Secure Cloud Multi-tenant Applications
with Cache in PaaS

K.R. Remesh Babu, S. Saranya and Philip Samuel

Abstract Multi-tenant applications come into existence in clouds, which aims
“better resource utilization” for application provider. Today most of the present
application optimizations are based on Service Level Agreements which focuses on
virtual machine (VM) based computing service, while other services such as storage
and cache are often neglected. This paper mainly focuses on cache based approach
for multi-tenant application on PaaS. Currently in multi-tenant cloud applications
data are often evicted mistakenly by cache service, which is managed by existing
algorithms such as LRU. It keeps the query information to reload the evicted data
from storage which might be sensitive. Hence there is a possibility of data breach
when these data are accessed improperly by other tenants. For faster access caching
of the data is common in cloud based applications while the security is an important
area that should not be neglected when these systems uses other third party
systems/networks as caching servers. Also security of the tenant’s data/information
is also a crucial component of the SLA between cloud service provider and tenant.
So this paper proposes a DES based information security framework within Plat-
form as a Service (PaaS) for better security and Quality of Service (QoS).

Keywords Cloud computing « Multi-tenant - Cache protection - Qos

K.R. Remesh Babu (=) - S. Saranya
Government Engineering College Idukki, Idukki, Kerala, India
e-mail: remeshbabu@yahoo.com

S. Saranya
e-mail: saranyasasangan3 @gmail.com

P. Samuel
Cochin University of Science and Technology, Kochi, India
e-mail: philipcusat@gmail.com

© Springer International Publishing Switzerland 2016 15
V. SnéSel et al. (eds.), Innovations in Bio-Inspired Computing and Applications,

Advances in Intelligent Systems and Computing 424,

DOI 10.1007/978-3-319-28031-8_2

16 K.R. Remesh Babu et al.

1 Introduction

A multi-tenant application supports tenants to share one application and database
instance while allowing them to configure the application to fit their needs as if it
runs on a dedicated environment [1]. To achieve QoS for each tenant, more and
more people advocate these applications should abide by SLAs to perform com-
putation. Several works has offered solutions to help these applications to improve
resource utilization during runtime. Currently most of these works focus on virtual
machine (VM) resources.

Multi-tenant database schema is used for storing meta-data in cloud storage. It is
designed and implemented with five techniques [2]. Meta-data driven data-sharing
storage model is proposed to implement multitenant applications on top of a
standard relational database. This approach works by splitting up the “common
tables” shared by each tenant, and mapping the data to “meta data tables” and “data
tables”.

The rapidly increasing gap between the relative speeds of processor and main
memory has made the need for advanced caching mechanisms more intense than
ever. Cache service in cloud computing area provides faster access to users. It store
small chunks of arbitrary data (strings, objects) from results of database calls, API
calls, or page rendering [3].

Cloud distributed cache [4, 5] service plays a vital role in improving cloud
application performance. It reduces latency and improves user experience greatly.
In Google App Engine (GAE) Memcache service is used for multitenant applica-
tion. Memcached service is open source and widely used by many high-traffic sites,
such as Facebook, Live Journal, Wikipedia and Fotolog. In cloud, the time for
reading/writing data from/into cache T_tcache and reading/writing data from/into
data store T_tround includes transfer time between different nodes. Where T_tround
time is much greater than T_tcache [5]. Hence effective utilization of cache service
leads to high hit rate and low response time. Therefore, how to improve cache hit
rate by reasonably appointing data to cache becomes a key to multi-tenant appli-
cation success.

Security is considered as one of the top ranked open issues in adopting the cloud
computing model. Internal security is the main issue in multi-tenant application
with cache. This is due to improper access of memory by other tenants. Different
security models are used in multi-tenant application on SaaS has some limitations.
Currently no security mechanism is used in multi-tenant application on PaaS.

