
Chapter 2

Continuous-Time Analog Circuits

Analog performance has been improved by careful design, new process, or feed-

back. Feedback is the only systematic way to enhance analog performance such as

linearity, signal range, bandwidth, and impedance. Series (voltage) feedback

increases linear voltage range while shunt (current) feedback increases linear

current range. Also series feedback raises impedance while shunt feedback lowers

impedance. Low impedance is for broad-banding while high impedance is for

buffering. Feedback can be applied at any local or global levels, in continuous-

time or discrete-time modes, and in broadband or DC servo applications.

2.1 Negative and Positive Feedbacks

There are two feedbacks. Negative feedback is to make stable systems such as

power supplies, amplifiers, filters, ΔΣ modulators, PLL, and adaptive equalizers

while positive feedback is to make unstable systems such as latches and oscillators.

Only stability tells the difference between the negative and positive feedbacks. That

is, negative-feedback amplifiers should be stable while positive-feedback oscilla-

tors should be unstable.

The feedback system is sketched conceptually in Fig. 2.1. The ports marked as i

and o are the points the input is injected into and the output is taken from, and the

path gains a and f represent the forward and feedback gains, respectively. Stability

and dynamic performance are not affected by the locations of the input and output

ports, but entirely by the loop gain of af. Depending on the polarity of the feedback
loop gain, it makes either the negative or positive feedback.

Most closed-loop analog circuits except for latches and oscillators operate in

stable negative feedback modes under the standard assumption of the small-signal,

linear, time-invariant (SLT) operating condition. They benefit greatly from high

linearity given by feedback. On the other hand, narrowband RF circuits such as

low-noise amplifier (LNA) and mixer operate in open loop, and nonlinearity
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becomes the most critical design constraint. RF design is basically how to achieve

linearity while keeping noise low. However, in wideband baseband systems cov-

ering DC to GHz, local feedback can be applied to broadband amplifiers.

Figure 2.2 illustrates three operating frequency ranges of analog circuits. Feed-

back plays a critical role in obtaining the desired linearity except for narrowband

RF circuits, which operate with inductor loads without feedback mainly to meet the

low-power and low-noise requirements. Even at system levels, high-gain DC servo

feedbacks can be applied so that performance can be enhanced by adapting to

various circuit parameters.

Feedforward and feedback have quite different implications in circuits as shown

in Fig. 2.3. The former is to feed the input forward and sum it at the output. The

amplifier gain drops at high frequencies, but its output is held up by the signal fed

forward instead. As a result, a zero is formed at the break point ωz. However, since

it is an open-loop implementation, there is no stability issue at all. On the other

hand, the latter is to feed some of the amplifier output back and subtract it from the

input. Since the subtracted difference is fed back into the amplifier, the input

difference error is reduced by loop gain. That is, it makes a pole at the unity-loop

gain frequency ωk, where the loop gain becomes unity. If the extra phase delay of

this amplified error approaches 180� at ωk, the negative feedback becomes unstable

positive feedback.

Feedforward is equivalent to the digital OR function as shown in Fig. 2.4. The

analog OR function is to sum the responses of two parallel paths. In the wideband

LNA, splitting noise into two parallel inverting and non-inverting paths and
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combining them also cancels the in-band noise—called noise cancellation. In

addition, the sum of two parallel transistor currents effectively doubles the transis-

tor gm in the push–pull and parallel configurations. Although feedforward is useful

to improve analog performance in some limited ways, it is only the negative

feedback that can directly trade gain to enhance analog performance.

In the examples shown in Fig. 2.5, feedback loops encircles circuit elements not

only in the voltage domain but also in the phase, frequency, and time domains.

Depending on the error detector, the loop makes 3 unity-gain followers for phase,

frequency, and time—called phase-locked loop (PLL), frequency-locked loop

(FLL), and delay-locked loop (DLL), respectively. Among these, PLL is most

widely used since the phase detector is the easiest among them to implement.
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In the PLL, three outputs of voltage, frequency, and phase can be taken from the

loop as shown in Fig. 2.6. The illustrated three transfer functions differ only in the

forward gain, but they share the same loop gain. It is also shown that the voltage

output is the demodulated FM output since the frequency is obtained by differen-

tiating the phase, and the VCO converts voltage into frequency.

Most electronic systems use various local or global feedbacks. There are nega-

tive nonlinear feedback systems similar to PLL. An oversampling ΔΣ modulator

suppresses quantization noise by loop gain. Manual trimming procedures carried

out by engineers are also kinds of negative feedback schemes including human

intelligence in the loop. However, the stability of all these loops is determined only

by the loop gain and phase.
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2.1.1 Phase Margin

In negative feedback, stability is determined by the phase margin at the frequency

ωk where the loop gain is unity or by the gain margin at the frequency ω180 where

the excess loop phase is 180�. Both frequencies can be obtained from the following

relations if the loop gain is set by T( jω)¼ a( jω)f.��T jωkð Þ�� ¼ 1 and ∠T jω180ð Þ ¼ �180�: ð2:1Þ

These two frequencies have special meanings: ωk<ω180 for stability, and

ωk>ω180 for instability as graphically explained in the Bode plots shown in

Fig. 2.7.

Both gain and phase margins (GM and PM) are defined as extra rooms for more

loop gain and extra loop phase until the oscillation condition is reached. Feedback

systems become unstable if the loop gain is greater than unity at the frequency

where the total loop phase delay becomes the multiples of 2π such as 0�, 360�, and
720�. So for negative feedback systems to be stable, the PM should be positive, and

the GM should be greater than 1. Similarly, for positive feedback systems, the PM

should be negative, and the GM is smaller than 1. That is, referring only PM is

sufficient to assure the stability of the feedback system. GM and PM are defined as

follows.

GM ¼ 1

T jω180ð Þj j and PM ¼ 180� � ��∠T jωkð Þ��: ð2:2Þ

Unless both GM and PM conditions are warranted, amplifiers get unstable and

oscillate while oscillators get stable and amplify. That is, the boundary between the
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Fig. 2.7 Gain and phase margins for negative feedback
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negative and positive feedbacks is set by the loop gain at ω180. If the loop gain is

lower than unity, it is stable negative feedback. Otherwise, it becomes unstable

positive feedback.

