Chapter 2
Active Structural Control

Abstract This chapter provides an overview of building structure modeling and
control. It focuses on different types of control devices, control strategies, and sensors
used in structural control systems. It also discusses system identification techniques
and some important implementation issues.
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2.1 Introduction

Structural vibration can be generally controlled in two ways: (1) by constructing the
buildings using smart materials [2]; (2) by adding controlling devices like dampers,
isolators, and actuators to the building [3-5]. In this work, we only discuss the latter
case, where the structural dynamics are modified favorably by adding active devices.
The performance of a structural control system depends on various factors including
excitation type (e.g., earthquakes and winds), structural characteristics (e.g., degree
of freedom, natural frequency, and structure nonlinearity), control system design
(e.g., type and number of devices, placement of devices, system model, and the
control algorithm), etc. [6]. In active control, the structural response under the input
excitations are measured using sensors and an appropriate control force, calculated
by a preassigned controller is used to drive the actuators for suppressing the unwanted
structure vibrations.

Due to the popularity and importance of structural control, a number of textbooks
[7, 8] and review papers have been presented. A brief review was presented by Hous-
ner et al. [2] in 1997, which discusses the passive, active, semi-active, and hybrid
control systems and explores the potential of control theory in structural vibration
control. It explains different types of control devices and sensors used in struc-
tural control. The paper concludes with some recommendations for future research.
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A recent survey on active, semi-active, and hybrid control devices and some control
strategies for smart structures were presented in [9, 10]. Some reviews were carried
out with particular emphasis on active control [11-15], on semi-active control [16],
and on control devices [17-19]. This shows that a significant progress has been made
on most aspects of the structural control in the past few decades.

While there is no doubt about the advance, there still exist some areas which
need more exploration. During the seismic excitation the reference where the dis-
placement and velocity sensors are attached will also move, as a result the absolute
value of the above parameters cannot be sensed. Alternatively, accelerometers can
provide inexpensive and reliable measurement of the acceleration at strategic points
on the structure. Most of the controllers use the displacement and velocity as its
input variable, which are not easy to obtain from the acceleration signal with simple
integration. Application of the state observers is impossible if the system parameters
are unknown. Similarly, parameter uncertainty may be a problem for some control
designs. There are different techniques available for identifying building parameters
[20]. But these parameters may change under different load conditions. However,
these control laws would be more applicable to real buildings if they could be made
adaptive and robust to system uncertainty.

The active devices have the ability to add force onto the building structure. If the
controller generates unstable dynamics, it can cause damage to the building. So it
is important to study the stability of the controller. Only a few structural controllers
such as Hy, and sliding mode controller consider the stability in their design, whereas
the other control strategies do not. Also, there is a lack of experimental verification of
these controllers. Some other areas that demands attention are the time-delay present
in the actuator mechanism, actuator saturation, and the optimal placement of sensors
and actuators. The implementation of a controller will be challenging if these issues
were not resolved. The motivation for the work presented in this book is to push
forward the performance and capabilities of the structural vibration control system
by acknowledging the above issues.

The objective of structural control system is to reduce the vibration and to enhance
the lateral integrity of the building due to earthquakes or large winds, through an
external control force [21]. In active control system, it is essential to design one
controller in order to send an appropriate control signal to the control devices so that
it can reduce the structural vibration. The control strategy should be simple, robust,
fault tolerant, need not be an optimal, and of course must be realizable [22].

This chapter provides an overview of building structure modeling and control. It
focuses on different types of control devices and control strategies used in structural
control systems. This chapter also discusses system identification techniques and
some important implementation issues, like the time-delay in the system, state esti-
mation, and optimal placement of the sensors and control devices. A detailed version
of this chapter can be found in [23].
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2.2 Modeling of Building Structures

2.2.1 Models of Building Structures

In order to derive a dynamic model of a building structure, it is important to know
the behavior and impact of the excitations on the buildings, such as strong wind
and seismic forces. The force exerted by the earthquake and wind excitation on the
structure is shown in Fig.2.1. An earthquake is the result of a sudden release of
energy in the Earth crust that creates seismic waves. The building structure oscillates
with the ground motion caused by these seismic waves and as a result the structure
floor masses experience the inertia force. This force can be represented as

f=—mi, @.1)

where m is the mass and X, is the ground acceleration caused by the earthquake.
The movement of the structure depends on several factors like the amplitude
and other features of the ground motion, the dynamic properties of the structure,
the characteristics of the materials of the structure and its foundation (soil-structure
interaction). A civil structure will have multiple natural frequencies, which are equal
to its number of degree-of-freedom (DOF). If the frequency of the motion of the
ground is close to the natural frequency of the building, resonance occurs. As a
result, the floors may move rigorously in different directions causing inter-story
drift, the relative translational displacement between two consecutive floors. If the
building drift value or deformation exceeds its critical point, the building damages
severely. Small buildings are more affected by high-frequency waves, whereas the
large structures or high-rise buildings are more affected by low-frequency waves. The
major part of the structure elastic energy is stored in its low order natural frequencies,
so it is important to control the structure from vibrating at those frequencies [24].

Fig. 2.1 a Wind.excfitation; m m
b earthquake excitation
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Fig. 2.2 a Structure; b stiffness component; ¢ damping component; dmass component

In the case of high-rise flexible buildings, strong winds cause sickness or psy-
chological responses like anxiety to the occupants and also may damage the fragile
items. When the vibrations of taller buildings due to the high wind exceed a limit of
0.15 ms2, humans may feel uncomfortable [18]. As a result, the main objective of
structural control is to reduce the acceleration response of buildings to a comfortable

level. The force exerted by the wind on a building structure can be represented as
[25];
Fy(hi, 1) =7 (h)v(1) (22)

where v(¢) is the dynamic wind speed and 7 (4;) has the following expression.
T (h) = paﬂthAw(hi)vm (23)

where p, is the air density, i1 , is the wind pressure coefficient, A,, (h;) is the windward
area of the structure at elevation ;, and v,, is the mean wind speed. The wind profile
coefficient u;, can be expressed as

= (0.1h;)**% (2.4)

where o, is a positive constant.

It is worth to note that the main difference between the effects of earthquake and
wind forces on a structure is that, the earthquake causes internally generated inertial
force due to the building mass vibration, whereas wind acts in the form of externally
applied pressure.

A single-degree-of-freedom (SDOF) structure can be modeled using three compo-
nents: the mass component m, the damping component ¢, and the stiffness component
k [26], which is shown in Fig. 2.2. The stiffness component k can be modeled as either
a linear or a nonlinear component, in other words elastic or inelastic, respectively
[13]. Usually the mass is considered as a constant. When an external force f is
applied to a structure, it produces changes in its displacement x(¢), velocity x(z),
and acceleration ¥ (7).

Consider a simple building structure, which can be modeled by [26],

mx +cx +kx = f, (2.5)
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Fig. 2.3 Mechanical model
of a n-DOF building
structure
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where m is the mass, c is the damping coefficient, k is the stiffness, f, is an external
force applied to the structure, and x, x, and X are the displacement, velocity, and
acceleration, respectively.

A model for a linear multistory structure with n-degree-of-freedom (n-DOF) is
shown in Fig.2.3. Here, it is assumed that the mass of the structure is concentrated
at each floor. Neglecting gravity force and assuming that a horizontal force is act-
ing on the structure base, the equation of motion of the n-floor structure can be
expressed as [13],

> X

e

Mx+Cx+f, = —f1, (2.6)

For unidirectional motion, the parameters can be simplified as [13]:

fc1+¢cp —c3 - 0 0
mp 0 - 0
—cy cptcy -
M= 0 mp--- e W C = € XN
0 0 ---my ©teCp—] F+Cpn —Cpn
| 0 0 —Cn Cn
2.7
xe N, f, = [fm e fv,n] € N" is the structure stiffness force vector, and f, € N”

is the external force vector applied to the structure, such as earthquake and wind
excitations.

