
Chapter 1
Controlling Chimera Patterns in Networks:
Interplay of Structure, Noise, and Delay

Anna Zakharova, Sarah A.M. Loos, Julien Siebert,
Aleksandar Gjurchinovski, Jens Christian Claussen and
Eckehard Schöll

Abstract We investigate partially coherent and partially incoherent patterns
(chimera states) in networks of Stuart-Landau oscillators with symmetry-breaking
coupling. In particular, we study two types of chimera states, amplitude chimeras and
chimera death, under the influence of time delay and noise. We find that amplitude
chimeras are long-living transients, whose lifetime can be controlled by varying the
noise intensity and the value of time delay.

1.1 Introduction

Collective behavior of coupled nonlinear dynamical systems can take diverse forms,
ranging fromvarious synchronization patterns and oscillation suppression to chimera
states, which have been receiving growing interest of researchers from different fields
during the past decade [1]. Originally found for the model of phase oscillators [2,
3], chimera states imply spatial coexistence of coherent (synchronized) and inco-
herent (desynchronized) domains in a dynamical network and have been found in
a large variety of different systems [4–29]. The most intriguing feature of chimera
states is that they appear for networks of identical elements and symmetric coupling
configurations.

Numerous experimental reports on chimera states [30–40] have stimulated further
investigations in the field. Additionally, the burst of activity in chimera research is
motivated by the wide range of its possible applications. In neural networks, for
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example, chimeras can be associated with bump states [41] and in the dynamics of
the heart they may be used to model ventricular fibrillation [42]. In the investigation
of power grids it is important to understand how to avoid chimera states, since they
may initiate a blackout—partial or full desynchronization of the power network [43].
For social systems chimeras may be linked to the situation of partial consensus in
the two-population network of social agents [44]. Unihemispheric sleep of some sea
mammals and birds can be related to chimera behavior [45]. Chimeras have also
been suggested as a mechanism for the termination of epileptic seizure [46].

In recent studies chimera states have been extended to systems which involve not
only phase but also amplitude dynamics and named amplitude-mediated chimeras
in the case when both amplitude and phase are characterized by chimera behavior
[20, 21]. More complicated patterns in which chimera structures are formed with
respect to the amplitudes while the phases remain correlated for the whole network
have been first reported in [47]. This particular type of chimera states, amplitude
chimeras, is investigated in the present work.

While modelling real-world systems it is important to take stochasticity and time
delay into account. Arising naturally, these two factors lead to a plethora of complex
phenomenawith applications to various fields.Moreover, bothmay result in opposite
effects and can be exploited for control purposes.Our objective is to establish efficient
controlmechanisms based on noise and time delay. In particular, we address the ques-
tion of how time delay and noise influence the behavior of amplitude chimera states
in networks of Stuart-Landau oscillators. Additionally, we study another recently
discovered type of chimera states, chimera death [47], which, through death of the
oscillations, generalizes the chimera feature of coexistence of spatially coherent and
incoherent domains to steady states.

1.2 Model

We consider a network of N Stuart-Landau oscillators [2, 47–50] under the impact of
external white noise ξ j (t) and in the presence of time delay τ . The local deterministic
dynamics of each node j ∈ {1, . . . , N } is given by ż j = f (z j ), with the normal form
of a supercritical Hopf bifurcation

f (z j ) = (λ + iω − |z j |2)z j , (1.1)

where z j = x j + i y j = r j eiφ j ∈ C, with x j , y j , r j , φ j ∈ R, and λ, ω > 0. At λ =
0 a Hopf bifurcation occurs, so that for λ > 0 the single Stuart-Landau oscillator
exhibits self-sustained oscillations with frequency ω and radius r j = √

λ, and the
unique fixed point x j = 0, y j = 0 is unstable.

We investigate a ring of N non-locally coupled Stuart-Landau oscillators, where
each node is coupled to its P nearest neighbors in both directions with the strength
σ > 0, and is subject to noise of intensity D > 0:
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ż j = f (z j ) + σ

2P

j+P∑

k= j−P

(Rezk − Rez j ) + √
2Dξ j (t) (1.2)

where j = 1, 2, . . . , N and all indices are modulo N . The normalized number of
nearest neighbors P/N is denoted as coupling range. The coupling and the noise
are only applied to the real parts, and ξ j (t) ∈ R is additive Gaussian white noise
[51], i.e., 〈ξ j (t)〉 = 0, ∀ j , and 〈ξi (t)ξ j (t ′)〉 = δi jδ(t − t ′), ∀i, j , where δi j denotes
the Kronecker-Delta and δ(t − t ′) denotes the Delta-distribution. Hence the noise is
spatially uncorrelated.