The stability condition can be stated in two ways as shown in the Bode gain plot

of Fig. 2.8. The stability with PM greater than 45� is warranted if two poles are

separated by more than the DC loop gain of ao f. If two poles are not separated

enough, a zero ωz should be placed at lower frequencies than the unity loop-gain

frequency ωk. Then the PM becomes

PM ¼ 90� þ tan�1 ωk

ωz
� tan�1 ωk

ωp2

: ð2:3Þ

2.1.2 Stability of Negative Feedback

As noted, stability has been analyzed in many different ways. A few of them are:

(1) Poles should be on the open left half plane. (2) The complex plot of the loop gain

shouldn’t encircle the (�1,0) point in negative feedback, and encircle the (1,0)

point in positive feedback. (3) The zero-input response should die out as time goes

by. (4) There should be GM and PM in the loop gain. Among them, the PM is most

handy, and widely referred for stability. To relate the pole location and the PM,

Root Locus which projects the trajectory of poles in the complex plane as a function

of the feedback loop gain can be considered. The relation between the PM and the

pole location for Chebyshev and Butterworth poles is illustrated for two-pole cases

in Fig. 2.9.

If the unity loop-gain frequency ωk is about the same as the second pole ωp2, the

PM is about 45�, and the complex conjugate poles are at 60� from the real axis in the

Chebyshev case. On the other hand, if ωk¼ωp2/1.4, then it makes the maximally

flat Butterworth poles at 45� from the real axis. The closer to the imaginary axis the

pole is, the higher the Q goes. High-Q complex conjugate pole pair causes peaking

in the frequency response, and also makes overshoot and ringing in the transient

response. The Root Locus shows the movement of poles as the loop gain is

increased. The common two-pole feedback examples are shown in Fig. 2.10.
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Two open-loop poles enclosed in the feedback loop are two DC poles of

integrators and two negative real poles such as in opamps, respectively. In both

cases, two poles split into the vertical directions as the loop gain increases. A zero is

needed to pull the poles into the open left half plane. Otherwise, as the loop gain

further increases, the third pole easily pushes them into the right half plane and

causes instability. The two DC poles split immediately while two negative real

open-loop poles of ωp1 and ωp2 come closer before they split to be complex

conjugate poles.

Let’s consider two DC poles with a unity-gain frequency of ωk. Due to the high

DC gain, integrators are used as error amplifiers in most feedback systems such as

PLL and ΔΣ modulator. If the unity-gain frequency is ωk, the two-pole loop gain is

(ωk/s)
2, and the closed loop transfer function has two imaginary axis poles at +jωk

and �jωκ. To move these poles into the open left half plane, a zero is placed at ωz,

where the loop gain is ωk/ωz. Then the open-loop gain becomes
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Loop Gain ¼ ωk

s

ωk

s
þ ωk

ωz

� �
: ð2:4Þ

Therefore, the closed-loop gain is given by

H sð Þ ¼
ωk

s
ωk

s þ ωk

ωz

� �
1þ ωk

s
ωk

s þ ωk

ωz

� �
:

ð2:5Þ

Here the gain factor is the ratio of ωk/ωz, which implies that the zero is placed at

lower frequency than the unity-gain frequency by this ratio. By solving for the roots

of the denominator polynomial, two poles can be found to be at

� ωk

2ωz
� j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ωk

2ωz

� �2
s8<

:
9=
;� ωk: ð2:6Þ

Two poles given by (2.6) are plotted in Fig. 2.10 as a function of ωk/ωz, and

marked when its values are 0, 1, 1.414, 1.732, and 2. The PM can be also defined

as follows.

PM ¼ tan �1 ωk

ωz

� �
: ð2:7Þ

From (2.6), it can be shown that the Root Locus is also a circle centered at�ωzwith

a radius of ωz. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ω2

k

2ωz
þ ωz

� �2

þ 1� ωk

2ωz

� �2
( )

� ω2
k

vuut ¼ ωz: ð2:8Þ

The Root Locus of two negative real poles with one zero as found in opamps is

similar. The closed-loop gain with a DC gain of ao and a loop gain of To is

H sð Þ ¼
aoωp1ωp2

ωz
� sþωzð Þ

sþωp1ð Þ sþωp2ð Þ
1þ Toωp1ωp2

ωz
� sþωzð Þ

sþωp1ð Þ sþωp2ð Þ
: ð2:9Þ

By solving for the roots of the denominator polynomial, two real poles are moved to

� ωp1 þ ωp1

2
þ Toωp1ωp2

2ωz

� �
� j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Toð Þωp1ωp2 � ωp1 þ ωp1

2
þ Toωp1ωp2

2ωz

� �2
s

:

ð2:10Þ
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The Root Locus makes a circle around ωzwith a radius of the geometric mean of the

distances to ωp1 and ωp2 from ωz as follows.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ωp1 þ ωp1

2
� Toωp1ωp2

2ωz
þ ωz

� �2

þ 1þ Toð Þωp1ωp2 � ωp1 þ ωp1

2
þ Toωp1ωp2

2ωz

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωz � ωp1

� 	
ωz � ωp2

� 	q
:

ð2:11Þ

Without ωz, two poles split vertically at the middle frequency of �(ωp1 +ωp2)/2.

Figure 2.11 lists approximate the PM, Q, and �3 dB bandwidth for commonly

used feedback amplifiers with different poles located with angles from the real axis:

Two real poles, Bessel, Butterworth, and 1 dB-ripple Chebyshev. As two poles get

closer to the imaginary axis, the Q gets higher, and both frequency and transient

responses peak with larger overshoot. The maximally flat Butterworth response

with poles at 45� gives about a PM of 55� while the higher-Q 1 dB ripple Chebyshev

response with poles at 60� gives about a PM of 45�. Therefore, Bessel poles are
required to design feedback amplifiers with a PM of over 60�.