This paper introduces a security oriented cache approach that tries to help the
tenants by caching data securely. It provides better cloud cache service utilization.
Since public key cryptography requires significant computing power than the
symmetric key method DES is used for encrypt the data securely on PaaS. It
provides integrity of original cache service and improves application portability for
different users.

Secure Cloud Multi-tenant Applications ... 17

Fig. 1 Multi-tenant

application Tenant Tenant- Tenant-
specific specific specific
customization customization customization
" Application logic '
i Single, shared |
: Database stack of software
. and hardware !

2 Multi-tenant Application

Multi-tenant applications development and adoption are greatly promoted by cloud
computing [1], which aims for “better resource utilization” for application provider.
Figure 1 show the overview of the multi-tenant application, where tenants share one
application and database instance.

A multi-instance approach [6], in which each tenants gets its own instance of the
application (and possibly also of the database). Multi-tenant application can be built
on top of Software as a Service (SaaS) and PaaS. Service Level Agreement
(SLA) can be incorporated to the tenants [7, 8] to ensure required QoS.

3 Data Store

3.1 i-Meta Data

There are five techniques on design and implementation multi-tenant database
schema [2], which can extend default data model to address tenant’s unique needs.
However, there are some drawbacks or limitation in these techniques. Table 1
shows the five techniques and its shortcomings.

To overcome these limitations a novel meta-data driven data-sharing storage
model can be used to implement multitenant applications. It is built on the top of a
standard relational database. In this approach splitting up of the “common tables”
shared by each tenant is carried out. Then mapping of the data to “meta data tables”
and to “data tables” are done.

18 K.R. Remesh Babu et al.

Table 1 Different techniques and drawbacks

Techniques Limitation

Extension table [2] | Number of tables will be increased by increasing the number of tenants

Universal table [2] | Rows need to be very wide, even for narrow source tables indexes are not
supported

Pivot table [2] It has more columns of meta-data. Higher runtime overhead for
interpreting the metadata

Chunk folding [2] | Lack of an effective vertical partitioning algorithm to get the most
appropriate results

XML table [2] Limited to extend fields in a table

3.2 Cache and Replication

In the proposed method Memcached is taken for cloud cache service. Figure 2
illustrates on how Memcached works in web application. Request sent by clients for
a dynamic web page usually contains data query to database server. Web server will
find and get the data in the form of object in Memcached through application server.
If the object is found, it will return to web server and respond to the client. However
if object is not found in Memcached or ‘cache miss’, the data will be fetched from

Memcached

j L0

Database Sever Web Server Client

Fig. 2 Memcache operation in web application

Secure Cloud Multi-tenant Applications ... 19

database server and it will be set to Memcached as a new item before it is returned
to the client. The same process will be repeating all over again.

How can manage the cache in shared environment? Cache replacement strategy
is at the heart of cache management. A machine learning approach [9] is used to
reconfigure the cache strategy online, which is off-line training coupled with online
system monitoring. In [4, 5] introduced an approach to select optimal cache strategy
dynamically using trace-driven simulations, so as to differentiate caching and
replication policies for each document based on its most recent trace. Authors in
[10] evaluated the most likely strategies rather than the entire set of candidate
strategies, capturing the history of transitions between different cache strategies.
Cache replacement algorithm [11] in adaptive processor is presented for different
workloads. These workloads switch between any two replacement algorithms such
as LIRS, LRU, LFU and Random. The feedback control theory to allocate cache
space was proposed in paper [12]. This self-adaptive multi-tenant memory man-
agement achieves each tenant’s SLA requirement. It minimizing the memory
consumption and dynamically generates a series of cache replacement units
according to the current access model was done in [13]. In [14] a Proportional Hit
Rate method is introduced to meet clients’ SLAs.