Further we study the impact of time delay using the following model:

ż j = f (z j ) + σ

2P

j+P∑

k= j−P

(Rezk(t − τ) − Rez j (t)), (1.3)

where τ is time delay.

1.3 Deterministic Amplitude Chimera and Chimera Death

For a deterministic networkwith instantaneous coupling as demonstrated in [47], var-
ious different states can be found in the network given by Eq. (1.2). Which particular
state actually arises, depends on the specific values of the coupling parameters and
the initial conditions, as Eq. (1.2) describes amultistable system. Among the possible
states, two different types of asymptotically stable states can be found, on the one
hand oscillatory states, and on the other hand steady state patterns which are related
to oscillation death. The latter are represented by completely coherent or completely
incoherent oscillation death patterns, as well as by chimera death patterns consisting
of coexisting domains of coherent and incoherent steady states. The asymptotically
stable oscillatory states appear in two different spatio-temporal patterns: in-phase
synchronized oscillations and coherent traveling waves. Besides these, long lasting
oscillatory transients with interesting features occur, i.e., amplitude chimera states.
In this work we demonstrate that all these states can also be observed under the influ-
ence of noise and time delay. Before an asymptotic oscillatory state is approached,
amplitude chimera states can appear as long transients, potentially lasting for hun-
dreds or even thousands of oscillation periods. In contrast to classical phase chimeras,
all nodes (including the ones within the incoherent domains) oscillate with the same
period, T = 2π

ω
, and a spatially correlated phase, but they show spatially incoher-

ent behavior with respect to the amplitudes in part of the system. Figure1.1 shows
an exemplary amplitude chimera configuration. The nodes within the two coherent
domains (here 13 ≤ j ≤ 85 and 113 ≤ j ≤ 185) perform synchronized oscillations,
all with the same amplitudes. The coherent domains always appear pairwise, such
that for every time t , all nodes within one coherent domain have a phase lag of π with
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Fig. 1.1 Amplitude chimera state in system (1.2) with N = 200 nodes, for coupling range P/N =
0.04 and coupling strength σ = 18: a snapshot (top x j , bottom y j ), b space-time plot, c phase plot
in the complex plane: trajectories of 12 nodes of the incoherent (red and green), and 12 nodes of
the coherent (blue) domains, the arrows indicate the direction of the motion. Initial condition: See
Sect. 1.4. Other parameters: D = 0, λ = 1, ω = 2

respect to all nodes of the other, antipodal domain. Hence they always fulfill the “anti-
phase partner” condition z j = −z j+N/2, j mod N , assuming even N . As visible in
Fig. 1.1c, the trajectories in the complex plane of all nodes are cycles, illustrating that
all nodes have periodic dynamics in time. This is a fundamental difference between
the classical phase chimera states where a part of the network demonstrates chaotic
temporal behavior. The nodes of the coherent domains all oscillate on a perfect circle
around the origin. Both coherent domains are represented by one single blue line in
Fig. 1.1c, which as well represents time the trajectory of all nodes when the com-
pletely in-phase synchronized oscillatory solution is approached. The two antipodal
coherent domains are separated by incoherent domains. There, neighboring nodes
can be in completely different states at a given time t . Their trajectories are deformed
circles, whose centers are shifted from the origin. The completely arbitrary sequence
of nodes that oscillate around centers in the upper and in the lower half-plane reflects
the incoherent nature. Transient amplitude chimeras with very narrow incoherent
domains can be observed, as well as with broad ones.

If the coupling strength and coupling range exceeds certain values, the oscilla-
tions of the Stuart-Landau nodes can be suppressed due to the stabilization of a
new inhomogeneous steady state created by the coupling. Instead of performing
oscillations, each node approaches a fixed point close to one of the following two
branches: (x∗1, y∗1)≈(−0.1,+0.85) or (x∗2, y∗2)≈(+0.1,−0.85) (for λ = 1), and
remains there for all times. The oscillation death states exhibit a huge variety of spa-
tial patterns, including multiple coherent and multiple incoherent oscillation death
states [47, 50, 52, 53]. Two exemplary configurations of completely coherent oscilla-
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Fig. 1.2 Snapshots of coherent oscillation death states: a coupling strength σ = 18 and coupling
range P/N = 0.14 (2-cluster),bσ = 8, P/N = 0.04 (10-cluster). Initial condition:Nodes 0 ≤ j ≤
24 and 50 ≤ j ≤ 74 are set to (x j , y j ) = (0.1,−1), all other nodes are set to (x j , y j ) = (−0.1,+1).
Other parameters: N = 100, D = 0, λ = 1, ω = 2

