the induction. The second rule describes how
to generate new elements from already generated ones.

Example 2.4 For alphabet Σ = {0, 1} here are some examples of words in Σ∗:

• ε (the empty word)
• 0
• 01
• 11111001

Finally, for the definition of partial functions in Sect. 2.2.4we need away to extend
a set by a unique new symbol.

Definition 2.8 (One-point-extension) Let S be a set over type T . Then we define a
new set S⊥ in Set(T) by adding to S a new element ⊥ (called13 “undefined”) that is
assumed to be different from all elements in S.

S⊥ = {x ∈ T ∪ {⊥} | x ∈ S ∨ x = ⊥}

2.2.2 Relations

Relations are special sets.Wehave already seen some relations in theprevious section,
the equality and subset relation are both binary relations on sets. A binary relation
R is simply a set of pairs and we say that two elements s and t are in this relation R
if the pair (s, t) is in the set R.

Definition 2.9 (Relations) Relations are sets. We define:

• a unary relation R over elements of type T is a subset R ⊆ T . An object t ∈ T is
said to be in relation R iff t ∈ R.

• a binary relation R over elements of type S × T is a subset R ⊆ S × T . A pair
(s, t) is said to be in relation R iff (s, t) ∈ R.

13The symbol itself is called a “perp”.

22 2 Problems and Effective Procedures

• a ternary relation R over elements of type S × T × U is a subset R ⊆ S × T × U .
A triple (s, t, u) is said to be in relation R iff (s, t, u) ∈ R.14

Example 2.5 The quality relation and subset relation over sets of elements of type
T as defined in Definition 2.2 are actually binary relations in the following sense:

_ = _ ⊆ Set(T) × Set(T)

_ ⊆ _ ⊆ Set(T) × Set(T)

We usually write S1 ⊆ S2 (so-called “infix notation”) instead of (S1, S2) ∈ _ ⊆ _.

2.2.3 Functions

We intuitively understand what the addition or multiplication functions are, and
maybe also the factorial function. Functions describe maps from objects of a certain
type into objects of another15 type. In functional programming languages, functions
are first-class citizens. The programmer can define those functions syntactically. For
us, however, functions are descriptive16 and not programs or part thereof. We can
describe functions as special relations which we will do next.

2.2.4 Partial Functions

Definition 2.10 (Partial Functions) Let A and B be sets of possibly different types
of elements, e.g. A ∈ Set(S) and B ∈ Set(T). A partial function f from A to B is a
subset of A × B (i.e. f ⊆ A × B) satisfying the following uniqueness condition:

For all a ∈ A there is at most one b ∈ B such that (a, b) ∈ f .

To abbreviate that f is a partial function from A to B we briefly write f : A → B⊥,
where we call A the argument type of f and B the result type. The reason for actually
writing B⊥ (defined in Definition 2.8) in this notation will become clear shortly when
we define the following binary application relation _@_ ⊆ (A → B⊥) × A for a
partial function f : A → B⊥ and an element a ∈ A:

f @ a =
{

b if (a, b) ∈ f
⊥ otherwise

14At first glance, it is not obvious whether S × T × U means S × (T × U) or (S × T) × U . We
assume cartesian products to be associative, identifying these two definitions, thus dropping the
extra parentheses and writing (s, t, u) for triples, and similarly for n-tuples where n > 3.
15Which may possibly be the same type.
16Mathematical objects.

2.2 Sets, Relations and Functions 23

Instead of f @ a we will be writing f (a) which is the common notation for function
application also widespread in programming languages. If (a, b) ∈ f we therefore
simply write f (a) = b and say that “ f applied to a equals b.” We also call a the
argument of the function (application) and b the result of the application. By the
uniqueness condition we know that there can only be one result which always lies in
B⊥. It is possible that no such b ∈ B exists, in which case f (a) = ⊥ and we say that
f is undefined for a and often use the short notation f (a)↑ to express this. We also
sometimes use f (a)↓ to express that f (a) is defined when we are not interested in
the concrete result value.

Functions with more than one argument are simply described by using a cartesian
product as argument type. In this case the function takes a tuple as input.

Example 2.6 Consider the integer division operator on natural numbers, div. This
partial function takes two integers n and m and returns n

m in case m �= 0. Thus
div : N × N → N⊥.