Since security is major concern in cloud computing platform the researchers are
proposed several methods to address it. An Authorization model [15] is introduced
for controlling access to resources in a cloud system. This describes a multi-tenancy
authorization system suitable to middleware service in the PaaS layer. The paper
[16] introduced a new cloud security management framework based on aligning the
NIST-FISMA standard. It based on collaboration among cloud stakeholders to
develop a cloud security specification and enforcement covering all of their needs.
This approach trying to overcome lack of security constraints in the SLA between
the cloud providers and consumers results in a loss of trust as well.

Cryptographic Trust agreement [17] is proposed in order to increase trust in the
answers given by services during the negotiation process. It enables SLA approach
to ensure that the data of cloud service users are not processed or stored at undesired
locations. If the chosen service violates its assured service quality, the service user
is enabled to use alternative services. For this, a trusted agreement is provided in
order to prevent malicious services; the analysis request is kept secret by encrypting
it with the public key of the certified program analysis.

RandTest method [18] is a lightweight and robust dataflow integrity checking
method. This approach use a trusted third party to pre-compute results of some
randomly generated testing data. Next introduced a method called TOSSMA [19], a
Tenant-oriented security management architecture for multi-tenant SaaS applica-
tions. TOSSMA is based on “Tenant-Oriented Security”, which overcomes the
existing classic model “Service-Oriented Security”.

Signed Query [20] technique used to improve the confidentiality of users’ data
stored on the cloud. The usage of a signature to sign the tenant’s request, so the
server can recognize the requesting tenant and ensure that the data to be accessed is
belonging to this tenant. It uses a custom HTTP scheme based on a keyed Hash

20 K.R. Remesh Babu et al.

Message Authentication Code (keyed-HMAC) [21] for authentication. This
approach uses the tenant’s secret key to create the HMAC of that string.

A scalable, flexible, resilient, and cost-effective Hybrid Security Architecture
(HAS) solution for data center security service is proposed in [22]. It decouples
security service provisioning from network routing, thus facilitating operation and
management. From these reviews, it is clear that there is no information security
mechanism proposed for tenant caching method for multi-tenant applications.

4 Security Oriented Cache Approach

The main issue in multi-tenant cloud application with cache is internal security due
to improper memory access by other tenants. In this proposed method information
security is provided to multi-tenant application with cache by avoiding improper
data access by other tenant’s. Public-key cryptography requires significantly more
computing power than symmetric cryptography, i.e. strong key pair can take
hundreds or even thousands of times as long to encrypt and decrypt data as a
symmetric key of similar quality. So in the proposed method more-efficient sym-
metric DES is used to encrypt the tenant’s critical data inorder to prevent improper
access by the other active tenants. DES requires lesser computational power
compared to other public key encryption methods.

Figure 3 illustrates security oriented cache for multi-tenant application on PaaS.
It is built on PaaS, so available to all devices that are connected to the Internet.
Tenants uses web browser to access applications. Tenants can send request to the
controller for getting data or inserting data into database. Controller will map
the user request to manager. Data encryption and decryption is done by manager.

PaaS

Fig. 3 Proposed security oriented cache approach

Secure Cloud Multi-tenant Applications ... 21

Memcached

Controller 0 Manager H Data Access Layer ‘—’ Database

N T R SR e Pl Ui s eI Eees L TR R R e .
1 2 3! 4 5 6

DES + Encryption

Fig. 4 Insertion of user data into database

For inserting data into database, manager first encrypts the user data and passes it to
storage unit. Only encrypted data is stored in database. For getting data of a par-
ticular user, the Manager will find it and get the data in the form of object in
Memcached. After getting data from Memcached, manager will decrypt the data
and returned it to the user.

If the object is not found, data is fetched from the database server and it will be
set to Memcached as a new item. Then decrypt the data from database and returned
to the user. The same process will be repeating all over again.

Figure 4 illustrates the insertion of data item into database. User first sends a
request to the controller with data, key and its id (1). Controller will map the request

Memcached

Data Access Layer H Database

0 Controller

DES |—jp Decryption

Fig. 5 Data retrieval from Memcached

K.R. Remesh Babu et al.