tion death patterns are shown in Fig. 1.2 (2-cluster and 10-cluster oscillation death).
The oscillation death regime is characterized by very high multistability. Among
the oscillation death states, chimera death patterns can be found, which combine
the characteristics of both phenomena: chimera state and oscillation death. These
patterns consist of coexisting domains of coherent and incoherent populations of
the inhomogeneous steady state branches. Within the incoherent domains, the pop-
ulation of the two branches (upper and lower) follows a random sequence, as for
example visible in Fig. 1.3. Within the coherent domains, the number of clusters of
neighboring nodes that populate the same branch of the inhomogeneous steady state
can vary. An m-cluster chimera death state (m-CD), with m ∈ {1, 3, 5, 7, 9, . . .}, is
characterized by the occurrence of m clusters i.e., sets of neighboring nodes that
populate the same branch of the inhomogeneous steady state within each coherent
domain. The coherent domains always appear pairwise with anti-phase symmetry
z j = −z j+N/2, similarly to the coherent domains of the amplitude chimera configu-
rations. Our numerical results confirm that the stable oscillation death patterns fulfill
the “anti-phase partner” condition.

1.4 The Impact of Initial Conditions

For D = 0, Eq. (1.2) is known to describe a multistable system [47]. Both types of
chimera states appear in coupling parameter regimes, where other oscillation death
patterns and coherent oscillatory states can be found as well. In order to increase
the probability of finding chimera states, we use specially prepared initial conditions
[54]. A very simple initial condition that produces transient amplitude chimeras in a
certain parameter regime (of about 0.01 < P/N < 0.05, σ < 33), is when all nodes
of one half of the network (1 ≤ j ≤ N

2 ) are set to the same value (x j , y j ) = (x1
0 , y10)
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Fig. 1.3 a, b 1-cluster chimera death (1-CD) for coupling range P/N = 0.4, c, d 3-cluster chimera
death (3-CD) for P/N = 0.2. Snapshots x j , y j are shown in panels (a, c), space-time plots in panels
(b, d). Initial condition: See Sect. 1.4. Parameters: N = 200, σ = 18, D = 0, λ = 1, ω = 2
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Fig. 1.4 Specially prepared initial conditions for amplitude chimeras: a point-symmetric type, b
fully-symmetric type. Top panels x j , bottom panels y j . Dashed lines indicate the point-symmetry
about the center, solid green lines indicate the axial symmetry within both network halves. System
size N = 100

(excluding the choice (0, 0)), and the rest is set to (x2
0 , y20 ) = (−x1

0 ,−y10). Hence,
amplitude chimera states can evolve out of initial configurations that only consist of
two completely coherent parts. We choose the values (x1

0 , y10) = (
√
0.5,−√

0.5), so
that the nodes start on the limit cycle with r = √

λ = 1, which is the solution for
the in-phase synchronized oscillation. The amplitude chimera lifetime nevertheless
appears to be of the same order for other values (e. g. (x1

0 , y10) = (1,−1)).
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Fig. 1.5 Transient times of amplitude chimera states ttr for 20 realizations of specially prepared
random initial conditions (no symmetry, point-symmetry, full symmetry, depicted by different sym-
bols) with Q = 10, V = 2. Horizontal solid lines Mean values. Dashed line ttr for the initial
condition with V = 0 (no randomization). System parameters N = 100, σ = 14, P/N = 0.04,
D = 0, λ = 1, ω = 2

By adding random numbers to y j , we construct a more general class of specially
prepared random initial conditions for amplitude chimeras. In particular, we add a
random number drawn from a Gaussian distribution with variance V to y j of the
Q nodes on the left and on the right side of the borders between both halves (at
j = N

2 and j = N ), as indicated in Fig. 1.4a, with Q ∈ N and 0 < Q ≤ N
4 . Besides

the range Q of incoherence, we also vary V ≥ 0. For a proper choice of the two
initial condition parameters (Q and V ), we obtain amplitude chimeras. Using the
achieved amplitude chimera lifetime as a quality measure for the initial condition,
we compare multiple realizations of the specially prepared random initial conditions
for the deterministic system with P/N =0.04 and N =100. We observe that among
all considered kinds of initial conditions (different choices for Q and V , symmetry
conditions, x j randomized as well, a different underlying distribution for the random
numbers), the applied symmetry of the initial condition has the greatest effect upon
the transient time.