If the relationship between the lateral force f; and the resulting deformation x is
linear, then f; is
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Tk +ky —ky --- 0 0
—ky ko+k3 .- :
f, = Kx, where K = : : : € R (2.8)
: : cokyoy kg —ky
| 0 0o - —k, kn |

If the relationship between the lateral force f; and the resulting deformation x is
nonlinear, then the stiffness component is said to be inelastic [26]. This happens when
the structure is excited by a very strong force, that deforms the structure beyond its
limit of linear elastic behavior. Bouc—Wen model gives a realistic representation of
the structural behavior under strong earthquake excitations. The force-displacement
relationship of each of the stiffness elements (ignoring any coupling effects) agrees
the following relationship [27]:

fsi=¢kixi+ (A —-eking;, i=1---n 2.9)

where the first part is the elastic stiffness and the second part is the inelastic stiffness,
k; is the linear stiffness defined in (2.8), € and n are positive numbers, and ¢; is the
nonlinear restoring force which satisfies

¢ =" [8xi — BluilleilP @i + viileil”] (2.10)

where 8, 8, v, and p are positive numbers. The Bouc—Wen model has hysteresis prop-
erty. Its input displacement and the output force is shown in Fig.2.4. The dynamic
properties of the Bouc—Wen model has been analyzed in [28].

In the case of closed-loop control systems, its input and output variables may
respond to a few nonlinearities. From the control point of view, it is crucial to inves-
tigate the effects of the nonlinearities on the structural dynamics.

The Bouc—Wen model represented in (2.9) and (2.10) is said to be bounded input-
bounded-output (BIBO) stable, if and only if the set £2;,, with initial conditions ¢ (0)
is nonempty. The set £2;,, is defined as: ¢(0) € R such that f; is bounded for all

Fig. 2.4 Hysteresis loop of 0
Bouc—Wen model
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Table 2.1 Stability of Bouc—Wen model with different 6, 8, y.

Case Conditions Qb Upper bound of |¢(7)]
1 §>0,+y>0andB—y >0 |N max (|¢0)|, ¢q)

2 §>0,—y <0andB >0 [—¢b, @] max (I9(0)], a)

3 §<0,—y>0andB+y >0 |N max (|¢(0)|, ¢p)

4 §<0,+y <0andB >0 [—®a, ¢al max (|¢(0)|, ¢»)

5 §=0,+y>0andB—y >0 |N [ (0)]

6 All other conditions ] Unbounded

C! input signal, and x with fixed values of parameters 8, B, y, and p, ¢, and ¢;, are

defined as
@ /O ® /O (2.11)
= | oW =, ——F .
VB+v Vy—8

For any bounded input signal x, the corresponding hysteresis output f; is also
bounded. On the other hand if ¢(0) € 25, = @, then the model output f; is
unbounded. Table 2.1 shows how the parameter §, 8, y, affect the stability property
of the Bouc—Wen model.

In the case of n-DOF structures, the nonlinear model can be modified as

Mi(t) + Cx(t) + Fo(x(t), X (1)) = =M A%y (1) (2.12)

where A € R"™*! denotes the influence of the excitation force.

2.2.2 Estimation and Sensing of Structure Parameters

Sensor and actuator placement. The optimal placement is concerned with place-
ment of the sensing and controlling devices in preselected regions in order to closely
perform the measurement and control operation of the structure vibration optimally.
The actuator and sensor play an important role in deciding the system’s controllabil-
ity and observability, respectively. So it is important to perform an optimal placement
of the sensors and actuators such that the controllability and observability proper-
ties of all or selected modes are maximized. Due to the above-mentioned reasons
and importance, a number of studies are carried out about the optimal placements
of devices [29, 30]. A survey on the optimal placement of control devices can be
found in [10].

In [31], the actuator and sensor location performance index is calculated between
the ¥, and y, Hankel singular values. A nonnegative correlation coefficient « is
defined as

2 _ (szVZ)Tyng

= (2.13)
Iy 22 lvgy 2
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where yvzv z and ylz,Y represents the Hankel singular values of the transfer functions
Gywz and Gyy, respectively. Here U and W are the inputs to the system and ¥ and Z
are the outputs of the system. As per the above equation, the maximal performance
is obtained with a better controllability and observability properties when « reaches
a maximal value; k = 1, which is achieved when y3, = v .

A closed-loop optimal location selection method for actuators and sensors in flex-

ible structures is developed by Guney et al. [30], which uses a simple Hy, controller
where the location optimization is performed using a gradient-based unconstrained
minimization. Another related work is done in [32] using a H, norm-based compu-
tation for a reduced model of flexible structures, which considers only the dominant
modes. They also proposed one GA for the nonlinear optimization problem for the
reduced-order model. A GA is proposed in [33] through the formulation of a discrete
and nonlinear optimization problem. Finally, the proposed algorithm is simulated for
a 16-story building under 18 different earthquake excitations. In the work [25], it is
concluded that the optimal position of actuators depends on the control algorithm,
so that different control algorithms or different controllers yield different positions
of the actuators.
Sensing. In order to identify the parameters of the civil structures, the dynamic
response is studied from its input and output data, and the parameters are estimated
using some sort of identification techniques. The inputs are the excitation forces like
the earthquake and wind loads, and the outputs are the displacements, velocities, and
accelerations corresponding to the input excitation. In practice, it is very difficult
to derive an exact system model, so the original problem is to obtain parameters,
such that the estimated model responses closely match the output of the building
dynamic behaviors. There exists different methods for identification of both linear
and nonlinear systems [34].

For the purpose of system identification, the structural system can be represented
in many ways, such as ordinary differential equation (ODE), transfer functions,
state-space models, and Auto Regressive Moving Average with exogenous input
(ARMAX) models [35]. Consider a state-space variable z = [xT, )'cT]T € N2 then
the system described in (2.41) can be represented in state-space form as

z(t) = Az(t) + Bu(t) + EX (1) (2.14)
y(t) = Hz(t) + Du(t) (2.15)

where A € W22 B € R?*" and E € R*".

_ 0 IA
A_[—MlK—M1C}

=[] e[
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Here, the matrices H and D and their dimensions change according to the design
demands.

System identification can be broadly classified into parametric and nonparamet-
ric identification. In parametric identification, the system parameters like the mass,
stiffness, and damping are estimated [36]. Most commonly used algorithms are least
squares method, maximum likelihood method, extended Kalman filter, and varia-
tions of them [35]. Nonparametric identification determines a system model from
the measured data, which is a mathematical function that can approximate the input-
output representations sufficiently well [37]. This method is suitable for the systems
with infinite number of parameters. Artificial neural network (ANN) is one of the
popular nonparametric identification method [38]. Some other known methods are
wavelet networks, splines, and neuro-fuzzy models [20].

Identification can also be classified into time-domain and frequency-domain,
where the identification takes the form of time series and frequency response func-
tions or spectra, respectively [20, 35]. System identification can be performed either
using online or offline techniques. In offline identification, all the data including the
initial states must be available before starting the identification process. For example,
in the case of building parameter identification, the excitation and the corresponding
structure response are recorded and later used for identification. Whereas, the online
identification is done immediately after each input-output data is measured. In other
words, the online identification is performed parallel to the experiment that is during
the structural motion due to seismic or wind loads.

System identification of a linear MDOF structure under ambient excitation using
the eigen space algorithm is presented in [39]. The algorithm identifies the damp-
ing and stiffness with known mass. In [40], two backpropagation neural networks
(BPNN) are used to estimate the stiffness and damping of a 5-story building, where
the first one is called emulator NN and the second one is known as the parametric
evaluation NN. A modified GA strategy [41] and GA with gradient search [42] is pro-
posed to improve the accuracy and computational time for parameter identification
of MDOF structural systems. Sometime, the parameters are identified in the structure
equipped with the actuator [6]. On the other hand, identification is performed only for
the control devices. In [43], a memory-based learning called lazy recursive learning
method based on NN is used to identify the MR damper behavior. The input current
to the MR damper is varied and the corresponding damper behavior is modeled.