Any negative feedback systems should be stabilized. Feedback amplifiers based

on opamps are stabilized by separating two poles widely by more than the loop

gain. If they are not separated widely or there are more non-dominant poles,

inserting a zero is the way to get extra PM. However, for switched-capacitor

applications that require accurate settling, inserting zero to cancel the phase delay

of the second pole which is lower than the unity loop gain frequency should be

avoided.
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Margin
Q

Band-

Width

2 Real Poles 0� 63� 0.5 0.64

Bessel

(Linear Phase)
30� 60� 0.58 0.8

Butterworth

(Maximally Flat)
45� 55� 0.71 1

Chebyshev

(1dB Ripple)
60� 45� 1 1.3

Fig. 2.11 Locations of two complex-conjugate poles
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2.1.3 Instability of Positive Feedback

Positive feedback itself doesn’t warrant instability though its purpose is to make

systems like latches and oscillators unstable. Therefore, the oscillation condition for

positive feedback systems to start with is

T jω180ð Þ ¼ a jω180ð Þf > 1: ð2:12Þ

Unless the condition of (2.12) is met, even positive feedback stay stable, and

oscillation will never grow. If met, the noise spectrum around ω180 will grow

since the poles are on the right half plane. However, once the oscillation hits the

voltage ceiling, the oscillation magnitude stops growing further, and the magnitude

starts to be clipped and limited.

Therefore, the instability should be built into the design of a tuned oscillator as

shown in Fig. 2.12. The limiting goes on and stops when the fundamental filtered by

the tuned amplifier inside the loop meets the steady-state oscillation condition of

T jω180ð Þ ¼ a jω180ð Þf ¼ 1: ð2:13Þ

Due to the finite Q of the tuned amplifier, sidebands on both sides of ω180 grow

too until limited, which makes the phase noise spectrum around the oscillation

frequency.

Two examples of positive feedback are shown in Fig. 2.13. The bistable latch is

unstable at DC if it meets the oscillation condition of (2.12). It settles back to one of

the bistable states quickly with the gm/C time constant. If the parasitic capacitance

of the resistive load is tuned out with an inductor, it makes an unstable oscillator at a

resonant frequency if the same condition of (2.12) is met. Once variable capacitor is

added, the standard VCO biased with a tail current is obtained as shown on the right

side.
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2.2 Local Series and Shunt Feedbacks

Feedback comes in two different forms: Series and shunt. The former is the voltage

feedback while the latter is the current feedback. Therefore, the former widens

linear voltage range and raises impedance while the latter widens linear current

range and lowers impedance. They are dual in concept. Simple feedback circuits

can be made using one transistor and one passive component such as resistor,

capacitor, and inductor.

All six combinations possible with a resistor are shown in Fig. 2.14. Among

them, only source degeneration and shunt feedback are useful for local feedbacks.

Other four configurations are not necessary. Similarly, only three useful feedbacks

are possible with an inductor and a capacitor as shown in Fig. 2.15.

In the inductor source degeneration, the driving-point input resistance becomes

real when the inductor series-resonates with the gate-source capacitance, which is

used as a matching load to antenna in the LNA design. Examples of the shunt

feedback using an inductor can be found in the Colpitts and Pierce oscillator

designs, and the capacitive shunt feedback is an integrator often used to make a

Miller capacitance.

1Rgm
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Fig. 2.13 Latch and VCO
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No Use

No Use No Use

No Use

Fig. 2.14 Series and shunt

feedback examples using a

resistor
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2.2.1 Series Feedback

The only useful series feedback using a resistor is the source degeneration. In BJT

circuits, transistors are rarely used without emitter degeneration since the input

resistance looking into the base is low limited by the current gain. On the other

hand, the source degeneration for MOS transistors is not necessary, but it still

makes a useful circuit configuration for the following two cases: Source follower

and source degeneration as shown in Fig. 2.16.

Assuming two small-signal parameters are gm and ro, the low-frequency small-

signal closed-loop gain vo/vi, the forward gain ao, the feedback gain f, and the loop

gain ao f can be derived for the source follower shown on the left side as follows.

vo
vi

¼ gm rokRð Þ
1þ gm � gmbð Þ rokRð Þ �

gm
gm � gmb

,

ao ¼ gm rokRð Þ, f ¼ gm � gmb

gm
,

ao f ¼ gm � gmbð Þ rokRð Þ;

ð2:14Þ

respectively. Unlike the BJT emitter follower, the small-signal gain of the

MOS source follower is lower than unity due to the body gmb, which is about

10–20 % of gm.
The trans-conductance of the MOS transistor with the source degeneration

works similarly, but the output is current drawn from the high-impedance drain

side. The total trans-conductance io/vi, the forward gain ao, the feedback gain f, and
the loop gain aof can be also derived as follows.
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Fig. 2.16 Two examples of

series feedback

Fig. 2.15 Other useful
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io
vi
¼ gm

1þ gm � gmbð Þ rokRð Þ,

ao ¼ gm, f ¼ gm � gmb

gm
rokRð Þ,

ao f ¼ gm � gmbð Þ rokRð Þ;

ð2:15Þ

respectively. Note that gm decreases by the amount of the loop gain in series

feedbacks, but its linearity improves by the same amount instead. Both cases are

the same series feedback with the same loop gain. The loop gain is irrelevant of

input and output ports.

In most bulk N-well processes, all NMOS bodies are tied to one substrate. In

analog circuits which are not switched, the body effect of the PMOS transistor can

be alleviated if the substrate is tied to its source. However, in digital circuits, even

PMOS substrates are tied to the high supply voltage. If the source is floating with

the body tied to the supply, the body effect raises the effective gm to be

(gm� gmb)¼ (1.1–1.2)gm. Furthermore, since the output resistance ro of the MOS

transistor is not as high as that of bipolar transistors, the gain of the NMOS source

follower is even lowered to the 0.8–0.9 level, and rarely approaches unity.