Figure1.5 shows the transient times and their mean value (solid lines) for multiple
realizations of the initial conditions following three different symmetry schemes. For
the particular choice (Q = 10, V = 2) all symmetry types lead on average to shorter
lifetimes than an initial condition without random component (black dashed line).
For the initial configurations without symmetry, a random number is chosen inde-
pendently for each node within the four incoherent intervals. These configurations
clearly create the shortest amplitude chimera lifetimes, lasting at most for a couple of
oscillation periods. This symmetry type also leads to the shortest transients in other
regimes of Q, and V (not shown here). In contrast, for the point-symmetric initial
conditions, we mirror the random numbers used for j ∈ {1, . . . , N

2 } with respect to
the center j = 0, y j = 0, and use their negative counterparts for the second half.
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We hence only generate 2Q random numbers in total. The initial configurations are
point-symmetric with respect to the center, see Fig. 1.4a. The lifetimes of the occur-
ring amplitude chimeras are much longer than in the non-symmetric case. However,
the symmetry type which leads to the longest lifetimes is the one referred to as full
symmetry; the initial conditions fulfill two symmetries: The randomly chosen values
of the positions of the nodes within the first incoherent interval 1 ≤ j ≤ Q are mir-
rored to the nodes N

2 − Q ≤ j ≤ N
2 , by setting: z j = z N

2 +1− j . To obtain the positions
of the second network half, then a phase shift ofπ is applied, such that the “anti-phase
partner” condition is fulfilled (z j = −z j+ N

2
and j mod N ). Thus, we only generate

Q different random numbers in total. The configurations are again point-symmetric
with respect to the center, and have an additional axial symmetry with orthogonal
axes through j = N

4 and j = 3N
4 , as indicated in Fig. 1.4b. Of course, the simple

initial condition with no randomization also fulfills these symmetry conditions and
can therefore be regarded as one special type of the fully-symmetric specially pre-
pared initial conditions (with V = 0). We have further tested another type of initial
condition that solely fulfills the anti-phase partner condition: z j = −z j+ N

2
, but has

no other symmetries. This type of initial condition also certainly leads to transient
amplitude chimeras, but only within very narrow ranges of Q and V . For Q = 10,
V = 2, the mean lifetime (of about ttr ≈49) is only slightly increased compared to
the non-symmetric initial condition (not shown here). Since the symmetry which is
applied to the initial conditions remains preserved during the dynamic evolution, this
observation means that the fully-symmetric amplitude chimeras are most stable and
have the longest lifetimes.

By decreasing the variance in the interval 0.1 ≤ V ≤ 2, the mean amplitude
chimera lifetimes increase. In the range of small variances of about V < 0.5, ampli-
tude chimeras occur for all choices of the incoherence range Q, and the particular
choice of Q does not influence the transient time much. For Q = N

4 , all nodes are
randomized, see Fig. 1.6a, which appears to be a natural choice. Figure1.6b shows
the corresponding transient times belonging to a set of 40 realizations of the spe-
cially prepared random initial condition with Q = N

4 and V = 0.5, and for a set with
V = 0.1. The mean transient times are much longer than for V = 2 (cf. Fig. 1.5).
They are at least of the same order (and can be larger) as the transient time for the
simple initial condition with no randomization, V = 0 (dashed black line). For the
choice V = 0.1, the transient times are increased as compared to V = 0.5. We use
the fully-symmetric initial conditions with Q = N

4 and V = 0.1 for all investigations
presented in this chapter.