System identification is sometimes used for modal analysis, where the modal
parameters like natural frequencies (w,) for different modes, modal shapes, and
damping ratios (¢) of the structures are estimated [20]. One such a simple technique
is the analysis using Fourier transform techniques to estimate power spectra from
which the modal parameters are estimated [35]. When the input excitation frequency
equals the structure natural frequency, the magnitude of the vibration becomes higher.
So it is important to estimate these low order natural frequencies and to control
the structure from vibrating at those frequencies. A modified random decrement
method along with Ibrahim time-domain technique is used for estimating the modal
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parameters, which uses the floor acceleration [25]. The modal parameters can also
be identified using Kalman filter [44].

Parametric identification of a linear structure excited with two orthogonal hori-
zontal components using least-squares identification algorithm is presented in [45].
Here, each floor is considered to have 3-DOF, two displacements (along the x and y
axis) and one torsion (rotation around the z axis). In [38], the dynamic state-space
model of an earthquake-excited structure is identified using the measured input-
output data that is used later for estimating the modal parameters. The system and
modal parameters of a linear MDOF structure is estimated in [46]. Here, the equation
of motion of the structure is first written in state-space equation of the observable
canonical form and then is converted into an ARMAX model for dealing with the
noise present in the measured data.

Some works [47] consider the damping matrix C as a Rayleigh damping coeffi-
cient matrix, which is found using the modal parameters as given below [26],

C =arM + BrK (2.16)

where the Rayleigh parameters ag and Bg are calculated using the first and third
eigen-frequencies (w; and ws), given by

ap = —— an =—— .
K w; + w3 k w) + w3

whereas [24] uses the first two lower-order mode frequencies.
In [42], the stiffness of the structure column is estimated using the equation given
below
_ 12E,1,

o (2.18)

where E, is the Young’s modulus of elasticity, 1, is the moment of inertia, and L.
is the unsupported length of the column.

A brief review about the identification of nonlinear dynamic structures is pre-
sented by Kerschen et al. [20] in 2006. The fundamentals and methods of identifi-
cation for linear and nonlinear structural dynamic systems are reviewed in [35]. A
general survey on system identification is presented in [48] and a review on stochastic
identification methods for modal analysis is presented in [41].

Estimation of System States. In order to control the structural dynamics, it is neces-
sary to measure the system states directly using a sensor or indirectly by using a state
observer. Some structural control applications use Kalman filter as the observer for
estimating the velocity and displacement [49]. A Kalman filter estimator is given by

{= A2+ Bu+L(y— H?— Du) (2.19)

L=R"'y,FE" +HS)" (2.20)
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where 7 is the estimate of the state vector z, L is the Kalman filter gain matrix, S is
the solution of the Algebraic Riccati equation using matrix R, and y, is the power
spectral density of ground acceleration to the sensor noise. In [36], the Kalman—Bucy
filter is used as the state estimator represented by

P=A24Bu+L(y—3) (2.21)
L=ECTR™! (2.22)

Kalman filter cannot be applicable if the building parameters; mass, stiffness,
and damping are not available, in that case sensors are used for the state estimation.
There are different sensors available to measure displacement, velocity, and accel-
eration [2]. During the seismic excitation, the reference where the displacement and
velocity sensors are attached will also move, as a result the absolute value of the above
parameters cannot be sensed. Alternatively, accelerometers can provide inexpensive
and reliable measurement of the acceleration at strategic points on the structure. A
comparative study about the performance of the displacement, velocity, and accel-
eration sensors are performed in [3] and it is shown that the acceleration sensor is
more effective compared to the other two sensors. A number of experiments and
implementations about the acceleration feedback in structural control were carried
out in [6].

An accelerometer measures the absolute acceleration, which is then integrated
for estimating the velocity and displacement. Obtaining the velocity and displace-
ment from the measured acceleration is a practically challenging task. Although time
integration of the acceleration seems to be a straightforward solution for estimating
the velocity and displacement, there are some practical difficulties that can result
in a wrong estimation. Integrating these signals will result in the amplification of
low frequencies components, reduction in the magnitude of high frequencies sig-
nals, and phase errors. In other words, the low-frequency signals including the DC
offset present in the acceleration signal will dominate the result of the velocity and
displacement, giving an unrealistic estimation.

The output of the accelerometer a(z) can be expressed as

a(t) = ki (1) + (1) + ¢ (2.23)

where k, is the accelerometer gain, ¢(¢) is the noise and disturbance effects of the
measurement, and ¢ denotes the DC bias [42]. Accelerometer has different source of
noise, integrating these noise signals leads to an output that has a root mean square
(RMS) value that increases with integration time, even in the absence of any motion
of the accelerometer [50]. The RMS positional error ey of an acceleration signal
with a bias ¢ can be approximated as

1
RMS{e, ()} = Eeﬂ (2.24)

which will grow at a rate of ¢2.
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It has been shown that the aliasing can cause low-frequency errors in the measured
acceleration signal [51]. Aliasing is an unavoidable phenomenon that happens when
digitizing the analog signals using an analog-to-digital converter (ADC). During this
conversion, the frequency components above the Nyquist rate are folded back into
the bandwidth of interest. Then, the acceleration signal in (2.23) can be rewritten as

a(t) = kX (1) + (1) + & + X, (1) (2.25)

where X, (¢) is the aliasing content due to sampling. This low-frequency content will
be amplified during the integration process. This aliasing effect is not completely
removable but its effect can be minimized by using an anti-aliasing filter between the
accelerometer and data acquisition card. The ADC sampling rate needs to be high
enough compared to this filter cutoff frequency and the sampling should to be done
in uniform time intervals.

The other source of offset in the measured acceleration is the ADC itself [43]. If
the acceleration is slow compared with the quantization level of the conversion, an
offset is added into the acceleration signal. This effect can be reduced by increasing
the resolution of the ADC.

Apart from these issues, the integration output can also be affected by the integra-
tion techniques. The integration methods like the Trapezium rule, Simpson’s rule,
and Tick’s rule have problems with low-frequency components, and they also show
instability at high frequencies [52].

A drift-free integrator is proposed by Gavin et al. [53], which is implemented using
analog and digital circuits. The paper presents three types of integrators: (1) imple-
mented using a first order low-pass filter as the integrator and two stages of high-pass
filters for removing the offset, (2) analog integrator with feedback stabilization, and
(3) a stabilized hybrid analog—digital integrator with an exponential accuracy when
integrating long-period signals. In another work [54], the drift due to the integration
is eliminated by; first filtering the acceleration signal using a frequency-domain filter
called Fast Fourier transform-direct digital integration (FFT-DDI) and then is inte-
grated for estimating the velocity and displacement. The same method is repeated
for removing the drift occurred due to the unknown initial conditions.

The constant offset present in the acceleration data can be represented using a
baseline. The integration may cause a drift in this baseline, which will give a wrong
estimation. A baseline correction method is proposed in [55] that uses a least-square
curve fitting technique and a frequency-domain filtering for avoiding the drift during
the integration. The correction is done by determining a baseline in polynomial form,
which is then subtracted from the measured acceleration signal, then is integrated to
obtain the velocity and displacement. Finally, a windowed filter is applied to remove
the low-frequency noise.

A practical method for calibrating the positional error obtained by double integrat-
ing the acceleration signal is discussed in [50]. The double integration of noise using
different techniques is also presented. An initial velocity determination method for
the displacement estimation from the acceleration data is suggested in [56], which
also considers the initial condition in their design. A weighted residual parabolic
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acceleration time integration method is proposed in [57], where the displacement is
assumed to be a fourth-order polynomial, so that the acceleration variation with time
is quadratic. A numerical integrator for estimating the velocity and displacement
from the measured acceleration signal is proposed in [23]. The effectiveness of the
integrator is illustrated experimentally by performing a structural vibration control
on a shake table using a PD controller.