((n, m), r) ∈ div iff ∃k < m. m × r + k = n

wherem, n, r, k ∈ N. Note that we have that div (n, 0)↑ as there is no natural number
k that is smaller than 0.

2.2.5 Total Functions

Total functions are total in the sense that function application always returns a defined
value. Therefore, total functions are just a very special case of partial functions.

Definition 2.11 (Total Functions) Let A and B be sets of possibly different types
of elements, e.g. A ∈ Set(S) and B ∈ Set(T). A total function f from A to B is a
subset of A × B (i.e. f ⊆ A × B) satisfying the following two conditions (where
the first is the uniqueness condition for partial functions):

1. For all a ∈ A there is at most one b ∈ B such that (a, b) ∈ f .
2. For all a ∈ A there is at least one b ∈ B such that (a, b) ∈ f .

To abbreviate that f is a total function from A to B webrieflywrite f : A → B where
we again call A the argument type of f and B the result type. We can take the binary
application relation defined in Definition 2.10 for partial functions and restrict its
type to _@_ ⊆ (A → B) × A for a total function f : A → B and argument a ∈ A.
Since for total functions we know from the second condition that there must always
be a b ∈ B for every a ∈ A (which is unique by the first condition) so we can never
have f @a = ⊥. As for partial function application, we write f (a) for f @a and if
(a, b) ∈ f we simply write f (a) = b and say that “ f applied to a equals b.”

24 2 Problems and Effective Procedures

Example 2.7 Consider the factorial function on natural numbers, fac. Often the nota-
tion n! is used instead of application fac(n). This total function fac : N → N takes
an integer n and returns the factorial of n defined as follows:

(n, r) ∈ fac iff (n = 0 ∧ r = 1) ∨ (n > 0 ∧ (n − 1, s) ∈ fac ∧ r = n × s

where n, r, s ∈ N. This is a recursive (actually inductive) definition of fac as we use
the function (functional relation) fac on the left and right hand side of the definition.
The definition is, however, well defined as the argument for the application of fac
on the right hand side uses a “smaller” argument n − 1 than the one on the left hand
side (which uses n). When defining functions in this book we will normally not
define the relation that defines the function but write the (equivalent) definition of
function application, i.e. we define the result of f (n) rather than defining the relation
(n, r) ∈ f . For the factorial function we would typically write:

fac(n) =

{

1 if n = 0
n × fac(n − 1) otherwise

2.3 Problems

Our first quest is to find a problem that is not computable (or decidable by a computer
program) to learn and understand that not everything is computable even with unlim-
ited resources. In order to do this, we obviously need to define what we mean exactly
by “problem” and what we mean exactly by “computable.” Whereas the former is
easy to do the latter is a bit more tricky.

We will allow ourselves to restrict the definition of problem. Since we are inter-
ested in the Limits of Computation, we are interested in negative results, i.e. what
cannot be achieved in computing. If there is a problem of a restricted kind that is
not computable then we still have found a problem that is not computable, so this
restriction does not take anything away from our ambition.

A problem of the kind we are interested in is characterised by two features:

1. It is a uniform class of questions.Uniform refers to the domain of the problem, i.e.
what data the problem is about. The type of domain must be precisely definable.

2. It can be given a definite and finite answer. The type of the answer must be also
precisely definable.

The type in question can be any set, like for instance N, N⊥, Σ∗ and so on.

Definition 2.12 Let S and T some well defined (finite) types. A function problem
is a uniform set of questions, the answers of which have a finite type. The solution
of a function problem is given as a partial function f : S →⊥ T as described in
Sect. 2.2.4. The uniform question of this problem is of the sort: “given an x ∈ S,
what is a y ∈ T such that a certain condition on x and y holds?”

2.3 Problems 25

A decision problem is a relation R ⊆ S. The uniform question of this problem
is of the sort: “given an x ∈ S, does x belong to R, i.e. x ∈ R? The solution of a
decision problem is given as a total functionχ : S → B, also called the characteristic
function of R.

Example 2.8 Here are some examples of function and decision problems:

1. For a tree t , what is its height? Domain: trees (apparently with arbitrary number
of children). Answer for any given tree t : a natural number describing the height
of t (and we know what the meaning of “height of a tree” is). The answer type is
the type of natural numbers.

2. For a list of integers l, what does l look like when sorted? In other words, what
is the sorted permutation of l using the usual ordering on integers? Domain and
answer type are here the type of integer lists.