Besides oscillatory states, oscillation death states can occur in a large variety
of different spatial patterns. Our numerical results suggest that in the appropriate
parameter regime every amplitude chimera snapshot can be used as initial condition
to certainly produce a chimera death state. Howmany clusters in the coherent domain
of the chimera death pattern occur, depends on the initial condition as well as on the
parameter choice (see Sect. 1.5.2).
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Fig. 1.6 a Fully-symmetric random initial condition with range of incoherence Q = N

4 and vari-
ance V = 0.1. b Transient times of amplitude chimeras ttr for 40 realizations of the initial condition
shown in (a): circles V = 0.5, triangles V = 0.1. Horizontal solid lines: Mean values, dashed line:
ttr for V = 0. System parameters: N = 100, σ = 14, P/N = 0.04, D = 0, λ = 1, ω = 2

1.5 Stochastic Case

1.5.1 Control of Amplitude Chimera Lifetime by Noise

In this section we will study the role of noise for chimera patterns [54]. By using the
same initial conditions which lead to amplitude chimera states and chimera death in
the deterministic case, we also observe these states in Eq. (1.2) in the presence of
noise in a wide range of the coupling parameters. Figure1.7 shows one exemplary
configuration for an amplitude chimera which occurs in a system under the impact
of noise of intensity D = 5 · 10−3.

In general, the transient times of amplitude chimeras decrease with increasing
noise intensity. Figure1.8 shows the average transient times and the corresponding
standard deviations in dependence of the noise intensity D, for three choices of the
coupling strength σ , in a semi-logarithmic plot. The average is over 50 different
fully symmetric initial conditions (with Q = N

4 , see Sect. 1.4) drawn from different
realizations of the associated random distribution. For each one of those realizations
of the initial conditions, a different realization of the Gaussian white noise ξ j (t) is
considered. The average transient times show a clear linear decrease as a function
of the logarithmic noise intensity. This behavior is found throughout the range 6 ≤
σ ≤ 24, i.e., ttr = − 1

μ
ln(D) + η with slope − 1

μ
and axis intercept η. This gives the

scaling law
D ∼ e−μttr . (1.4)

The lines in Fig. 1.8 show the linear fits, and the inset depicts the slope in dependence
on the coupling strength σ . For the same set of 50 initial conditions, Fig. 1.9a depicts
the mean transient time in dependence of the coupling strength for four different
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Fig. 1.8 Transient times of amplitude chimeras ttr versus noise strength D (log-scaled) for different
values of coupling strength σ . Symbols: Average over 50 fully symmetric initial conditions (with
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4 ), each associated with a different realization of the random force ξ(t); error bars: standard
deviations; lines: linear fits from Eq. (1.4). Inset: Slope versus σ . Parameters: N = 100, P/N =
0.04, λ = 1, ω = 2

noise intensities D, and Fig. 1.9b shows a color-coded density plot of the mean tran-
sient times of amplitude chimeras in the (σ, D)-plane. The transient times generally
decrease with increasing noise, and increase with increasing coupling strength up to
a saturation value at about σ ≈15. The vertical error bars in panel (a) show that
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(a) (b)

Fig. 1.9 Transient times of amplitude chimeras ttr averaged over 50 initial conditions and noise
realizations (the same set of initial conditions as used in Fig. 1.8): a ttr versus coupling strength σ

for different noise intensities. Symbols: Mean transient times; error bars: standard deviations. The
lines serve as a guide to the eye. b ttr in the plane of coupling strength σ and noise intensity D.
Other parameters: N = 100, P/N = 0.04, λ = 1, ω = 2

the transient times are less sensitive to the initial condition, the larger the noise is.
We generally find that the spread of the amplitude chimera lifetimes for different
initial conditions (and different noise realizations), is smaller with increasing noise
strength.

Transient amplitude chimeras can last for thousands of oscillation periods until
they disappear. Even under disturbance by external noise they persist for a significant
time. Noise does not essentially change their spatial configuration. If noise throws the
system onto an adjacent trajectory in the underlying high-dimensional phase space
of the network, this does not normally lead to a flow into a completely different direc-
tion in phase space. Geometrically speaking, this shows that there are some attracting
directions in phase space along which the system dynamics is pushed towards the
amplitude chimera. Furthermore, amplitude chimeras can evolve out of initial con-
figurations that do not show the characteristic coexistence of coherent and incoherent
domains (see Sect. 1.4). In fact, they can be observed when completely incoherent
initial configurations are used, as well as when the initial condition consists of two
completely coherent parts. These dynamical properties indicate that the flow within
a certain volume of the phase space is directed towards the amplitude chimera state.
From the perspective of the amplitude chimera, there must exist some associated
“stable directions”. However, even in the absence of any external perturbation, for
all system sizes, the amplitude chimera states disappear after some time, and the
system approaches a coherent oscillatory state. Accordingly, there must also exists
at least one “unstable direction” in phase space. These findings can be explained by
the structure of the phase space, which is schematically depicted in Fig. 1.10.
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Fig. 1.10 Schematic
phase-space structure of an
amplitude chimera (AC) as a
saddle-point. Thick solid
lines: Stable directions, thick
dashed lines: unstable
directions, thin solid lines:
different trajectories, with
arrows denoting the direction
of time evolution. Grey
shaded region: Scheme of
amplitude chimera
configuration, green disk: set
of initial conditions (IC),
yellow area: impact of
Gaussian white noise