2.3 Structural Control Devices

The structural vibration control is aimed to prevent structural damages using vibration
control devices. Various control devices have been developed to ensure the safety
of the building structure even when excessive vibration amplitudes occur due to
earthquake or wind excitations. The control devices are actuators, isolators, and
dampers, which are used to attenuate the unwanted vibrations in a structure. Many
active and passive devices have been used as vibration control devices. The passive
damper modifies the structure response without using an external power supply.
Active actuators can generate required forces for controlling the structure dynamics.
Using an external power supply, these devices will modify the structure stiffness
or damping, which results in a structural dynamics change. The semi-active device
combines the properties of both passive and active devices. Hybrid devices are formed
either by using both passive and active devices or by using both passive and semi-
active devices. Other well-known vibration control devices are the base isolators. The
list of the commonly used structural control devices is summarized in the Table2.2.
Basic concepts of some popular devices are discussed below.

Table 2.2 Structural control devices [7, 17, 19]

Passive Active Semi-active Isolator Hybrid
TMD, TLCD, AMD, active | MR/ER dampers, Elastomeric HMD, HBI
metallic dampers, tendons semi-active TMD, | bearings, lead-plug
friction dampers, semi-active TLCD, | bearings,
viscoelastic friction control high-damping
dampers, viscous devices, stiffness rubber bearings,
fluid dampers control devices, friction pendulum
viscous fluid bearings
dampers
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2.3.1 Base Isolators

Base isolators are flexible isolation devices, placed between the building structure and
the foundation for reducing seismic wave propagation into the structure. The addition
of this device will increase the flexibility of the structure, hence, the structural time
period. For that reason, isolators reduce the propagation of high frequency signal
from ground to the structure, which makes it suitable for implementing in small and
middle-rise building structures [7]. The Fig.2.5 shows the changes in the structure
response while using base isolator.

Base isolation is one of the popular technique applied widely, especially in the
case of bridges. In general, the isolators can be formed using elastomeric bearings,
sliding bearings, and combinations of both types of bearings. Elastomeric bearings
are made up of elastic materials like the rubber. In the second case, the isolator uses
sliding mechanism [7]. In bridges, the isolators are easily implemented by replacing
standard bridge bearings by isolation bearings. More information about the types of
isolators and their implementation can be found in [58].

Base isolation is well-known passive control technique. But active [59] and semi-
active [60] control schemes were also proposed. Another class of base isolation
devices is the hybrid base isolation (HBI), made by combining the passive base iso-
lator with the active or semi-active base isolator/control [18]. Sometimes, the seis-
mic activity in the building is reduced by placing isolators between the substructure
columns, not in the base, hence called as seismic isolators.

2.3.2 Passive Devices

Structural control using passive devices is called passive control. A passive control
device does not require an external power source for its operation and utilizes the
motion of the structure to develop the control forces. These devices are normally
termed as energy dissipation devices, which are installed on structures to absorb a
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significant amount of the seismic-or wind-induced energy. The energy is dissipated
by producing a relative motion within the control device with respect to the struc-
ture motion [19]. For the ideal passive devices, the control forces applied to the
structure are only dependent to the structural motion, which can be mathematically
represented as [6]

fi(t) = —cixq;i (1) (2.26)

where X4; is the relative velocity across the ith device and ¢; is the damping coefficient
associated with the ith device.

Vibration absorber systems such as tuned mass damper (TMD) has been widely
used for vibration control in mechanical systems. Basically, a TMD is a device
consisting of a mass attached to a building structure such that it oscillates at the same
frequency of the structure, but with a phase shift. The mass is usually attached to the
building through a spring-dashpot system and energy is dissipated by the dashpot as
relative motion develops between the mass and structure [61]. A simple mechanical
model for TMD is depicted in Fig. 2.6. An early study about the TMD with a practical
application is illustrated in [62].

Tuned liquid column damper (TLCD) dissipates energy similar to that of TMD,
where the secondary mass is replaced with a liquid column, which results in a highly
nonlinear response. They dissipate energy by passing the liquid through the orifices.
A simple mechanical model of TLCD is depicted in Fig.2.7. The natural frequency
of the TLCD can be obtained as [63]

|29
n — - 2.27
o, L (2.27)

where L, is the length of the liquid tube and g is the acceleration due to gravity.
The equation of motion of a TLCD satisfies the following expression [64]

.. 1 . . ..
PALX (W) + 2 pr AE 1%, (D] 50 (1) + 201 Agxy (1) = —pr AL, X (1) (2.28)

where x, (¢) is the vertical displacement, p; is the liquid density, L, and L,, respec-
tively are the horizontal and total length of the liquid column, A is the area of cross



20 2 Active Structural Control
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section, and £ is the headless coefficient. A comparison study of the performance of
three types of mass dampers; TMD, TLCD, and Liquid column vibration absorber
(LCVA) were discussed in [59] and it is concluded that the TMD performs better
than the other two dampers.

Other passive dampers are [17]: metallic yield dampers which dissipate the energy
through the inelastic deformation of metals, friction dampers which utilize the mech-
anism of solid friction, develops between two solid bodies sliding relative to one
another, to provide the desired energy dissipation, and viscoelastic dampers that
dissipates the energy through the shear deformation.

Viscous fluid damper works based on the concept of sticky consistency between
the solid and liquid. It has a movable piston within a housing filled with highly viscous
fluid. The piston contains a number of orifices, through which the fluid passes from
one side to another that will result in energy dissipation. The output force of the
orifice controlled viscous fluid devices can be expressed as [65]

(@) = clxa®]* sgn(xq(1)) (2.29)

where x, is the relative velocity of the viscous fluid device and «, is a coefficient in
the range of 0.3-2.0.

Passive dampers are very simple and due to the fact that it will not add energy to the
structure, hence it cannot make the structure unstable. Most of the passive dampers
can be tuned only to a particular structural frequency and damping characteristics.
Sometimes, these tuned values will not match with the input excitation and the
corresponding structure response. For example; (1) nonlinearities. in the structure
cause variations in its natural frequencies and mode shapes during large excitation, (2)
a structure with a multiple-degree-of-freedom (MDOF) moves in many frequencies
during the seismic events. As the passive dampers cannot adapt to these structure
response changes, it cannot assure a successful vibration suppression [9]. This is
the major disadvantage of the passive dampers, which can be overcome by using
multiple passive dampers, each tuned to different frequencies (e.g., doubly TMD,
Multiple TMD) or by adding an active control to it.
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2.3.3 Active Devices

The concept of active control has started in early 1970 s and the full-scale application
was performed in 1989 [18]. An active control system can be defined as a system
that typically requires a large power source for the operation of electrohydraulic or
electromechanical (servo motor) actuator, which increases the structural damping or
stiffness. The active control system uses sensors for measuring both the excitation
and structural responses, and actuators for controlling the unwanted vibrations [19].
The working principle of the active control system is that, based on the measured
structural response the control algorithm will generate control signal required to
attenuate the vibration. Based on this control signal, the actuators placed in desired
locations of the structure generate a secondary vibrational response, which reduces
the overall structure response [66]. Depending on the size of the building structure,
the power requirements of these actuators vary from kilowatts to several megawatts
[67]. Hence, an actuator capable of generating a required control force should be
used. As the active devices can work with a number of vibration modes, it is a
perfect choice for the MDOF structures. A number of reviews on active structural
control were presented [11].

The ideal actuators are assumed to have the ability to instantaneously and precisely
supply force commanded by the control algorithm [6]. There are many active control
devices designed for structural control applications. A recent survey on active control
devices is presented in [9]. An active mass damper (AMD) or active tuned mass
damper (ATMD) is created by adding an active control mechanism into the classic
TMD. In this system, 1 % of the total building mass is directly excited by an actuator
with no spring and dashpot attached. ATMD control devices were first introduced
in [68]. These devices are initially used to reduce structural vibrations under strong
winds and moderate earthquake.

Active tendons are prestressed cables, where its stress is controlled using actuators
for suppressing the vibration [9]. The structural vibration control using active cables
and tendons is presented in [12]. Various numerical analytical studies have been
carried out using tendons for active control [69]. At low excitations, the active control
system can be switched-off, then the tendons will resist the structural deformation in
passive mode. At higher excitations, active mode is switched-on to reach the required
tension in tendons.

A comparison study between active and passive control systems was carried out in
[6] using H»/LQG control algorithm. In simulation, itis found that for SDOF structure
both the active and passive control systems performed similarly, whereas in the case
of structure with MDOF the active control system showed high performance.