3. For a natural number n, is it even? Domain: natural numbers. Answer for any
given number n: a Boolean,17 stating whether n is even or not (we understand
what even and odd mean). The answer type is the type of boolean values.

4. For a given formula in number theory (arithmetic)φ, is it valid?Domain: formulae
in arithmetic. Answer for a given formula φ: a Boolean, stating whether the
formula φ is true (and we understand what it means for a formula to be true).

The first two examples above are function problems, the last two examples are deci-
sion problems.

Example 2.9 Here are some examples of problems that do not qualify as problems
for us.

1. “What is the meaning of life?”18 This is not a uniform family of questions. More-
over, we do not know what the answer type is. If we’d expect a string as answer
then it would still not qualify as we don’t knowwhether there is a definite answer.

2. “Is the number 5 even”? This is not a uniform class of questions, as this question
only refers to the number 5.

17Boolean values are named after George Boole (2 November 1815–8 December 1864), an English
mathematician and logician famous for his work on differential equations and algebraic logic. He
is most famous for what is called Boolean algebra. Throughout this book, we will use the term
“boolean” to indicate a truth value for which the corresponding algebra operations are available.
18This question is easily confused with the one famously asked in Douglas Adam’s masterpiece:
“The Hitchhiker’s Guide to the Galaxy” [2] which actually is called: “Ultimate Question of Life,
The Universe, and Everything”. The computer in question, Deep Thought, after a considerable 7.5
million years answered famously: “42”. Alas, nobody understood the question. So Deep Thought
suggested to build an even more powerful super-computer to produce the question to the answer.
This computer was later revealed to be planet “Earth” which was unfortunately destroyed 5min
before completion of the calculations.

26 2 Problems and Effective Procedures

2.3.1 Computing Solutions to Problems

According to the two types of problems introduced, we will consider two concrete
kinds of “solving a problem”: computing a function and deciding membership in a
set.

The data type of Turing machines is the set of finite words over a finite alphabet.
Recall thatΣ∗ denotes all finitewords over the alphabetΣ , including the emptyword.
The comparison test for tape symbols is built into the construction set and from that it
is possible to implement equality of words. In a general notion of effective procedure,
the data type should be general enough to encode finite words and their equality test.
The latter must be effective so it must be terminating. This means that equality of
infinite objects is likely to be problematic and thus we do not cover computability
over infinite objects in this book.

Definition 2.13 Provided a certain choice of effective procedures P , a (function
or decision) problem is called P-computable if, and only if, its solution can be
computed (calculated) by carrying out a specific such effective procedure in P . A
decision problem that is computable is also called P-decidable.

If the kind of effective procedures is known by the context we also simply use the
unqualified terms computable and decidable.

It is important to remember that programs are solutions to computable problems.
The programs that solve computable decision problems are also called decision
procedures.

Example 2.10 The solutions to the computable and decidable, resp., problems in
Example 2.8 are given below as programs.

1. For a tree t what is its height? The solution is a function program that takes a tree
as input and computes its height.

2. For a list of integers l what is l sorted? The solution is a program that takes a list of
integers as input and returns a sorted copy of the list. The program can use various
well known sorting algorithms, e.g. bubble-sort, merge-sort, or quicksort. They
all perform the same task eventually, but use different methods to achieve this and
also may take different time. This is an issue we will discuss in the complexity
part.

3. For a natural number n, is it even? The solution in a program takes a natural
number as the input and returns the boolean value true if the input is even and
false if it is odd.We call such a program also a decision procedure for the property
of “being even”.

4. For a given formula in number theory (arithmetic) φ, is it valid? As discussed in
the introduction, this is undecidable, so there can’t be any program that takes as
input as an arithmetic formula (suitably encoded) and returns true if the formula
is satisfiable and false if it is not.

2.3 Problems 27

What Next?

Now that we knowwhat wemean by “computable” and have seen that the historically
first definition of computability via a machine involves tedious low level program-
ming, we want to define a high-level language that can do the job as well. So in
the next chapter we introduce the language WHILE and in the following chapter we
show that WHILE-programs can be legitimately chosen for effective procedures.

Exercises

1. What is the “Entscheidungsproblem”? What is the type of its domain? Is it a
decision problem?

2. Why did Alan Turing allow his (pencil and paper) computing device to use only
finitely many symbols (on the tapes) and let the “state of mind” of the computer
only glance at finitely many symbols at any given time?