2.2.2 Source Follower

The source follower is a unity-gain voltage buffer. The basic function of the buffer

is to transform impedance from high to low. That is, it is a light load to the input, but

its low output impedance is to drive a heavy load. Its input impedance is high and

mostly capacitive. Therefore, at low frequencies, the high-impedance input is open,

but as frequencies go higher, the input capacitance looking into the gate is given by

the Miller effect as follows.

Ci ¼ 1� Að ÞCgs þ Cgd � Cgd; ð2:16Þ

where A is the source follower gain. That is, if A¼ 0.9, only about 10 % of Cgs loads

the input. On the other hand, its output driving-point resistance is low.

Ro ¼ 1

gm � gmb

krokR � 1

gm � gmb

: ð2:17Þ

This characteristic of high input and low output impedances stays valid up to the

almost device unity-gain frequency.

At high frequencies, the feedforward zero of the MOS transistor is always at

gm/Cgs. Note that the gate-source feedforward zero makes a negative real zero while

the gate-drain feedforward zero creates a positive real zero due to the polarity

inversion of the signal path. After the zero frequency, signal just bypasses the
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transistor, goes through Cgs, and drives the loading capacitance CL directly, which

implies that the high-frequency attenuation converges to the capacitor divider ratio

of Cgs/(Cgs +CL). Therefore, the pole and the zero are separated by this gain factor,

and the pole frequency is lower as sketched in Fig. 2.17.

Therefore, the frequency response can be derived as

vo
vi

sð Þ ¼ gmR 1þ sCgs=gm
� 	

1þ gm � gmbð ÞRþ sR Cgs þ CL

� 	 : ð2:18Þ

If ro is ignored and s is set to 0, it is the same equation as (2.14). The feedforward

zero gm/Cgs of the source follower affects its high-frequency performance as it

provides a leaky forward path for signal. The feedforward signal leak is very

troublesome when using it as a unity-gain buffer such as in Sallen-Key type

low-pass filters that require unity-gain buffers. The output noise over wide band-

width is also a problem when it is aliased into the signal band when the filter output

is sampled.

Since the same current flows through the MOS transistor, the small-signal source

and drain voltages are 180� out of phase from each other. Therefore, an RF phase

splitter can be made as shown in Fig. 2.18. The source-degenerated MOS transistor

encircled by the dotted line exhibits the trans-conductance of approximately 1/R
while its driving-point output resistance is improved by the common gain factor of

gmro as approximated.
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2.2.3 Inductor Source Degeneration

The gm of MOS transistor is usually low, but has a wider linear range than that of

BJT. If degenerated with R for series feedback, the trans-conductance further

decreases by the amount of the loop gain {1 + (gm� gmb)R}. Therefore, the input

linear range of the MOS transistor is widened, and its input capacitance also gets

smaller by the same factor. That is, the transistor characteristic approaches that of

an ideal transistor, which has high input and output impedances plus linearized

trans-conductance.

Except in broadband networking systems such as Giga-bit Ethernet and fiber,

most RF circuits operate in open-loop conditions without feedback. Due to low gm,
the source degeneration is not common in low-frequency circuits such as in

opamps, but it is often used in RF open-loop circuits if high linearity is required

such as in the LNA and mixer. In RF circuits, inductors tune out parasitic

capacitances.

Figure 2.19 shows the standard LNA with the input impedance matched to the

source impedance. The source degeneration given by the inductor L makes an

inductive trans-conductance device.

io
vi

sð Þ ¼ gm
1þ gm � gmbð Þ � sLþ s2LCgs

¼ gm
gm � gmbð Þ �

1

sL
; ð2:19Þ

at the resonant frequency where s2¼�1/LCgs. It is unusual to use it as a source

follower with inductor degeneration as a buffer, but the source follower gain can be

obtained as

vo
vi

sð Þ ¼ gm � sL 1þ sCgs=gm
� 	

1þ gm � gmbð Þ � sLþ s2LCgs

; ð2:20Þ

which is the same as (2.18) with the same feedforward zero at gm/Cgs. When the

series L and Cgs resonate, a real resistance remains. Let’s get the voltage drop

(vi� vo) across the gate and source. From (2.20), we obtain

vi � voð Þ
vi

sð Þ ¼ 1

1þ gm � gmbð Þ � sLþ s2LCgs

: ð2:21Þ

vs

Rs Ls

L

vi

io
Fig. 2.19 Impedance-

matched LNA with inductor

source degeneration
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Then from (2.21), the input impedance looking into the gate is given by

vi
ii

sð Þ ¼ vi
sCgs vi � voð Þ ¼

1þ gm � gmbð Þ � sLþ s2LCgs

sCgs

¼ gm � gmbð ÞL
Cgs

; ð2:22Þ

again at the resonant frequency. This is the real resistance which can terminate the

input with impedance matched to Rs. For LNA, noise figure (NF) improves with

larger gm. Therefore, the inductor L can be minimized, and an extra inductance Ls is
inserted to make a resonance while keeping the impedance matched.

ωo ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ Lsð ÞCgs

p , Rs ¼ gm � gmbð ÞL
Cgs

: ð2:23Þ

Therefore, the LNA design is straightforward. (L + Ls) tunes out Cgs, and the

residual resistance RL +RLs +Rg + (gm� gmb)L/Cgs can be matched to Rs, which is

typically 50 Ω, where physical inductor and transistor gate resistances are included.
Since the dominant (gm� gmb)L/Cgs doesn’t contribute to noise directly, and NF

can go below 3 dB. If the MOS noise is referred to the input, the NF can be

approximated as follows.

NF ¼ 1þ 2

3
� ωoCgs

� 	2
Rs

gm
¼ 1þ 2

3
� ωo

ωT

� �2

� gmRs; ð2:24Þ

where ωT is the device unity-gain frequency defined as gm/Cgs. Large gm/Cgs

obtained by device scaling lowers the NF.