The active control devices found to be very effective in reducing the structural
response due to high magnitude earthquakes. However, there are some challenges
left to the engineers, such as how to eliminate the high power requirements, how to
reduce the cost, and maintenance. These challenges resulted in the development of
semi-active and hybrid control devices [70].
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2.3.4 Semi-active Devices

A semi-active control system typically requires a small external power source for its
operation and utilizes the motion of the structure to develop control force, where the
magnitude of the force can be adjusted by an external power source [19]. It uses the
advantages of both active and passive devices. The semi-active devices for structural
control application were first proposed by Hrovat et al. in 1983 [71].

The benefits of the semi-active devices over active devices are their less power
requirements, which can even be powered using a battery that is more important
during the seismic events, when the main power source to the building may fail.
Semi-active devices cannot inject mechanical energy into the controlled structural
system, but has properties that can be controlled to optimally reduce the response
of the system. Therefore, in contrast to active control devices, semi-active control
devices do not have the potential to destabilize (in bounded-input bounded-output
sense) the structural system [70]. A detailed review of semi-active control systems
is provided in [72].

Like passive friction dampers, these semi-active frictional control devices dissi-
pate energy through friction caused by the sliding between two surfaces. For this
damper, a pneumatic actuator is provided in order to adjust the clamping force [73].
An ideal friction damper can be modeled as a Coulomb element, where the output
force is termed as

S = ufn sgn(x) (2.30)

where w is the friction coefficient and f, is the normal force [19]. In the case of
friction dampers, the friction coefficient needs to be tuned to have a good energy
dissipation. In contrast with the passive friction dampers, the semi-active friction
dampers can easily adapt the friction coefficient to varying excitations from weak to
strong earthquakes.

Semi-active controllable fluid dampers are one of the most commonly used semi-
active control device. For these devices, the piston is the only moving part, which
makes them more reliable. These devices have some special fluid, where its property
is modified by applying external energy field. The electric and magnetic fields are
mainly used to control these devices, which is so-called as Electro rheological (ER)
and magneto rheological (MR) dampers, respectively [17].

ER damper [19]: ER dampers consist of liquid with micron-sized dielectric par-
ticles within a hydraulic cylinder. When an electric field is applied, these particles
will polarize due to the aligning, thus offers more resistance to flow resulting a solid
behavior. This property is used to modify the dynamics of the structure to which it
is attached.

MR damper [19]: The construction and functioning of MR dampers are analogous
to that of ER dampers, except the fact that instead of the electric field, magnetic field
is used for controlling the magnetically polarizable fluid. MR dampers have many
advantages over ER dampers, which made them more popular in structural control
applications. These devices are able to have a much more yield stress than ER with less
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Table 2.3 MR and ER damper properties

Property MR damper ER damper

Max. yield stress 50-100 kPa 2-5kPa

Maximum field ~250kA/m ~4kV/mm

Plastic viscosity 0.1-1.0 Pa-s 0.1-1.0 Pa-s

Operable temperature range —40to 150°C +10-90°C

Stability Unaffected by most impurities | Cannot tolerate impurities
Response time milliseconds milliseconds

Density 3-4 g/em? 1-2 g/em?

Maximum energy density 0.1J/cm? 0.001 J/em?3

Power supply (typical) 2-25V;1-2A 2000-5000 V; 1-10 mA

input power. Moreover, these devices are less sensitive to impurities. A comparison
between MR and ER fluid dampers are summarized in Table2.3.

Different modeling techniques are available to express the behavior of these
devices, such as; Bingham model, Bingham viscoplastic model, Gamota and
Filisko model, Bouc—Wen model, modified Bouc—Wen model, etc. [74]. Among
these techniques, Bingham model is the simplest modeling tool for both ER and MR
dampers. When any field is applied to these devices, the change in the fluid property
can be modeled using a Bingham viscoplastic model [12]. The plastic viscosity of this
model is given in terms of the shear stress and shear strain, which is mathematically
represented as

T =1, sgn(y) + ny (2.31)

where 7 is the total shear stress, 7, is the yield stress due to the applied field, y is
the rate of the shear strain, and 7 is the plastic viscosity. The relationship between
the force and displacement of a MR damper using this model is given by [75]

1217NL,,A§ . 3L,t, .
= nD—,-D?,x(t) + D, A, sgn [x(1)] (2.32)

where L, is the piston length, A, is the piston cross-sectional area, D; is the inner
diameter, D, is the diameter of the small gap in the piston, and 7y is the New-
tonian viscosity independent of the applied magnetic field. The yield stress can be
represented as a function of the control current / as follows.

Ty = Are + AyIn(I +e) + Azl (2.33)

where A, A, and Aj are the coefficients relative to the MR fluid property and e is
the Euler’s number.

Bingham model is a mechanical version of the Bingham viscoplastic model,
which uses damping and Coulomb friction components in the model. This model
is further extended, known as Gamota and Filisko model, which is a parametric
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viscoelastic-plastic model. But all of these methods have some shortcomings espe-
cially at low velocities. The classic Bouc—Wen can model the hysteresis loop pretty
well, but fails to predict the roll-off problem seen at low velocities. A modified
Bouc—Wen model was proposed by Spencer et al. [74], where an additional damping
(c1) and stiffness (k) is added to compensate the roll-off and accumulator stiffness,
respectively. The total force of the MR damper is obtained as

f=ap+colt =) +ko(x — ) +ki(x — x0)

* 2.34
=c1y +ki(x — xo) (234

where y and Z can be found as

A— ‘x - y( ZIE7 = B (x - y) 27 + 80 (x _ y) (2.35)

y= {apz + cox + ko(x — )} (2.36)
co+ci

where ¢ is the viscous damping at large velocities, c; is the viscous damping for
force roll-off at low velocities, ky is the stiffness at large velocities, k; is the damper
accumulator stiffness, and xj is the initial displacement of spring. k; and o is a third-
order polynomial. The corresponding mechanical model is depicted in Fig.2.8. In
[55], the dynamic modeling and two quasi-static models (axisymmetric and parallel-
plate model) of the MR damper are studied through experiments.

The semi-active fluid viscous damper consists of a hydraulic cylinder, which is
separated using a piston head. The cylinder is filled with a viscous fluid, which can
pass through the small orifices. An external valve which connects the two sides of
the cylinder is used to control the device operation. The semi-active stiffness control
device modifies the system dynamics by changing the structural stiffness [19].

Fig. 2.8 Modified Y T
Bouc—Wen model of MR * Bouc-Wen
damper ]

A

hY
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2.3.5 Hybrid Devices

Hybrid actuators combine robustness of the passive device and high performance
of the active devices. Due to the inclusion of multiple control devices, the hybrid
system overcomes the limitations and restrictions seen in the single control devices
like passive, active, and semi-active devices. The hybrid systems are further classified
into two classes: HBI and hybrid mass damper (HMD) [18]. As the base isolation
exhibits nonlinear behavior, various nonlinear control technologies like the robust
control were adopted to control these hybrid devices [70].

HMD can be formed by combining the passive devices like TMD along with
some active devices like AMD. The capability of the TMD is increased by adding
a controlling actuator to it, which increases the system robustness in changing the
structure dynamics. These HMDs are found to be cost effective in terms of the energy
requirement for their operation, when compared with active control systems [18].
The full-scale implementation of active structural control systems in Japan, USA,
Taiwan, and China are enlisted in [17], where the HMD is found to be the most
commonly employed device compared with other devices.

Researchers have also investigated the various control methods for HMD, like
optimal control methods, sliding mode control, gain scheduling, etc. [70]. As these
systems utilize two types of actuators, it will have a series of objective functions,
which results in a multi-objective optimization problem. To derive an optimal solu-
tion, a preference-based optimization model using GA is proposed. The designed
model is compared with a non-hybrid system and is found to be very cost effective
in suppressing the vibrations. A hybrid system using the HMD and a viscous damper
is discussed in [76] for the reduction of the wind-induced vibrations of high-rise
building.