The lifetime of amplitude chimeras in the deterministic case strongly depends on
the choice of initial conditions as discussed in Sect. 1.4. In general the sensitivity
of chimera states to the initial configurations is explained by the fact that classical
chimera states typically coexist with the completely synchronized state, for which the
basin of attraction is significantly larger. For amplitude chimeras, all our numerical
results support the idea that amplitude chimera patterns can be seen as a saddle state
composed of stable (solid lines in Fig. 1.10) and unstable (dashed lines Fig. 1.10)
manifolds. The set of initial conditions leading to amplitude chimeras can be repre-
sented as a volume restricted in phase space (green disk in Fig. 1.10). The observed
amplitude chimera corresponds to trajectories starting from this set and passing the
saddle-point from the stable direction towards the unstable manifold. The lifetime
of an amplitude chimera, therefore, depends on the chosen trajectory: the closer
to the saddle-point it gets, the longer is the lifetime. In other words, the transient
time is determined by the time the system spends in the vicinity of the saddle-point
where coherent and incoherent oscillating domains coexist before it escapes to the
in-phase synchronized regime along the direction of the unstable manifold. Such a
phase space scenario explains the sensitivity of transient times to initial conditions
since they determine the particular path the system takes.

Our numerical investigations of the stochastic model Eq. (1.2) show that Gaussian
white noise dramatically reduces the impact of initial conditions on the lifetime of
amplitude chimeras. In more detail, we have tested a set of realizations of initial con-
ditions which lead to significantly different lifetimes of amplitude chimeras without
random forcing. In the presence of relatively weak noise D = 5 · 10−13 all realiza-
tions result in amplitude chimeras with similar lifetime. This again supports our view
of the amplitude chimera as a saddle-point, and allows for the following explanation.
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The stochastic force, which continuously perturbs the system, makes it randomly
switch between different trajectories close to the saddle-point. Therefore, the sys-
tem’s dynamics is not determined by a single trajectory anymore, but rather affected
by a set of trajectories belonging to the N -dimensional hyper-sphere. This reduces
the sensitivity of the amplitude chimera lifetime to specific initial conditions. In
Fig. 1.10 the impact of noise is illustrated by yellow shading, denoting the stochastic
forces applied to the system at one instant of time.

1.5.2 Maps of Dynamic Regimes: Interplay of Noise
and Coupling

For a large range of the coupling parameters σ and P we calculate the asymptot-
ically stable state and the transient time of amplitude chimeras for N = 100. For
each choice of (σ, P) we start with the same amplitude chimera configuration as
initial condition. For an exemplary initial condition, the results belonging to four
different noise intensities are shown in Fig. 1.11. For very small coupling strength
σ or very small coupling range P/N the asymptotic states are coherent oscillatory
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Fig. 1.11 Map of dynamic regimes in the plane of coupling strength σ and number of nearest
neighbors P for noise intensities: a D = 0, b D = 5 · 10−21, c D = 5 · 10−11, d D = 5 · 10−3.
Color code: 1-cluster chimera death (1-CD), 3-cluster chimera death (3-CD), multi-cluster chimera
death (n-CD, n >3), in-phase synchronized oscillations and coherent traveling waves (SYNC).
Initial condition: Snapshot of an amplitude chimera calculated for D = 0, P = 4, σ = 14, t = 150.
Maximum simulation time: t = 5000. Parameters: N = 100, λ = 1, ω = 2
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states, either in-phase synchronized oscillations or traveling waves (dark blue region,
labeled SYNC). For very small coupling range, we observe amplitude chimeras as
transients. For larger σ and P , we find chimera death states (yellow, orange, and
red regions) with one coherent domain (1-CD), or for slightly smaller P , with three
(3-CD), or more (n-CDwith n > 3) coherent domains. For all noise intensities, there
exists a chimera death regime (1-CD, 3-CD, n-CD), as well as a coherent oscillatory
regime (SYNC).