Memcached

EE—— -!. Vo omamee ; IA| scscsccscacsae’! cacscscsasaa J'
113 .12 1 gl 10 58 6.7

DES _+ Decryption

22
O“ Controller §—)p| Manager Database

Fig. 6 Data retrieval from database if not found in Memcached

to manager (2). Using DES manager will encrypt the data and it is passed to data
access layer (3, 4, 5). Data access layer store these details in database securely (6).

Figure 5 illustrates Data Retrieval from Memcached, when user sends a request
to controller for retrieving data (1). Controller will map the request to manager (2).
The Manager will check and get the data from Memcached (3, 4). After getting data
from Memcached, the manager will decrypt it and returned to the user (5, 6).

If data is not found in cache, then it is fetched from database and it will be set to
Memcached before decryption. Then manager will decrypt the data and returned to
the user. This procedure is shown in Fig. 6.

S Experimental Setup and Results

This section presents the simulation experiments conducted to evaluate perfor-
mance of the proposed approach. The experiment adopted Memcached to simulate
cache service in GAE [3]. Memcached is a powerful distributed cache management
system which already integrates powerful caching policies in its architecture and
widely applied in industry such as Facebook.

5.1 Experimental Design

The experiment environment is constructed by machines with cloud service.
Memcached version v 1.4.15 is installed on these machines. The experiment test
cases is conducted by using Tomcat version 7.0.39, and available to all the devices

Secure Cloud Multi-tenant Applications ... 23

T‘.’ble 2 U§er performance Experiment cycle Without cache (s) With cache (s)
with and without cache

Tenant 1 14.61 4.38

Tenant 2 15.433 4.4

Tenant 3 13.65 3.48

Tenant 4 14.2 3.9
Table 3 Number of miss Experiment cycle Tenant 1 Tenant 2 Tenant 3
count for tenants

1 1 2 0

2 1 3 1

3 2 3 1

4 3 4 2

5 3 5 2

6 3 6 2

that are connected to this network. The test cases are implemented as a web service.
This helps the tenants to access the data through web browser. The business logic
using cache service is as follows. The users send requests for data by keys, and the
server first looks up to the cache and then the data store otherwise. Decrypted data
is stored in cache and database. To investigate the relation between with and
without cache, we consider up to four tenants, each of which owns identical amount
of users and workloads. The Table 2 shows the response time required for tenants
using with and without cache for data retrieval.

The experiment considered up to 100 users for every tenant. The workload
reaching 4000 request per second is considered, which is far heavier than that in the
real world condition. Every tenant has its own key. This key is same for all users
under one tenant. The proposed method controls the data characteristics by using
this pre-generated key.

To provide further evidence, we consider the miscount rate for all tenants in each
experiment cycle. Miscount gives number of time the data not present in cache, i.e.,
miscount increment when data is not present in cache. Hit count gives the number
of times data present in cache, i.e. Hit count increments when data present in cache.
Table 3 shows the miss count for three tenants in each experiment cycle.

5.2 Performance Calculation

The performance analysis indicates whether the multi-tenant application with cache
captures trends in average response time. Figure 7 shows the response time with
and without cache for one tenant with one user. The slope of the graph for with
cache is lesser compared to without cache. Response time of tenant 1 is decreasing
in every cycle. That means tenants can retrieve data quickly after every cycle.

24 K.R. Remesh Babu et al.

Fig. 7 Response time with Response Time
and without cache for one 2 20
v
tenant 5
g 15 .\'\0-\.. —+— Tenant 1:Without
= cache
@ 10
g —@i— Tenant 1: With
a 9 Cache
o
e 0

1 2 3 4
Experiment Cycle

Response time for tenant 1 is higher in without cache and less in with cache
experiments. It shows that there is significant improvement in the response time of
tenant with cache than tenant without cache, which increases user satisfaction.