The implementation of the above-mentioned devices will result in different con-
trol schemes, which are summarized in Fig.2.9. In the passive control, the passive
device reduces the vibration response of a structure without using any feedback, see
Fig.2.9b. In the active and semi-active case, the input and output response of the
structure is measured and based on that the controller generates a desirable output
command signal. This signal is then used to drive the active or semi-active devices
for attenuating the vibration, which are shown in Fig.2.9¢c, d, respectively. In the
case of hybrid control shown in Fig.2.9e, only the active/semi-active device uses the
feedback, whereas the passive devices works independently.

Typical installations of control devices are shown in Fig.2.10. Other recent tech-
nique is the connected control method, where the adjacent buildings are intercon-
nected using control devices for vibration attenuation, see Fig.2.11. In [77], passive
devices are installed between the adjacent structures for inter-structure protection and
at the same time semi-active dampers are placed in the building floors for protecting
the substructure.

A brief state-of-the-art review about the structural control devices can be found in
[17]. The simplicity of the passive systems made them more common in seismic con-
trol applications. The active systems including the semi-active and hybrid systems,



26

(a)

2 Active Structural Control

[ Excitation —{ Structure |—] Response |

Structural System

(b) Passive Energy Dissipation (PED)
PED

(d)
I Sensors |—’|Contr0]ler|‘—| Sensors I
Control
Actuators
PED

[ Excitation —{ Structure |—] Response |

| Excitation |—{ Structure |—] Response |

Passive Control

Semi-Active Control

(c) (e)
| Sensors |—'| Controller |'—| Sensors | | Sensors |—'| Controller |'—| Sensors |
Control Control
Actuators Actuators
PED
|Excitation I—-l Structure I—-l Response I IExcitation I—- Structure I—-l Response
Active Control Hybrid Control

Fig. 2.9 Control schemes [17]

m, | AMD
[
TLCD M
Howme
m m m m
m m m m
m m m m
i
. : /MR
T D 5T TG I TS T

Fig. 2.10 Typical implementation of control devices on structures

generates a control force based on the measurements of the structural responses. Due
to this ability of measuring the structural response it can be designed to accommodate
a variety of disturbances, which makes them to perform better than the passive sys-
tems. More on the governing equations of dampers and actuators can be found in [47].
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Control devices are used to control the dynamics of the structure to a desired
response. Therefore, the dynamic model of a structure will change once a control
device is installed on it. That is, it is expected that the installation of a control device
will modify the structure parameters like its natural frequency, thereby changing the
system model [36]. As a consequence, it is necessary to consider the dynamics of
the actuator in the structure.

Consider a passive damper added to a structure represented in (2.37), then the
system model can be rewritten as [17]

mi + cx + kx + I1(x) = —(m + mg)x, (2.37)
where m,; is the mass of the damper and I7 (x) represents the force corresponding to
the damper, used to modify the structure response for reducing vibrations. The same

formulation can be done in the case of active control devices, where (2.37) can be
rewritten as follows

mx + cx + kx = —mu(t) —mi, (2.38)
If the control force is selected as per the relationship given in (2.39)

u(r):n(x)

(2.39)

then (2.38) becomes
mx +cxX + kx + I (x) = —mi, (2.40)
In contrast to the passive control method, here, the control function I7 (x) is derived
as a control law.

The motion equation of a structural system with n-DOF and o control devices
subjected to an earthquake excitation can be expressed as

Mi(1) + Ci(t) + Kx(t) = Tu(t) — M A%,(t) (2.41)
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where u(¢) € R"™*! is the control force vector and I" € R"*° is the location matrix
of the control devices. Equation (2.41) becomes nonlinear if the control force is
generated using a nonlinear device, such as MR damper or by using a nonlinear
control algorithm, such as intelligent control.

2.4 Active Structural Control Techniques

The objective of structural control system is to reduce the vibration and to enhance
the lateral integrity of the building due to earthquakes or large winds, through an
external control force [21]. In active control system, it is essential to design one
controller in order to send an appropriate control signal to the control devices so that
it can reduce the structural vibration. The control strategy should be simple, robust,
fault tolerant, need not be an optimal, and of course must be realizable [22].

2.4.1 Linear Control of Building Structures

PID Control. The proportional-integral-derivative (PID) has been widely conducted
for practical applications, especially for the systems with one or two DOF. For mul-
tivariable systems, its control algorithm becomes more complex, which makes them
unsuitable for the applications like vibration control of MDOF flexible structures.
A simulation was carried out for a simple proportional controller, which is able to
reduce the building displacement for wind excitation, but found to be ineffective for
strong earthquake excitation [13].

In [78], two PD controllers were used for controlling two actuators installed in
the first and fifteenth floor. The control law is given as

(2.42)

de(t)
ut) =K, |:e(t) + K4 T ]

where K, and K are the proportionality constant and derivative time, respectively,
and e(?) is the position error. The designed PD controller performance is found to
be less efficient when compared with that of a fuzzy logic controller (FLC).

In a work done by [79], a PID controller is designed which have the following
controlling law

u(t) =K, |:e(t) + L / e(t)dt + K, (2.43)
K Jo

1

de(t)
dt ]

where K; is the integral gain. Here, the PID performance is compared with that of
a sliding mode controller (SMC) and found to be less effective in controlling the
structural vibration. In [80], a proportional-integral (PI) controller is used to actuate
the AMD against the structural motion due to earthquake.
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H, Control. H,, technique is one of the widely used linear robust control scheme
in structural vibration control. This technique is insensitive with respect to the dis-
turbances and parametric variations, which makes them suitable for the MIMO type
structural control systems [81].

A modified Hy, controllers, for example, pole-placement Hy, control is presented
in [76]. In this work, instead of changing the structure stiffness some target damping
ratio is considered. A bilinear transform is adopted to locate the closed-loop poles in
a specific region within the Hy, controller design framework. The relation between
the final closed-loop poles and bilinear transform parameters is derived as a quadratic
equation and using this equation a new noniterative direct method is developed for
an optimal Hy, controller design.

Normally, the Hy, design results in a higher order system, which will make the
implementation more difficult [62]. So it may be necessary to reduce its order, which
can be done by performing balanced truncation. The truncation has two classes; direct
method and indirect method. The balanced truncation assures very few information
losses about the system, which is achieved by truncating only less controllable and
observable states. It is shown that the performance of the reduced low order system
is nearly same as the performance of the actual higher order controller.

A H based structural controller using Takagi—Sugeno Fuzzy model was proposed
in [82]. The controller stability is derived based on Lyapunov stability theory, which
is evaluated as a LMI problem. If the initial condition is considered, the H,, control
performance satisfies the following condition:

t

/ " T (002t < 27 (0)P2(0) + € / ! 515 d1 (2.44)
0 0

where ; denotes the termination time of the control, P and Q are the positive definite
matrices, and € denotes the effect of X, on z(r). The effectiveness of the proposed
algorithm is demonstrated through numerical simulations on a 4-story building.

As discussed earlier, time-delay is an important factor to be considered while

designing a control system. A Ho, controller is presented in [83], which considers
time-delay in control input . The proposed algorithm determines the feedback con-
trol gain with a random search capability of GA and solving a set of LMIs. The
effectiveness of the proposed algorithm is proved through simulation of a system
with larger input time-delay.
Optimal Control. Optimal control algorithms are based on the minimization of a
quadratic performance index termed as cost function, while maintaining a desired
system state and minimizing the control effort [13]. The most basic and commonly
used optimal controller is the linear quadratic regulator (LQR). For structural control
applications, the acceptable range of structure displacement and acceleration are
considered as the cost function that is to be minimized.

An energy-based LQR is proposed in [69], where the controller gain matrix is
obtained by considering the energy of the structure. The structural energy is defined as
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where the first term is the kinetic energy and the second term is the potential energy
of the structural system.

A modified LQR is proposed in [4], which is formed by adding an integral and a
feedforward control to the classic LQR. A state feedback gain and an integral gain are
used to reduce the steady-state error. A feedforward control is included to suppress
the structural responses and to reduce the effect of earthquakes. A structural vibration
control utilizing a filtered LQ control is presented in [84]. As all the structural state
variables are not observable, a suboptimal control is used, where the system states
are reduced using low-pass filters. A LQR based on GA is presented [24], where the
GA is used for choosing the weighting matrix.