The gate resistance Rg can be made small by careful layout, and the series

inductor resistances RL and RLs are small. Therefore, after Cgs is tuned out, and

(gm� gmb)L/Cgs is matched to Rs, the effective total gm becomes

Gm ¼ io
vs

¼
ii � gm

sCgs

2vi
¼

ii � gm
sCgs

2vi
¼ ωT

ωo

� 1

2Rs

; ð2:25Þ

which is independent of the device gm. That is, technology scaling with smaller

input capacitance will increase Gm. Therefore, the LNA design is almost set once

technology is given: (1) Set the trans-conductance gm for noise. (2) Set the

overdrive voltage (Vgs�Vth) for the intercept point and linearity. Then, the device

size and bias current are set. (3) Estimate the gate resistance. (4) Select L for

matching. (5) Select Ls for input resonance. (6) Check the total resistance by

estimating series resistances of L and Ls, and iterate the procedure if needed.

More power is consumed with non-ideal factors such as input pad parasitic and

Miller capacitances, time-variant channel charge, and hot carrier effects. Usually

better NF is observed with the input resistance set lower than Rs.
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2.2.4 Resistance Reflection in Series Feedback

Series voltage feedback raises impedance by the amount of the loop gain. The series

resistance R can be inserted in the source and drain branches as shown in Fig. 2.20.

If the body effect given by gmb is ignored for simplicity, the resistance looking into

the drain and source sides increases or decreases by the same amount of gmro, which
is the maximum gain obtainable from one transistor amplifier. This value of

20–40 dB varies depending on the process, channel length, and bias condition.

The resistances looking into the drain and the source are ro and 1/gm, respectively,
without source degeneration, but they change to R(gmro) and R/(gmro), respectively.
Therefore, from the drain side, the source-side resistance looks larger, but from the

source side, the drain-side resistance looks smaller by the same factor [1].

The driving-point resistances of dual and triple cascode circuits are generalized

in Fig. 2.21 assuming again that all devices have the same gm and ro. The resistance
value R can be an output resistance ro of another transistor. The highest resistance
level possible in MOS circuits is limited by leakage. The output resistance offered

by the triple cascode is getting closer to the highest impedance node limited by the

junction leakage.

The cascode examples to get higher gain in opamps are shown in Fig. 2.22.

Cascoding raises the output resistance by gmro, thereby enhancing the gain by the

same factor. The high output resistance when seen from the cascoded node is

reduced by the same factor. That is, the driving-point resistance of the cascoded
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Fig. 2.20 Two useful resistance reflection rules
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Fig. 2.21 Resistance

reflection rules generalized
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node approaches 1/gm at high frequencies since the output node is loaded by the

large capacitance to make a dominant pole. Therefore, cascoding only adds a very

high frequency non-dominant pole at gm/Cp with a parasitic capacitance Cp.

Standard opamp designs have been well established. Although the impedance

level is raised for high gain by cascoding, it is difficult to cascode with low supply

voltages since it requires additional DC voltage drop across the cascode device. At

low-voltage uses, two-stage opamps have been preferred to single-stage opamps. In

switched-capacitor applications, the input stage can be cascoded for high gain while

the second stage gives high swing. In high-swing buffer applications that require

high input-common mode voltages, either rail-to-rail or class AB input stages are

used. However, in scaled technologies, supply voltages are still tight even for

double cascoding.

To get higher gain without using multiple cascoding, a gain boosting technique

based on shunt feedback can be used as sketched in Fig. 2.23. One problem that

comes with the local shunt feedback is that the unity loop-gain frequency of the

local feedback loop becomes a zero in the main gain path. The doublet effect on

settling can be alleviated by moving the zero to higher frequencies than the unity-

gain frequency of the main loop.

2.2.5 Shunt Feedback

When compared to the series voltage feedback, some of the output current is fed

back to the input in the current shunt feedback, thereby reducing both the input and

output driving-point impedances. The only useful shunt feedback with a resistor is

the trans-resistance configuration with a resistor connected between the gate and the

drain. It is compared to the source-degeneration series feedback in Fig. 2.24.

Fig. 2.22 Single-stage cascode, folded-cascode, and two-stage opamps
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The output resistance of the shunt feedback is the parallel combination of the

diode resistance and the transistor output resistance since the gate-side resistance of

the MOS transistor is infinite. That is, the drain and the gate are shorted at low

frequencies.

Figure 2.25 summarizes the resistance reflection rules for shunt feedbacks. The

driving-point resistances looking into the output and input ports are the same diode

resistance 1/gm plus shunt resistance R divided by the loop gains of gmRS and gmRL,

respectively. This low resistance offered by the shunt feedback helps to broadband

amplifiers. That is why the standard trans-resistance amplifier has been used for

benchmarking new high-speed technologies. It has also been used to amplify low

light-sensitive currents from photo diodes since it provides low impedance load to

photo detector current.

This symmetry of the input and output resistance reflection rule gives a hint that

the driving-point resistances looking into the input and output ports can be matched.

Fig. 2.23 Gain boosting example by shunt feedback
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Fig. 2.24 Comparison between series and shunt feedbacks
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That is, wideband amplifiers with both matched input and output resistances can be

implemented using a trans-resistance amplifier as shown in Fig. 2.26.

For input and output driving-point resistances to be matched, the following

condition should be met.

RS ¼ Ri ¼ Rþ RL

1þ gmRL

¼ Rþ RS

1þ gmRS

¼ Ro ¼ RL; ð2:26Þ

which gives the simple relation of

R ¼ gmRSRL: ð2:27Þ

Due to this symmetric matching characteristic, any local shunt-feedback stages can

be cascaded for higher gain. Shunt feedback also improves linearity while lowering

the resistance level for broadbanding. The small-signal voltage gain of the shunt-

feedback stage can be derived as follows.

vo
vi

¼ � gmRRL � RL

Rþ RL

� � gmRRL

Rþ RL

¼ �gm RkRLð Þ: ð2:28Þ

Similarly, the gain including RS is obtained.

vo
vs

¼ � gmRRL � RL

Rþ RS þ RL þ gmRSRL

� � gmRRL

Rþ gmRSRL

: ð2:29Þ
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Alternatively, (2.29) can be approximated in two steps of attenuation and amplifi-

cation as follows.

vo
vs

¼ vi
vs
� vo

vi
¼ �

Rþ RL

1þ gmRL

RS þ Rþ RL

1þ gmRL

� gmRRL � RL

Rþ RL

� � gmRRL

Rþ gmRSRL

: ð2:30Þ

At high frequencies, the input and output driving-point resistances can be

matched to the standard 50 Ω, which facilitates its use as an amplifier with both

the input and output ports loaded by transmission lines as shown in Fig. 2.27.