The regime of chimera death states is characterized by high multistability. The
boundary between the oscillatory regime and the chimera death regime is roughly
independent of the particular amplitude chimera snapshot used as initial condition. In
contrast, for many values of (σ, P), the particular type of chimera death depends on
the realization of the initial condition. Note that there is nevertheless a clear tendency
that the m-CD patterns (with m < k) are generally found for larger coupling ranges
than the k-CD states (k, m ∈ {1, 3, n}). This tendency is especially pronounced for
large coupling strengths. Noise influences the dynamic regimes in different ways.
First, the boundaries between the different cluster types of chimera death appear to be
almost unaffected by the applied external noise.We do not observe any noise-induced
switching between the different types of chimera death. The applied noise does not
influence the asymptotic chimera death state. Second, with increasing noise inten-
sity, the boundary between the oscillatory regime and the oscillation death regime
is shifted towards higher coupling strengths. This means that the stochastic force
pushes the system out of the deterministic inhomogeneous steady state into the basin
of attraction of the stable coherent oscillatory state, and induces oscillations in a para-
meter regime where in the absence of noise the steady state is a stable asymptotic
solution. The size of this parameter regime depends on the applied noise intensity.
In order to facilitate the comparison, the boundaries between the oscillatory regime
and the chimera death regime are depicted for different noise intensities in Fig. 1.12.

Fig. 1.12 Boundary between the oscillatory regime and the chimera death regime for different
noise intensities D, extracted from the maps of dynamic regimes shown in Fig. 1.11
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(a)

(c)

(b)

Fig. 1.13 Transient times of amplitude chimeras ttr in the plane of coupling strength σ and number
of nearest neighbors P , for the noise intensities: a D = 0,b D = 5 · 10−21, c D = 5 · 10−11. System
parameters, initial condition and simulation time as in Fig. 1.11

Generally, the stronger the applied noise is, the smaller is the regime of chimera
death states.

In the oscillatory regime, we observe transient amplitude chimeras. In Fig.1.13
their lifetimes are depicted, obtained from the same simulations described above.
One can see that generally the transient time decreases with decreasing coupling
strength, and with increasing noise intensity, as shown already in Figs. 1.8 and 1.9
for a restricted range of coupling parameters. Note that Fig. 1.13b (D = 5 · 10−11)
and Fig. 1.13c (D = 5 · 10−21) look very similar up to rescaling of the transient
times. This illustrates that the impact of the applied noise upon the dynamics is
rather independent of the strength and range of the coupling.

In the deterministic case (Fig. 1.13a) there is a regime of high values of the cou-
pling strength, at the border between the oscillatory regime and the chimera death
regime, where the transient amplitude chimeras last longer than the maximum sim-
ulation time of t = 5000 (bright orange). For several values of (σ, P) in this region,
we have simulated much longer time series until t = 40,000 (more than 12,700 oscil-
lation periods T ), and have found that the amplitude chimeras persist. However, they
disappearmuch earlier as soon as a tiny amount of external noise is applied. This indi-
cates that the amplitude chimera states are also unstable in this region. The extremely
long transient times might simply be related to our choice of initial conditions in the
deterministic system.



18 A. Zakharova et al.

(a)

(b)

Fig. 1.14 Map of dynamic regimes in the plane of number of nearest neighbors P and coupling
strength σ a for τ = 0 and b τ = π . Color scale: 1-CD 1-cluster chimera death; 3-CD 3-cluster
chimera death; n-CD n-cluster chimera death. SYNC coherent states (synchronized oscillations,
traveling waves). AC amplitude chimera. Parameters: N = 100, λ = 1, ω = 2

1.6 Control of Chimeras by Time Delay

We have shown that amplitude chimeras are preserved in the stochastic case and
their lifetime can be decreased by tuning the noise intensity. Next we demonstrate
that amplitude chimeras are also observed for the time-delayed coupling and their
lifetime can be significantly enlarged by an appropriate choice of delay time.

As initial condition for the simulation of the systemEq. (1.3)we choose a snapshot
of an amplitude chimera. The corresponding phase diagram for τ = 0 is illustrated
in Fig. 1.14a. Since the integration time used for this plot is rather large (t = 5000),
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(a)

(b)

Fig. 1.15 Transient times ttr in the plane of number of nearest neighbors P and coupling strength
σ : color code indicates the time of transition from incoherent states (amplitude chimera) to coherent
states for a τ = 0 and b τ = π . The black region marks chimera death states. Integration time until t
= 5000. Thewhite dots are amplitude chimeras and related structures that are stable in the simulation
timespan. Parameters: λ = 1, ω = 2, N = 100

amplitude chimeras do not survive for that long in the absence of time-delayed
coupling and transform into the in-phase synchronized regime (green region in
Fig. 1.14a). Therefore, for τ = 0 the phase diagram contains only chimera death
states with different number of clusters and asymptotic coherent states (in-phase
synchronized oscillations and coherent travelling waves).