Sometime, states of the structures are measured indirectly using some observers
like Kalman filters. The addition of a Kalman filter to a LQR control strategy leads
to what is termed as Linear Quadratic Gaussian (LQG) [36]. In other words, LQG
is formed by combining the linear quadratic estimator with LQR. These LQG are
generally used for the systems which has Gaussian white noise [10].

The conventional LQG controller sometimes do not consider the input force term
in their design. Chen [82] proposed an active vibration control scheme using a com-
bination of LQG and an input estimation approach. The input estimation approach
is introduced to observe the input disturbance forces for the open loop control, that
is used to cancel out the input forces. The proposed method is evaluated through
numerical experiments on linear lumped-mass systems and a better performance is
reported compared to that of the conventional LQG.

An active controller utilizing MR damper is designed using LQG control strategy
under a wind loading by means of drag forces [36]. A real set of recorded wind
speed data is used to excite the laboratory prototype. A H,/LQG based controller is
presented in [33], which uses wireless sensing motes (MICA?2) for sensing the accel-
eration signal. More works about the structural control using LQR/LQG control
algorithms can be found in [85]. Optimal algorithms based on instantaneous opti-
mal control has also been developed for nonlinear systems. The nonlinear optimal
methods using GA, FLC, etc., will be discussed later.

2.4.2 Intelligent Control of Building Structures

Neural Network Control. In recent years, the structural control systems based on
NN are very popular, because of its massively parallel nature, ability to learn, and its
potential in providing solutions to the foregoing unsolved problems. They provide a
general framework for modeling and control of nonlinear systems such as building
structures.

In the middle of the 1990s, very few structural control applications have been
reported based on NN. Wen et al. [86] presented a NN-based active control of a
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SDOF system that can become nonlinear and inelastic. One inverse mapping NN
and one emulator NN are used in the design. The difference between the actual
overall structural response and response due to the control force only, is used as
the input to the inverse mapping NN. The emulator NN predicts the response of the
structural system to the applied control force. Using this response, a control force
with a phase shift is generated to nullify the excitation.

A backpropagation (BP)-based ANN for active control of SDOF structure is pro-
posed by Tang [22]. This control strategy does not need the information of the exter-
nal excitation in advance and the control force needed for the next sampling time is
completely determined from the currently available information. The ANN with five
neuron elements (displacement, velocity, and load of the preceding time step and
displacement and velocity of the current time step) is used, which will perform two
sequential calculations in every sampling interval; (a) calculate the load (b) based
on the calculated load, the control force u(t) needed for the next time interval is
calculated. Apart from the numerical verification of the above algorithm, they have
also presented a study on the uncertainties in the system modeling and input motion.

Consider the minimization of the cost function in a discrete form with total time
step r and increment time At

r r

D GIAI" Qzli] + ulA)” Rulil) At (2.46)
n=0
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n=0
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where JA,; is the instantaneous cost function, J is the global cost function, and 7 is the
discrete time steps. If the weights are updated at each time step in order to minimize
the instantaneous cost function, this learning mode is called pattern learning, and
if the weights are updated once for all time steps so that the global cost function
J is reduced, this learning mode is known as batch learning. An optimal control
algorithm using NN based on the pattern learning mode is presented in [63]. The
steepest-descent method is used here as the weight updating rule.

One multilayer NN controller with a single hidden layer is presented in [87]. The
optimal number of hidden neurons is selected after performing a number of iterative
training cycles. The network will generate an active control force as output using the
structure response as its input. The batch learning is used here, where the network
weights and biases are selected in such a way that a minimal objective cost function is
achieved. The steepest-gradient-descent optimization method is used for the weight
update, where the partial-differential equations are solved using the chain rule.

Probabilistic neural networks (PNN) are feed-forward networks built with three
layers. They are derived from Bayes decision networks that estimates the probability
density function for each class based on the training samples. The PNN trains imme-
diately but execution time is slow and it requires a large amount of memory space.
A new method to prepare the training pattern and to calculate PNN output (control
force) quickly is proposed in [88]. The training patterns are uniformly distributed at
the lattice point in state-space, so that the position of invoked input can be known.
This type of network is called as Lattice probabilistic neural network (LPNN). The
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calculation time is reduced by considering only the adjacent patterns. Here, the dis-
tance between the input pattern (response of structure) and training patterns (lattice
type) for LPNN are calculated, which is then converted as the weights.

An active type NN controller using one counterpropagation network (CPN) is
presented in [89], which is an unsupervised learning type NN, so that the control force
is generated without any target control forces. Another intelligent control technique
using a NN is proposed for seismic protection of offshore structures [65].

The ability of the nets to perform nonlinear mappings between the inputs and
outputs, and to adapt its parameters so as to minimize an error criterion, make the
use of ANN particularly well suited for the identification of both linear and nonlinear
dynamic systems. The NN for system identification in structural control applications
were presented in [40]. A NN is designed to approximate the nonlinear structural
system and the corresponding stability conditions are derived [82]. A state-feedback
controller for the NN is designed using a linear differential inclusion (LDI) state-
space representation, which is useful in the stability analysis. Using NN, the system
in (2.14) is approximated as a LDI representation with less modeling errors.

An intelligent structural control system with improved BP-NN is proposed in [90],
which is used to predict the inverse model of the MR damper and for eliminating time-
delay in the system. The system represented in (2.14) is considered here. The system
has two controllers; the first one modifies the actual structural model, which was
offline trained before and the second controller causes error emendation by means
of online feedback. A multilayer NN for structural identification and prediction of
the earthquake input is presented in [91].

Fuzzy Logic Control. Like NN, Fuzzy logic is also a model free approach for system
identification and control. The FLC design involves; the selection of the input, output
variables, and data manipulation method, membership function, and rule base design.
Due to its simplicity, nonlinear mapping capability, and robustness, the FLC has been
used in many structural control applications [92].

A FLC is designed [78] for a 15-story structure with two type of actuators, one
mounted on the first floor and the other actuator (ATMD) on the fifteenth floor. The
proposed FLC uses the position error and their derivatives as the input variable to
produce the control forces for each actuator. The rule base is formed using seven
fuzzy variables. The controller uses Mamdani method for fuzzification and Centroid
method for defuzzification. A simulation using Kocaeli earthquake signal is carried
out to prove the improvement in the performance of the FLC. A similar type of FLC
is presented in [93], for the active control of wind excited tall buildings using ATMD.
Another FLC for MDOF is proposed [94], that uses the same architecture, which is
further modified into MDOF using weighted displacement and weighted velocity.
In order to get the maximum displacement and velocity values, a high magnitude
earthquake is used to excite the building structure. As all the floors do not have
control devices, a weighting value is assigned to each floor, which will be large if
the control device is closer to that particular floor. Finally, a force factor is calculated
based on the weights of each floor.



2.4 Active Structural Control Techniques 33

A Fuzzy based on-off controller is designed to control the structural vibration
using a semi-active TLCD [95]. The optimal control force is given as

u=— Z PiZi (247)
i=l

where p; = [p1, ..., pr] is the optimal control gain vector obtained using LQR strat-
egy. The control force will act opposite to the direction of the liquid velocity (i f).
The regulation of the control force is done by varying the coefficient of headloss (&)
with the semi-active control rule as given below.

‘i:max if {Zl(t))&f(t)} <0

SO= g i {air0) =0

(2.48)

where z; represents the largest weighted state, which contributes most of the control
force in (2.47). Finally, using the above control law a FLC is designed, that takes
the liquid velocity and the large weighted displacement (z; = z;) as its input and
produces the coefficient of headloss as the output, which is used to control the valve
in the semi-active TLCD.

