Oscillations of a Flexible Plate Immersed
in a Vortex Street

E. Sandoval Hernandez and A. Cros

Abstract This experimental study deals with the oscillation of a flexible plate
inside the von Karman street. The flow velocities are much lower than the threshold
above which the fluttering instability would develop. The flexible plate is fixed at its
leading edge whereas its leading edge is free. The vortices are detected by tin oxide
and the whole system is recorded by a videocamera. We find that the trailing edge
of the plate oscillates with a small amplitude and with the same frequency as the
incoming vortices. Moreover, the plate wavelength is more than twice the plate
length. These results are different from the previous experiments of Allen and Smits
(2001) performed with larger plates and at much higher Reynolds numbers. Alben
(2010) theoretical study permits to explain these differences.

1 Introduction

A flexible plate can flutter spontaneously in a flow if the flow velocity is high
enough. This flutter is due to the aeroelastic instability (Paidoussis 1998) whose
mechanism is as follows. The flow generates infinitesimal pressure differences
between the two sides of the plate, which provoke plate oscillations. When the flow
velocities are lower than a velocity threshold, these oscillations are damped.
Nevertheless, above a velocity threshold, the plate oscillations are amplified and the
plate flutters with typical spatial shapes and temporal frequencies which depend
upon the geometrical and elastic characteristics (Eloy et al. 2008; Michelin et al.
2008).
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The equation of movement which describes the transversal deflection y(x, f) of
the flexible plate in a uniform flow (where x is the axis parallel to the plate chord at
rest, ¢ is time and y is the coordinate transversal to the plate area at rest) depends
upon the pressure difference Ap between the two faces of the plate. This term is
difficult to estimate when it comes from a uniform flow around the plate. In this
work a periodic term Ap is set via the von Karman street.

This experimental study is performed as follows. First a vortex wake is gener-
ated behind a cylinder at low Reynolds numbers (100 < Re < 150). Then the
flexible plate is fixed at its leading edge out of the recirculation region which forms
downstream the cylinder, that is at a distance greater than a few cylinder diameters
downstream the cylinder. The flexible plate trailing edge is free. We measure the
amplitude and the frequency of the free end of the plate as a function of the cylinder
diameter and of the Reynolds number, for a fixed plate length. The deflection of the
other points along the flexible plate can also be plotted as a function of time.
Finally, we compare our results with two previous studies: the experimental work of
Allen and Smits (2001) and Alben’s (2010) theoretical study.

The paper is organized as follows. In Sect. 2, we present our experimental
device. In Sect. 3, we show our results, which are analyzed and discussed in
Sect. 4. Conclusion is written in Sect. 5.

2 Experimental Device

The flow is generated in a water channel thanks to a centrifugal pump and con-
trolled via a triphasic frequency converter. Hence, flow velocity can be varied from
v = 0.8 to 2.0 cm/s with a precision better than 2 %. A 10-cm-long cylindrical
obstacle, of two different diameters D = 5 and 13 mm, is vertically fixed at the
beginning of the test section as illustrated in Fig. 1a. The test section dimensions
are 10 x 10 x 100 cm’. The flexible plate is cut from a transparent sheet pro-
tector and its elastic and geometrical characteristics are shown in Table 1.

The leading edge of the flexible plate is fixed to a thin metallic wire at the
distance s = 7 cm downstream the cylinder center, as shown in Fig. 1b. This dis-
tance is chosen in such a way that the plate leading edge be outside the suction
region behind the cylinder. Besides, the pinned limit condition leads to a natural
first frequency in water equal to f; ~ 1.2 Hz.

The visualizations are made by oxidizing a thin tin wire which passes through
the flow perpendicularly to the cylinder. One of the extremes of the wire is con-
nected to the negative pole of a power supply while the positive pole is connected to
a copper electrode at the end of the test section (Taneda et al. 1977). This visual-
ization method gives better results than the dye method because the vortices appear
less deformed when passing near the flexible plate. A photo of the flow and the
flexible plate is shown in Fig. 2.
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Fig. 1 a Experimental set-up. b Top view of the system cylinder—flexible plate with the specific
distances: the plate length is L = 6.5 cm, the cylinder diameters are D = 5 and 13 mm, the
distance between the plate leading edge and the cylinder center is s = 7 cm

Table 1 Geometrical and elastic characteristics of the flexible plate. L is the length, H the height,
e the thickness, m; the mass per unit of area, B the plate flexural rigidity

L (cm) H (cm) e (mm) my (g/m?)