If Ri¼Ro¼ 50 Ω, we obtain the following from (2.27) and (2.28).

R ¼ gmRSRL ¼ 2500gm,

vo
vs

� � gmRRL

Rþ gmRSRL

¼ � gmRL

2
¼ �25gm ¼ � R

100
:

ð2:31Þ

Fog higher gain, both gm and R should be set higher as follows.

gm ¼ 1=10 Ω, R ¼ 250 Ω, Gain � �2:5:

gm ¼ 1=5 Ω, R ¼ 500 Ω, Gain � �5:

gm ¼ 1=2:5 Ω, R ¼ 1 kΩ, Gain � �10:

ð2:32Þ

Impedance matched amplifiers are mostly to drive transmission lines or antenna

ports such as in monolithic microwave integrated circuits or RF transceivers. For

integrated on-chip uses, it is not necessary to match impedance for amplifier input

or output ports since there are no transmission lines. Therefore, either current or

voltage source is required to drive high or low impedance load, respectively, as

shown in Fig. 2.28.

50Ω
50ΩFig. 2.27 Amplifier with

matched input and output

ports

Low ZHigh ZFig. 2.28 Sources for high

and impedance nodes
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The stability of local series or shunt feedback is not an issue in general since only

one dominant pole is involved. However, in shunt feedback, as the shunt resistance

value increases, input and output nodes are separated, and make two poles in the

loop. It sets the upper bound to the maximum bandwidth achievable using shunt-

feedback amplifiers such as trans-resistance amplifiers. In particular, the capaci-

tance at the input node is very critical since it lowers the pole frequency in the

feedback path. The impedance at the input node is affected differently by the shunt

feedback. The resistive shunt feedback lowers the input resistance while the

capacitive shunt feedback increases the input capacitance due to the Miller effect

as shown in the two cases of Fig. 2.29.

Note that unlike the voltage-driven opamp case, the effective gain of the shunt-

feedback transistor amplifier decreases by the loading of the shunt feedback

resistance. The shunt resistance from the input side looks smaller by the shunt-

stage gain while the shunt capacitor looks larger by the same amount. The former

helps to broadband the frequency response while the latter does the opposite as

shown in Fig. 2.30.
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Broad-banding by shunt feedback is possible as the resistance level drops.

However, its upper limit is set by the non-dominant second pole at the output

node if this pole is pushed out too high. On the other hand, the Miller effect is used

to frequency-compensate two-stage opamps by moving the dominant pole lower

and separating two poles widely, which is called narrow-banding.

2.3 Trans-Resistance Amplifier

If the shunt-feedback amplifier is driven by the current source, it makes another

useful local feedback circuit like the local series-feedback source degeneration. The

input and output resistances are lowered by shunt feedback while they are raised by

the series feedback. Its input resistance, voltage gain, and trans-resistance can be

obtained as summarized in Fig. 2.31.

That is, the input current makes the voltage drop at the input of the trans-

resistance stage, which is amplified by the voltage gain stage. Since the gain is

defined as the ratio of the output voltage to the input current which has the

resistance unit, it has been called trans-resistance amplifier.

Figure 2.32 illustrates the logic behind the preamplifier issue in optical receivers.

Photo diodes generates low-level currents of a nA ~ μA order depending on the

intensity of the incident light. To convert it into voltage, a resistor is needed to

develop a voltage across it. If there is a parasitic CD of the detector, the impedance

drops after the pole frequency at 1/RCD. If an amplifier drives the resistance in the

shunt-feedback form, the bandwidth can be widened by the loop gain (1 + ao). The
parasitic capacitance CD at the detector input node is the most important parameter

to consider in the trans-resistance amplifier design. For higher output current, the

size of photo detector should be made large. Then large diode gives large parasitic

capacitance CD.
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There are four possible cases of local shunt feedbacks with R and C as shown in

Fig. 2.33. The first one is the standard trans-resistance amplifier. The third one is a

Miller integrator. Since the signal is fed forward through the feedback capacitor

into the inverting output, it makes a right-half plane zero. The fourth one is a

straightforward voltage sum, and the series resistance with a capacitor makes a left-

half-plane zero. By setting the RC value to be C/gm or higher the right-half plane

zero can be canceled or moved to the left-half plane. The second one is a current

sum of two paths, which gives a pole and a right half-plane zero. It is the most

demanding task for analog designers to derive the frequency response of this

two-pole amplifier. Driving the shunt-feedback using a high-impedance current

source complicates the hand analysis as two poles interact as shown in Fig. 2.34.
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There are parasitic capacitances at the input and the output nodes marked as Ci

and CL ignoring the feedforward capacitance. The open-loop gain can be consid-

ered to analyze stability as follows.

a sð Þf ¼ gm
1

RL

þ sCL þ sCi

1þ sRCi

� 1

1þ sRCi

¼ gmRL

1þ s RCi þ RL Ci þ CLð Þf g þ s2RRLCiCL

:

ð2:33Þ

This quadratic equation from the denominator cannot be factored algebraically. If

R�RL is true, the RLCi term can be ignored, and two factored poles become

negative real. That is, they can be separated by more than the DC loop gain gmRL

for stability as explained in Fig. 2.34. Otherwise, two poles become complex

conjugate poles on a circle with a radius equivalent to the geometric mean.