To provide further evidence on the performance of the proposed method, con-
sider the experiment with multiple tenants and their response time for with and
without cache. Cloud cache service provides a greater difference in response time as
compared with database storage. In the case of without cache the response time is
high due to direct fetch from the database. The graphical representation of the
comparison is shown in Fig. 8.

Figure 9 shows Response time versus number of users. Number of users within
the tenants is incremented to study the relation with response time. Tenant 2 is

Fig. 8 Response time with Response Time
and without cache for 18 -
multiple tenants 16 -
14 -
T 12 4
@
..E.. 10 B Without Cache
8 -
E 6 B With Cache
=
4 -
2 4
0 -
Tenantl Tenant2 Tenant3 Tenant4
Tenants
Fig. 9 Response time versus Response Time vs. Number of users
number of users Ty
2 6
H
A
A4
-0
w
g 2
&
a
e 0
50 100 150 200 250

Number of users

Secure Cloud Multi-tenant Applications ... 25

Fig. 10 Miss count versus 79
number of tenants 6
5

4 4

—+— Tenant 1
—&— Tenant 2
31 —&— Tenant 3
2 o
1{ &—
0dis

MissCount

1 2 3 4 5 6
Experiment cycle

taken for this. Number of users in tenant 2 is incremented periodically and checks
their corresponding response time. Here a high number of users will leads to high
response time.

Figure 10 shows the miscount rate for all tenants in each experiment life cycle.
Miscount incremented after every experiment cycle, that means, corresponding
tenants data is frequently requested. This leads to the caching of tenant data for
faster access. Also no changes in miscount rate after a experiment cycle means that,
the request for that tenant data is not reached.

6 Conclusion

In cloud multi-tenant applications most of the research works focus on VM
migrations and load balancing issues. Efficient and secure data storage is an
important issue to improve the resource utilization and for better response time. In
this work multi-tenant application with cache mechanism is proposed for effective
and faster service. Security is another major concern in these cloud application
platforms. In order to address the security issues, the proposed cache approach for
multi-tenant application employs DES algorithm to avoid improper access of
memory by other tenants. This provides an internal security mechanism to tenant
data.

In future, this work can be extended to increase the cache performance and
cost-effectiveness through cache optimization. Response time can also be reduced
through an internal cache mechanism that may provide better performance to
tenants.

26

K.R. Remesh Babu et al.

References

L.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Peter, M., Grance, T.: The NIST definition of cloud computing. NIST special publication
800.145 7, 1-3 (2011)

Xuxu, Z., Qingzhong, L., Lanju, K.: A data storage architecture supporting multi-level
customization for SaaS. In: IEEE 7th International Conference on Web Information Systems
and Applications (WISA), pp. 106-109 (2010)

. Dormando.: Memcached. In: Internet. www.memcached.org. Accessed on 6 March 2015
. Pierre, Guillaume, Tanenbaum, A.S.: Differentiated strategies for replicating web documents.

Elsevier. Comput. Commun. 24(2), 232-240 (2001)

. Guillaume, P., Van Steen, M., Tanenbaum, A.S.: Dynamically selecting optimal distribution

strategies for web documents. IEEE Trans. Comput. 51(6), 637-651 (2002)

. Bezemer, Z.: Multi-tenant SaaS applications: maintenance dream or nightmare?. In: ACM 4th

Joint ERCIM Workshop on Software Evolution (EVOL) and International Workshop on
Principles of Software Evolution IWPSE), pp. 88-92 (2010)

. Wu, L., Garg, S.K. Buyya, R.: SLA-based resource allocation for software as a service

provider in cloud computing environments. In: 11th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), pp. 195-204 (2011)

. Nandi, B.B.: Dynamic SLA based elastic cloud service management: a SaaS perspective. In:

IFIP/IEEE International Symposium on Integrated Network Management (IM2013),
pp. 60-67 (2013)