3. Which of the following pairs of sets A and B are equal? Show either A = B or
A �= B.

a. A = N × N and B = N
2

b. A = {1, 3, 5} and B = {1, 3, 5, 6}
c. A = {1, 3, 3, 3} and B = {1, 3}
d. A = {x ∈ N | x = x + 1} and B = ∅
e. A = {x ∈ N | even(x) ∧ x < 11} and B = {0, 2, 4, 6, 8, 10}

4. Describe the relation that one natural number can be divided by the second
natural number without remainder as Rdivisible ⊆ N × N.

5. Give an example of a partial function of typeN → N⊥ and an example of a total
function N → N, respectively.

6. What is the difference between a decision problem and a function problem?
7. Give an example of a problem that is neither a decision nor a function problem.

Why is it acceptable that we consider only those specific kinds of problems?
8. Give two other examples of decision and function problems, respectively, that

have not been mentioned in this chapter.
9. Assume that we have fixed the notion of effective procedures P . When do we

call a function problem P-computable?
10. Assume that we have fixed the notion of effective procedures P . When do we

call a decision problem P-decidable?

References

1. ACM Home Page, available via DIALOG, http://www.acm.org. Cited on 30 August 2015
2. Adams, D.: The Hitchhiker’s Guide to the Galaxy. Pan Books (1979)
3. Church, A.: An unsolvable problem of elementary number theory. Am. J.Math. 58(2), 345–363

(1936)
4. Copeland, J.: TheChurch-TuringThesis. References onAlanTuring (2000).Available viaDIA-

LOG. http://www.alanturing.net/turing_archive/pages/Reference%20articles/The%20Turing-
Church%20Thesis.html. Cited 2 June 2015

http://www.acm.org
http://www.alanturing.net/turing_archive/pages/Reference%20articles/The%20Turing-Church%20Thesis.html
http://www.alanturing.net/turing_archive/pages/Reference%20articles/The%20Turing-Church%20Thesis.html

28 2 Problems and Effective Procedures

5. Goldin, D., Wegner, P.: The church-turing thesis: breaking the myth. In: Cooper, S.B., Löwe,
B., Torenvliet, L. (eds.) New Computational Paradigms. Lecture Notes in Computer Science,
vol. 3526, pp. 152–168. Springer, Heidelberg (2005)

6. Hilbert, D., Ackermann, W.: Grundzüge der theoretischen Logik. Springer, Berlin (1928).
(Principles of Mathematical Logic.)

7. Jones, N.D.: Computability and Complexity: From a Programming Perspective. MIT Press,
Cambridge (1997). (Also available online at http://www.diku.dk/neil/Comp2book.html.)

8. Makinson, D.: Sets, Logic and Maths for Computing, 2nd edn. Springer, UTiCS Series (2012)
9. Reneé Descartes. Entry in Encyclopædia Britannica, http://www.britannica.com/biography/

Rene-Descartes/Final-years-and-heritage. Available via DIALOG. Cited on 2 Sept 2015
10. Soare, R.I.: The history and concept of computability. In: Griffor, E.R. (ed.) Handbook of

Computability Theory, pp. 3–36. North-Holland (1999)
11. The Joint Task Force for Computing Curricula 2005 (ACM, AIS, IEEE-CS): Computing

Curricula 2005. Available via DIALOG, http://www.acm.org/education/curric_vols/CC2005-
March06Final.pdf (2005)

12. Turing, A.: Systems of logic based on ordinals. Proc. LondonMath. Soc. 45(1), 161–228 (1939)

http://www.diku.dk/neil/Comp2book.html
http://www.britannica.com/biography/Rene-Descartes/Final-years-and-heritage
http://www.britannica.com/biography/Rene-Descartes/Final-years-and-heritage
http://www.acm.org/education/curric_vols/CC2005-March06Final.pdf
http://www.acm.org/education/curric_vols/CC2005-March06Final.pdf

http://www.springer.com/978-3-319-27887-2

	2 Problems and Effective Procedures
	2.1 On Computability
	2.1.1 Historical Remarks
	2.1.2 Effective Procedures

	2.2 Sets, Relations and Functions
	2.2.1 Sets
	2.2.2 Relations
	2.2.3 Functions
	2.2.4 Partial Functions
	2.2.5 Total Functions

	2.3 Problems
	2.3.1 Computing Solutions to Problems

	References