B (N.m)

6.5 2 0.044 34

8.1 x 107

Fig. 2 Photo of the flow around the flexible plate visualized via the tin oxide. The flow goes from
left to right. The cylinder is not shown in the photo. The dark vertical line comes from the support
of the flexible plate axis. The vortices are delimited by the tin oxide so that they correspond to the

dark regions of the flow
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The system {vortices + flexible plate} is recorded thanks to a videocamera
(Nikon D5200) placed above the system. The frame size is 1080 x 1800 pixels, so
that the resolution equals to 10 pixels by millimeter.

3 Results

3.1 Influence of the Cylinder Diameter

First, we checked that the flexible plate does not oscillate when it is immersed in the
uniform laminar flow generated by the water channel. No oscillation was observed
for flow velocities between 0.8 and 2.0 cm/s.

Then, we placed a cylinder with a diameter D = 5 mm upstream from the plate.
We could not detect any oscillation of the trailing edge of the flexible plate for the
same velocity interval.

Finally, the von Karman street was generated by a cylinder with a diameter
D = 13 mm. The videocamera could detect a slight oscillation of the free end of the
plate. In order to quantify the deflection y(L, ), we performed spatiotemporal
diagrams. From each picture of the video we extracted the column of pixels that
passes through the free end of the plate. This column is put in the spatiotemporal
diagram of Fig. 3 and the same process is repeated for all the pictures. In this way,
the x-axis of Fig. 3 is time while the vertical axis represents the space. In the flow,
the dark areas correspond to the vortices. It can be observed that the flexible plate
oscillates with the same frequency as the von Karman vortices.

Gl
L
-
0 10 20 30 40 50 60 70 80
t(s)
Fig. 3 Spatiotemporal diagram for the cylinder with diameter D = 13 mm and Re = 113
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Fig. 4 Left-hand top plot temporal evolution of the trailing edge deflection of the plate for
Re = 113. Left-hand bottom plot pixel values of the horizontal line (y = 3.0 cm) of the
spatiotemporal diagram. Right-hand plots respective Fourier spectra

3.2 Influence of the Reynolds Number

We varied the flow velocity v in such a way that the Reynolds number calculated
via the obstacle diameter D = 13 mm was Re = [108, 143]. Several spatiotemporal
diagrams were performed and we extracted the trailing edge oscillation, as shown in
the left-hand top plot of Fig. 4.

The left-hand bottom plot of Fig. 4 shows the pixel values of the line located at
y = 3.0 cm in the spatiotemporal diagram. In this plot, the vortices correspond to
low values of the pixels (dark areas) while the tin oxide correspond to clearer
regions, that is, higher values of the pixels. The right-hand plots are the respective
spectra of the left-hand plots. The spectra allow to determine the frequency of the
plate and of the vortices for each Reynolds number. These two quantities are plotted
in Fig. 5. The red points correspond to the plate trailing edge frequencies while the
blue points (generally superimposed with the red points) correspond to the fre-
quency of the von Karman vortices in presence of the plate. The plain line repre-
sents the expected evolution of the vortices frequency as a function of the Reynolds
number for the usual von Kérman street given by Fey et al. (1998). This plot means
that the presence of the flexible plate does not influence the vortices frequency and
that the plate is synchronized with the incoming vortices. Moreover, spatiotemporal
diagrams performed at different coordinates of the plate (not shown here) allowed
us to conclude that all the points along the plate oscillate with the same phase. That
means that the plate wavelength A is such that L/A < 0.5.

Besides, the amplitude A of the plate trailing edge is shown in Fig. 6. It can be
seen that A is very small, with a maximum of A/L = 0.01, equivalent to
A = 0.7 mm and A/D = 0.05, at Re = 140. This amplitude is much lower than in
the Allen and Smits (2001) experiments as discussed next.
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Fig. 5 Evolution of the
frequencies f of the von
Karman vortices (blue) and
the plate trailing edge (red) as
a function of Reynolds
number Re calculated via the
cylinder diameter. The plain
line represents the expected
frequency of the von Karméan
vortices without flexible plate
as a function of the Reynolds
number (Fey et al. 1998)

Fig. 6 Evolution of the
non-dimensional amplitude
A/L of the plate trailing edge
as a function of the Reynolds
number Re calculated on the
cylinder diameter
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Allen and Smits (2001) performed the same kind of experiments with plates of
different characteristics. In order to compare their plates with ours, the geometrical
dimensions, m, and B values of their plates are shown in Table 2. We also note that
the von Karman street was generated in their experiments by planar bluff bodies
perpendicular to the flow (D = 5.08 and 3.81 cm), so that their Reynolds number
(calculated via D) varied between 5000 and 40000.