. Xiulei, Q.: On-line cache strategy reconfiguration for elastic caching platform: a machine

learning approach. In: IEEE 35th Annual Conference on Computer Software and Applications
Conference (COMPSAC), pp. 523-534 (2011)

Swaminathan, S., Pierre, G., van Steen, M.: A case for dynamic selection of replication and
caching strategies, Web content caching and distribution, pp. 275-282. Springer, Netherlands
(2004)

Subramanian, R., Yannis, S., Loh, G.H.: Adaptive caches: effective shaping of cache behavior
to workloads. In: 39th IEEE/ACM International Symposium on Microarchitecture,
pp- 385-396 (2006)

Prabhakar, R.: Adaptive QoS decomposition and control for storage cache management in
multi-server environments. In: 11th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), pp. 402-413 (2011)

Yao, J.C., Shi-Dong, Z., Yu-Liang, S., Qing-Zhong, L.: Multi-tenant database memory
management mechanism based on chunk folding. Chin. J. Comput. 34(12), 2320-2331 (2011)
Ang, G., Dejun M., Yansu H.: A QoS control approach in differentiated web caching service.
J. Netw. 6.1, 62-70 (2011)

Jose, M., Calero, A., Edwards, N., Kirschnick, J., Wilcock, L., Wray, M.: Towards a
multi-tenancy authorization system for cloud services. IEEE Secur. Priv. 8(6), 48-55 (2010)
Almorsy, M., Grundy, J., Ibrahim, A.S.: Collaboration-Based cloud computing security
management framework. In: IEEE International Conference on Cloud Computing (CLOUD),
pp. 364-371 (2011)

Mandy, W., Zimmermann, W.: Controlling data-flow in the cloud. In: 3rd International
Conference on Cloud Computing, GRIDs, and Virtualization, pp. 24-29 (2012)

Liang, Y., Hao, Z., Yu, N., Liu, B.: RandTest: towards more secure and reliable dataflow
processing in cloud computing. In: International Conference on Cloud and Service
Computing, pp. 180-184 (2011)

Almorsy, M., Grundy, J., Ibrahim, A.S.: TOSSMA: a tenant-oriented SaaS security
management architecture. In: IEEE 5th International Conference on Cloud Computing
(CLOUD), pp. 981-989 (2012)

http://www.memcached.org

Secure Cloud Multi-tenant Applications ... 27

20.

21.
22.

Saleh, E., Takouna, I., Meinel, C.: SignedQuery: protecting users data in multi tenant SaaS
environments. In: IEEE International Conference on Advances in Computing,
Communications and Informatics (ICACCI), pp. 213-218 (2013)

HMAC RFC 2104.: http://tools.ietf.org/html/rfc2104. Accessed on April 2015

Lam, H.Y., Zhao, S., Xi, K., Chao, H.J.: Hybrid security architecture for data center networks.
In: IEEE International Conference on Communications (ICC), pp. 2939-2944 (2012)

http://tools.ietf.org/html/rfc2104

2 Springer
http://www.springer.com/978-3-319-28030-1

Innovations in Bio-Inspired Computing and Applications
Proceedings of the 6th International Conference on
Innovations in Bio-Inspired Computing and Applications
(IBICA 2015) held in Kochi, India during December
16-18, 2015

Snasel, \V.; Abraham, A.; Krémer, P.; Pant, M.; Muda, A.K
(Eds.)

2018, X, 588 p. 199 illus., 75 illus. in color., Softcover
ISBM: 978-3-319-28030-1

	2 Secure Cloud Multi-tenant Applications with Cache in PaaS
	Abstract
	1 Introduction
	2 Multi-tenant Application
	3 Data Store
	3.1 i-Meta Data
	3.2 Cache and Replication

	4 Security Oriented Cache Approach
	5 Experimental Setup and Results
	5.1 Experimental Design
	5.2 Performance Calculation

	6 Conclusion
	References