A fuzzy supervisory control method is presented in [96], which has a fuzzy super-
visor in the higher level and three subcontrollers in the lower level. First, the sub-
controllers are designed based on the LQR strategy, where the three subcontrollers
are derived from three different weight matrices. The fuzzy-supervisor tunes these
subcontrollers according to the structure’s current behavior. A similar work is done
in [56], where the subcontroller is designed using an optimal controller in the modal
space. The matrix in the Riccati equation is calculated using the natural frequencies
of the dominant modes and a corresponding gain matrix is determined. Another FLC
for active control of structure using modal space is presented in [97], which uses a
Kalman filter as an observer for the modal state estimation and a low-pass filter for
eliminating the spillover problem.

Instead of using a mathematical model, a black-box based controller is proposed
in [98]. Here, the force-velocity characteristics of the MR damper corresponding
to different voltages are obtained experimentally, which are used to calculate the
desired control force. The effect of the damper position and capacity on the control
response is also studied.

An alternative to the conventional FLC, using an algebraic method is proposed
in [99]. Here, the hedge algebra is used to model the linguistic domains and vari-
ables and their semantic structure is obtained. Instead of performing fuzzification
and defuzzification, more simple methods are adopted, ermed as semantization and
desemantization, respectively. The hedge algebra-based fuzzy system is a new topic,
which was first applied to fuzzy control in 2008. Compared to the classic FLC, this
method is simple, effective, and can be easily interpreted.

Some structural vibration controllers were designed, where the FLC is combined
with the GA [5]. The GA is known for its optimization capabilities. The GA is used
here to optimize different parameters in the FLC like its rule base and membership
function.
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Genetic Algorithm. The GA is an iterative and stochastic process that proceeds by
creating successive generation of offsprings from parents by performing the opera-
tions like selection, crossover, and mutation. The above operation is performed based
on the fitness (termed as cost function in optimization problems) value assigned to
each individual. After these operations, the parents are replaced by the offsprings,
which is continued till an optimal solution for the problem is attained [100].

The structural control problem consists of different objectives to be optimized,
which can be formulated using multi-objective optimization algorithms like GA. In
[101], a preference-based optimum design using GA for an active control of structure
is proposed, where the structure and control system is treated as a combined system.
Here, the structural sizing variables, locations of actuators, and the elements of the
feedback gain matrix are considered as the design variables and the cost of structural
members, required control efforts, and dynamic responses due to earthquakes are
considered as the objective functions to be minimized. For each objective criterion,
preference functions are defined in terms of degrees of desirability and regions that
represent the degrees of desirability. They are categorized as desirable, acceptable,
undesirable, and unacceptable with ranges defined by (A; < ¢;)), (ci, < A < cyy),
(ci, < Ai <ciy), and (c;; < A;) respectively, where c;,, ¢;,, and ¢;, are the range
boundary values and A; is the i-th design objective. The preference-based optimiza-
tion problem model is then given as

1 !
Fp() =7 2 frlhi(@)] (2.49)
i=1

with A;(d) < ¢;, and dyyi, < d < dax, Where Fp is the aggregate preference func-
tion, fp is the power function, / is the number of design objectives, and d is the vector
of design variables; d,,;,, and d,,,,, are the prescribed design constraints, respectively.
Finally, the fitness function of n, randomly created strings is defined as follows

Fy = [max(Fp,) + min(Fp)]— Fp j=1,..,n4 (2.50)

where F, is the fitness value of ith individual. A numerical simulation of an earth-
quake excited 10-story building is carried out and the proposed algorithm is able to
achieve improved performance with less control effort.

An active control of structures under wind excitations using a multilevel optimal
design based on GA is proposed [25]. The proposed multilevel genetic algorithm
(MLGA) considers the number and position of the actuators and control algorithm
as multiple optimization problems. This problem has the properties of nonlinearity,
noncontinuous, and multimodal objective function. In [102], a GA is used to tune
the mass, damping, and stiffness of the MRF absorber.

In [18], a feedback controller is designed, where the feedback gains are optimized
using a GA. The controller also considers the time-delay in applying control forces
to the devices. Two objective functions are: (1) to reduce the displacement and
acceleration response of the ith floor, and (2) to reduce the story drift response
as shown in (2.51) and (2.52) respectively.



2.4 Active Structural Control Techniques 35

o D il + e D sl (2.51)
=1 =1
dili]] < |dalA]
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Xm0 ~ Xm0
n=1

-
max [Z
n=1

where o and «; are the weights of displacement and acceleration responses respec-
tively, d;[7]is the story drift from the ith to (i—1)th floor at the time data point 7,
and x,,,o is the maximum displacement responses in all stories. The effectiveness of
the proposed method is demonstrated using numerical simulation of a 3-story and
8-story structures excited by different seismic forces.

The disadvantage of the GA is that, it requires long computational time if the num-
ber of variables involved in the computation increases. A modified GA strategy is
proposed in [41] to improve the computational time efficiency, which uses the search
space reduction method (SSRM) using a Modified GA based on migration and arti-
ficial selection (MGAMADS) strategy. In order to improve the computational perfor-
mance, the algorithm utilizes some novel ideas including nonlinear cyclic mutation,
tagging, and reduced data input

ZM] (2.52)
n=1

Xm0

Sliding Mode Control. SMC is one of the most popular robust control techniques.
A switching control law is used to drive the system’s state trajectory onto a prespec-
ified surface in the state-space and to maintain the system’s state trajectory on this
surface for subsequent time, which results in a globally asymptotically stable system.
In the case of structural vibration control, this surface corresponds to a desired sys-
tem dynamics. The robustness of the SMC against the uncertainties and parameter
variations makes them a better choice for structural control applications.
The nonlinear control force in SMC is given as

U =gy — 1 sgn(o(t)) (2.53)

where the linear term u,, is the equivalent control force, o = [o7, ..., 0,,] are the n
sliding variables, and 7 is the design parameter that guarantees the system trajectories
reach the sliding surface in finite time. A SMC with hybrid control is proposed in
[103], where the control law also termed as reaching law is formed using the constant
plus proportional rate reaching law and power rate reaching law.

Due to the imperfection in the high-frequency discontinuous switching, the direct
implementation of the control given in (2.53) will result in chattering effect, which
may cause damage to the mechanical components, hence the actuators. This effect
should be eliminated by suitably smoothing the control force or by using continuous
SMC. Many structural control strategies based on the non-chattering SMC were
reported [79].

A modal space sliding mode control (MS-SMC) method is designed in [44], where
the dominant frequencies are derived using power spectrum as well as the wavelet
analysis of the time series of the input-output. SMC based on a single-mode (first
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mode) reduced-order model is designed. Another SMC based on the modal analysis
is presented in [104], where the first six modes of the structure were considered.

During seismic events, the main control unit may lose its functionality, so it is a
better option to use a decentralized system, where the whole control is divided into
subsystems and are controlled independently. Such a type of decentralized system
with SMC is presented in [105]. The numerical studies were carried out for full
control and partial control cases and reaching laws were derived for cases; with and
without considering actuator saturations. They found that the full control case is more
effective, and they could not find any significant changes in the control for different
subsystem configurations.

A NN-based SMC for the active control of seismicity excited building structures is
proposed in [106]. Here apart from the sliding variables, the matrix o also represents
the slope of the sliding surface. This slope moves in a stable region, which results in
a moving sliding surface. A four layer feedforward NN is used to reduce chattering
effect and to determine the sliding surface slope. To achieve a minimum performance
index, the controller is optimized using a GA during the training process. It is shown
that a high performing controller is achieved by using the moving sliding surface.
Another SMC based on radial basis function (RBF) NN is reported in [107]. The
chattering free SMC is obtained using a two-layered RBF-NN. The relative displace-
ment of each floor is fed as the input to the NN and the design parameter 1 is taken
as the output. A modified gradient-descent method is used for updating the weights.

Couple of research works were carried out in designing the SMC using Fuzzy
logic so-called, fuzzy sliding mode control (FSMC) [108]. The SMC provides a
stable and fast system, whereas the FLC provides the ability to handle a nonlinear
system. The Chattering problem is avoided in most of these FSMC systems. A FSMC
based on GA is presented in [109], where the GA is used to find the optimal rules
and membership functions for the FLC.
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