As it can be seen in Table 2, the dimensions and density of their plates are much
larger than our plate. As their plate thicknesses are greater too, their flexural
rigidities are also higher. The first difference between their observations and our
experiments is that their plates oscillate such that L/A = 1.5 — 2, where A is the plate
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Table 2 Characteristics of the plates used by Allen and Smits (2001). L is the length, H the
height, e the thickness, m, the mass per unit of area, B the plates flexural rigidity

L (cm) H (cm) e (mm) my (g/m?) B (N.m)
18 PVDF 457 7.62 0.70 1100 3.1 x 1073
24 PVDF 61.0 7.62 0.70 1100 32 x 1073
18 PU 457 7.62 0.60 980 6.1 x 107
18 plastic 457 7.62 0.10 200 42 x 107

wavelength. This difference can be explained by calculating the wavenumber k~ of
the free oscillations of the flexible plate in vacuum. Alben (2010) defines two
nondimensional numbers as:

Ry =my/pL and Ry = B (1Y (1)
1 =M /P, z_pv2L3 I

where p is the air density, v the vortex translation velocity and / the vortices
wavelength. Alben (2010) defines the nondimensional wavenumber as

K1 (RN L @
a1 2z \R) T A

The order of magnitude of these quantities are shown in Table 3. The value of R; is
much lower for Allen and Smits (2001) than in our experiment because both their
flow velocity and their plate lengths are higher. That is why those authors could
observe more than a wavelength along their plate length. It can be seen moreover
that the theoretical values of k'/A2IT) correspond qualitatively to the observed
experimental values L/A.

Let note that the expression of k" is also equivalent to the ratio (wV/wp)” 2, where
, = 2IIV/l is the vortex frequency and w, = [B/(m, LH]"? is a characteristic
frequency of the plate. In our case, the vortex frequency (w, = 0.6 — 1 rad/s, see
Fig. 5) is much lower than the natural frequency of the plate (w, = 12 rad/s). In this
way, the plate wavelength A/L is related to the ratio between the natural frequency
of the plate and the frequency of the vortices.

The second difference is that Allen and Smits (2001) observed that their plates
could reach an amplitude A = 5D. This value is much higher than our plate
amplitude. Once again, this observation is consistent with the predictions of Alben
(2010) who found that the higher R;, the greater the amplitude.

Table 3 Order of magnitude of R;, R, (Eq. 1) and k2 (Eq. 2) in our experiment and in the
Allen and Smits (2001) work

R, R, k'/21T)
This study 1 x 1073 50-100 0.02
Allen and Smits (2001) 0.9-4.8) x 1073 1 x 107%-3 x 1073 0.3-1.5
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Finally, in the work of Allen and Smits (2001), when Re < 10000, the plates
oscillate with a lower frequency than the incoming vortices. They lock on the von
Karman street frequency for high enough flow velocities. In our experiments, we
saw that the plate oscillates with the same frequency as the von Karman vortices for
the whole Reynolds interval Re = [108, 143]. We think that this is possible thanks
to the small oscillation amplitude.

5 Conclusion

In this experimental work, we studied the oscillation of a flexible plate inside von
Karman vortices. The plate has a length L =~ [, where [ is the wavelength of the
incoming vortices. The vortices are generated by a cylinder of diameter D in the
interval Re = [108, 143]. When D = 5 mm, no oscillation is observed. When
D = 13 mm, we observed that (i) the plate oscillates with the same frequency as the
von Kéirméan vortices and that (ii) the maximum oscillation amplitude is A/D
0.05. Moreover, (iii) our plate oscillates with a wavelength higher than twice the
plate length. These observations are different from the results of Allen and Smits
(2001), who worked at much higher Reynolds numbers Re = [5000, 40000] and
with larger plates. These authors found that (i) their plates reach the same frequency
as the von Karman vortices for high enough Reynolds numbers and that (ii) their
plates oscillate with amplitudes that reach A = 5D. Moreover, (iii) whereas all the
points along our plate oscillate with the same phase, the plates of Allen and Smits
(2001) oscillate with a wavelength A such that L/A = 1.5 — 2. These differences are
well explained by two nondimensional numbers defined by Alben (2010) which are
related to the pressure that the flow exerts on the plate and the mass inertia.

Finally, we comment that, while the objective of Allen and Smits (2001) was to
harvest electrical energy from the piezoelectric plate, this kind of experiment is also
important to understand how a passive fish can be propelled upstream when placed
in von Karmén vortices, as shown by Beal et al. (2006).
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