ωo ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp1ωp2

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

RCi

� 1

RLCL

:

r
ð2:34Þ

To stay stable, the feedback loop pole frequency of 1/RCi should be much lower

than the output pole frequency of 1/RLCL, which is often limited by the speed of the

process technology.

Using (2.33), the closed-loop transfer function can be also derived as follows.

vo
ii

sð Þ ¼ gmRRL � RL

1þ gmRL þ s RCi þ RL Ci þ CLð Þf g þ s2RRLCiCL

: ð2:35Þ

Now the closed-loop poles become even higher-Q poles as they move vertically

further into the complex plane. They are on a circle with a radius of

ωo �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gmRLð Þ � 1

RCi

� 1

RLCL

:

r
ð2:36Þ
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The stability condition of two-pole networks can be approximately defined as

ωk<ωp2 in open loop for the PM to be greater than 45�. That is,

RLCL <
RCi

gmRL

; ð2:37Þ

which is difficult to meet in most wideband amplifier designs. The desirable

solution is to add a zero below the unity loop-gain frequency. In general, the

extra loop delay in the feedback path should be cancelled with a real zero inserted

before the unity loop-gain frequency as explained in Fig. 2.35.

If the shunt feedback resistor is bypassed by a capacitor, it makes a zero in the

open-loop gain at 1/RC. Then the open-loop and closed-loop gains of (2.33) and

(2.35) are modified as follows including C.

a sð Þf ¼ gm
1

RL

þ sCL þ sCi 1þ sRCð Þ
1þ sR Cþ Cið Þ

� 1þ sRC

1þ sR Cþ Cið Þ

¼ gmRL 1þ sRCð Þ
1þ s R Cþ Cið Þ þ RL Ci þ CLð Þf g þ s2RRL CCi þ CCL þ CiCLð Þ :

ð2:38Þ

vo
ii

sð Þ ¼
gmRLR 1� 1

gmR
� sC

gm

� �
1þ gmRL þ s R Ci þ 1þ gmRLð ÞCf g þ RL Ci þ CLð Þ½ � þ s2RRL CCi þ CCL þ CiCLð Þ :

These equations further complicate the assessment of stability with greater com-

plexity, but one thing to note is that two poles are moving farther from the

imaginary axis as the first-order term increases as the loop gain increases. It implies

the Q of the poles gets lower, but the right half-plane zero is created in the close-

loop gain due to feedforward through the capacitor C.
If R�RL is true again as before, the RLCi term in the denominator can be

ignored, and two factored poles in the open-loop gain become negative real as

expected.
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Fig. 2.35 Shunt feedbacks without and with a zero
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ωp1 � 1

R Cþ CikCLð Þ and ωp2 � 1

RL Ci þ CLð Þ ; ð2:39Þ

where (CikCL) denotes the value of CiCL/(Ci +CL) for the series connection of two

capacitors. The open-loop gain is shown in Fig. 2.36.

Again for the PM to be greater than 45� for this case, ωz<ωk so that the zero

frequency can be lower than the unity loop-gain frequency. That is,

RC >
Cþ CikCL

C
� Ci þ CL

gm
; ð2:40Þ

which can be easily met. Otherwise, two open-loop poles become complex conju-

gate high-Q poles on a circle with a radius of

ωo ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp1ωp2

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

R Cþ CikCLð Þ �
1

RL Ci þ CLð Þ:
s

ð2:41Þ

Similarly, the closed-loop poles would move to a new circle but with a lower

Q since the zero pulls the poles away from the imaginary axis.

ωo �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gmRLð Þ � 1

R Cþ CikCLð Þ �
1

RL Ci þ CLð Þ:
s

ð2:42Þ

This is the same result as obtained by the famous pole-splitting Miller effect of a

two-pole system. If the Miller capacitance C is very large and there is no shunt

feedback, the dominant pole is generated by the Miller capacitance at the input, and

the non-dominant pole is created by the sum of input and output capacitances driven

by the trans-conductance. From (2.38), two poles can be derived as follows using

the dominant pole approximation and the geometric mean.
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ωp1 � 1þ gmRL

R Ci þ 1þ gmRLð ÞCf g � 1

RC
,

ωp2 � Ci þ 1þ gmRLð ÞC
RL CCi þ CCL þ CiCLð Þ �

gm
Ci þ CL

:

ð2:43Þ

The only difference in this shunt feedback is that the Miller pole is now at �1/RC
due to the shunt-feedback resistor. The frequency response of the trans-resistance

amplifier with two widely separated real open-loop poles is sketched in Fig. 2.37.

The trans-resistance amplifier with feedforward compensation offers a desirable

very high-frequency dominant pole, and the input and output capacitances are

driven by the diode resistance of 1/gm. It is because the feedforward path goes

through the shunt capacitance. One way to eliminate the right half-plane zero and

make the non-dominant second pole independent of the input capacitance is to use a

feedback buffer amplifier. The low impedance of the buffer amplifier output can

stop the signal feedforward, but the feedback path is not affected. Therefore, there is

no right half-plane zero created, and the trans-conductance doesn’t need to drive the
input capacitance.

The buffered trans-resistance amplifier is shown along with its open-loop gain in

Fig. 2.38. In most multi-stage wideband amplifier designs, it is common to use a

source-follower buffer for Miller capacitance feedback. Assuming that the source

follower has an ideal unity gain and the pole at the source follower output is high

enough to ignore, the open- and closed-loop gains can be obtained as follows.
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amplifier gain with two

widely separated poles
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Fig. 2.38 Buffered trans-resistance amplifier and open-loop gain

62 2 Continuous-Time Analog Circuits



a sð Þf ¼ gmRL 1þ sRCð Þ
1þ sRLCLð Þ 1þ sR Cþ Cið Þf g :

vo
ii

sð Þ ¼ gmRLR

1þ gmRL þ s R Ci þ 1þ gmRLð ÞCf g þ RLCL½ � þ s2RLR Cþ Cið ÞCL

:

ð2:44Þ

Note that there is no right half-plane zero, and both the open-loop gain and the

closed-loop gain are greatly simplified.