In the presence of delay, however, amplitude chimeras live significantly longer.
In particular, for τ = π , which corresponds to the period of the single Stuart-Landau
oscillator, they still exist at t = 5000 for a certain range of coupling strength 7 < σ <

19 and number of nearest neighbors 2 < P < 20, see Fig. 1.14b. Moreover, chimera
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Fig. 1.16 Transient times ttr
of amplitude chimeras in
dependence on time delay τ

for different values of
coupling strength
σ = 4, 5, 6, 7. Other
parameters: N = 100,
ω = 2, λ = 1, P = 2

death patterns with large number of clusters now dominate while the region of 1-
cluster chimera death is strongly reduced. Additionally, the in-phase synchronized
state observed in the deterministic system for small number of nearest neighbors
(P < 6) and large coupling strength (σ > 15) in the presence of timedelay is replaced
by chimera death patterns with the number of clusters exceeding 9 (red region in
Fig. 1.14b).

To compare directly the results for the lifetime of amplitude chimeras we calculate
transient times ttr in the plane of number of nearest neighbors P and coupling strength
σ for τ = 0 and τ = π (Fig. 1.15a, b, respectively). In both cases chimera death states
are the dominating patterns in the phase diagram (black color in Fig. 1.15). The
long-living amplitude chimeras (ttr � 5000) appear only when the links between the
nodes include time delay (white region in Fig. 1.15b), while for τ = 0 the lifetime
of amplitude chimera is relatively short (ttr < 900).

In order to quantitatively characterize the impact of the time-delayed coupling
we calculate the lifetime of amplitude chimeras in dependence on time delay for
different values of coupling strength σ = 4, 5, 6, 7 (Fig. 1.16). The transient times
increase with time delay for all considered values of σ . Therefore, by appropriately
choosing the value of time delay one can realize a desired lifetime of amplitude
chimeras.

1.7 Conclusions

We have investigated two types of chimera states for a paradigmatic network of
oscillators under the influence of noise and time delay. We have presented numerical
results demonstrating that transient amplitude chimeras and chimera death states
in a ring network of identical Stuart-Landau oscillators with symmetry-breaking
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coupling continue to exist in the presence of Gaussian white noise or if time delay
is introduced to the coupling.

In the presence of external noise, transient amplitude chimeras occur in the same
range of coupling parameters as in the deterministic case. The key quantity we use
to characterize them is the transient time. The latter decreases logarithmically with
the applied noise intensity. For a constant noise intensity, the transient times increase
with the coupling strength up to a saturation value. The amplitude chimera lifetimes
depend sensitively on the particular realization of the randomized initial condition.
We have introduced a class of specially prepared random initial conditions that pro-
duce long lasting amplitude chimeras. We have shown that initial configurations that
fulfill a symmetry conditions which is also found in oscillation death patterns result
in the longest living amplitude chimera transients.

The chimera death patterns also persist under the impact of stochastic forces.
However, the coupling parameter regime where they occur is reduced with increas-
ing noise intensity. The boundary between the coherent oscillatory regime and the
chimera death regime is shifted towards higher values of the coupling strength. That
means that the system favors oscillatory behavior for a larger coupling parameter
regime. In contrast, this boundary appears to be independent on the particular real-
ization of the initial condition. The number of clusters within the coherent domains
appears to be unaffected by the external noise, but depends on the particular initial
condition.

In the presence of time delay the lifetime of amplitude chimera patterns is essen-
tially enlarged. Moreover, time delay induces amplitude chimeras for the coupling
parameter values for which in the absence of time delay no chimera patterns are
observed.

Thus, the lifetime of amplitude chimeras can be controlled by tuning the noise
intensity and the value of time delay, which, therefore, play the role of control para-
meters. Noise allows one to decrease the lifetime of amplitude chimeras, while time
delay can significantly increases it.

Our numerical findings can be explained by the underlying phase space structure.
More specifically, we propose that amplitude chimera states can be represented by
saddle states in the phase space of the network. This elucidates the behavior of their
lifetime, and explains that generally the initial conditions become less important
under the influence of noise.
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