If R�RL is true, two factored poles are

ωp1 � 1

RLCL

and ωp2 � 1

R Cþ Cið Þ ; ð2:45Þ

respectively, as shown in Fig. 2.38. For PM to be greater than 45�,

gmR >
CL

C
� Cþ Cið Þ

C
; ð2:46Þ

which can be easily met. The closed-loop poles would move to a new circle but with

a lower Q since the zero pulls the poles away from the imaginary axis.

ωo �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gmRLð Þ � 1

R Cþ Cið Þ �
1

RLCL

:

s
ð2:47Þ

If the Miller capacitance C is very large, two familiar widely separated poles can

be approximated as follows.

ωp1 � 1þ gmRL

R Ci þ 1þ gmRLð ÞCf g � 1

RC
,

ωp2 � Ci þ 1þ gmRLð ÞC
RL Cþ Cið ÞCL

� gm
CL

:

ð2:48Þ

The frequency response of this case is shown in Fig. 2.39.

The shunt feedback implements wideband amplifiers with both low input and

output impedances, but makes an extra pole, thereby requiring frequency compen-

sation for stability. It is possible to further broadband the shunt feedback amplifier

with dual or triple gain stages as shown in Fig. 2.40.
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However, it is a formidable task to stabilize three- or four-pole response though

the buffered feedback helps to reduce the feedforward effect. There is no simple

way, but the common wisdom is to insert as many feedforward zeros that bypass

gain stages like using the Miller capacitance. Since zeros should be added after

poles, the gain attainable by extra poles is limited and incremental. Stabilizing the

loop with multiple integrators in ΔΣ modulators is a good example of the

feedforward compensation.

Examples of the feedforward compensation are shown in Fig. 2.41. It is to lower

the path impedance between the two nodes, and to let the signal directly pass

through the capacitor at frequencies higher than 1/RC or gm/C, which creates a

zero effect by definition. If it bypasses the inverting signal, the zero moves to the

right half plane. There are three ways to cancel the right half-plane zero. The source

follower feedback cuts the feedforward path, but its pole in the feedback loop

creates left-half plane zero. The Gm boosting moves the zero to higher frequencies,

but extra pole inside the local feedback loop for Gm boosting complicates the
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iv iv
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ov
iv

Single
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Triple

Fig 2.40 Trans-resistance amplifiers with single, double, and triple gain stages

Fig. 2.41 Feedforward frequency compensations
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overall settling. Lastly, the right half-plane zero is canceled and moved to the left

half plane by just adding a resistance in series with the capacitor.

2.4 Gm Boosting and Noise Cancellation

A need arises to make an effective trans-conductance larger than it actually is for

buffering and low noise. Active shunt feedback either lowers the resistance level, or

boosts the conductance level as shown in Fig. 2.42.

When looking into the input side, the shunt feedback resistance looks smaller by

the amplifier gain. By active shunt feedback, the input conductance is made very

small. If the output is taken from the shunt transistor, this common-source (CS) and

common-drain (CD) stages can be used to boost the output resistance of the series

feedback as shown in Fig. 2.43.

It also shows a Gm-boosted source follower with CS and common-gate

(CG) feedback. The former raises the output resistance by the loop gain as sketched
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Fig. 2.42 Active shunt-feedback by Gm boosting
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Fig. 2.43 Two examples of active Gm boosting
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while the latter lowers the output resistance by the loop gain. Boosted trans-

conductance helps to lower impedance and widen bandwidth. That is, their trans-

conductances are further increased to be

gm2 � gmb2ð Þ � gm3 ro3kro4ð Þ and gm1 � gm3ro2; ð2:49Þ
respectively. Due to these shunt feedback gains, the gain-boosted stage and the

super-Gm source follower are made practical overcoming the handicap of low trans-

conductance values of MOS transistors.

Examples of two super-Gm source followers are shown in Fig. 2.44. Due to the

body effect, their gains approach the same gm1/(gm1� gmb1) as the regular source

follower, but their output resistances are made much lower enhancing the load drive

capacity greatly.

Noise sources in feedback circuits are shown in Fig. 2.45. Feedback only

enhances analog performance limited by deterministic parameters, but noise is a

random power with a variance with no magnitude information. Therefore, all noise

powers in feedback networks are added without being lowered by the negative

feedback. Noise is further enhanced in high-Q circuits like resonators.

The strategies to achieve low noise in open-loop LNA are mostly of two kinds.

One is to make the effective Gm higher than real Gm, which contributes to actual

noise, and the other is noise cancellation. Narrow-banding is another way, but

system requirements set the bandwidth. Oversampling lowers the in-band noise,

but pays the speed penalty.

M1iv

M2

ov

M1

M2

oviv

Fig. 2.44 Two Gm-boosted source follower examples

DAC

Fig. 2.45 Two Gm-boosted source follower examples
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Widely used low-noise techniques that increase the effective Gm are shown in

Fig. 2.46. The passive inductor degeneration is very effective to achieve low noise.

The CG amplifier has a factor of 2/3, but the empirical filling factor doesn’t justify
its effectiveness. The Gm boosting enhances the effective Gm, but the feedback

amplifier contributes some noise. Lastly, multiplying the signal by feeding forward

through capacitors doubles the input swing, but capacitors get larger and extra

power is demanded. If Gm enhancement is by adding gain stages, they also add

noise and power. There are no obvious solutions to LNA designs, but new process

improves the noise performance incrementally.

Alternatively, feedforward can cancel the in-band noise as sketched in Fig. 2.47.

It is a two-path system for noise [2, 3]. Although the noise polarity is not known,

one noise source can be amplified through two identical gain paths with inverting

and non-inverting gains, and summed later. The end result of this summing is the

cancellation of the in-band noise of one source. If two-path gains are matched,

everything is cancelled, but noise and offset of the cancelling path remain. That is,

out-of-band noise and the noise of the additional amplifier are not cancelled. When

designing such noise-cancelling amplifiers, the difficulty also lies in achieving large

signal linearity.
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