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1 Introduction

A great deal of research has been done in the area of transformations on graphs and
digraphs, found in connection with work done in groups on graphs.

The best known and most thoroughly studied among these transformations
has been the line graph, that was officially introduced as such by Whitney [40]
in 1932, and by 1970 has been completely characterized by Krausz [28], van
Rooij and Wilf [34] and Beineke [3]. The middle graph, was introduced indepen-
dently by Chikkodimath and Sampathkumar [10], and Hamada and Yoshimura [20].
Middle graphs have been characterized in several ways by Akiyama et al. [1]. The
total graph, was introduced in 1967 and studied by Behzad [2].

For over half a century transformations on digraphs, introduced as analogues
of the corresponding transformations on graphs, have also received a great deal of
attention. We refer to the line, total, and middle digraph, which have been introduced
in 1960 by Harary and Norman [24], in 1964 by Chartrand and Stewart [9], and in
1981 (1977 in her Ph.D. thesis) by Zamfirescu [42], respectively. Characterizations
have been given by Heuchenne [25] for the line digraph, by Zamfirescu [42] for the
middle digraph, and by Skowronska et al. [36] for the total digraph. In addition, a lot
of research has been done studying these transformations in various contexts [1–44].

Using intersections of sets belonging to a family of sets, in order to define the edge
connections in a graph is so natural that it arose independently in a number of areas
in connection with both pure and applied mathematics, and has been studied for over
7 decades. Let U be a set, and F = {Fi}i a finite family of non-empty subsets of U.
The intersection graph �(F) is the graph with the vertex set F in which {Fi, Fj} is
an edge if and only if the intersection of the sets Fi and Fj is non-empty. At the same
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time, if G = �(F) then F is called a set representation of the graph G. As far as we
know, the first person to formulate this definition in such a broad fashion, without
restricting the nature of either the set U or of the family F appears to have been
Marczewski [30] in 1945. He also established that every graph is the intersection
graph of some family of subsets of a finite set.

A lot of research has been done on various concepts that represent certain types
of intersection graphs. Among these is the interval graph, �(F), where U = �,
the real line, and each set Fi in F is an interval; certain interval graphs with vari-
ous sorts of restrictions, such as unit-interval graphs, and multiple interval graphs;
n-dimensional interval graph; circular-arc graph, etc. The monograph written by
Mc Kee and Mc Morris [31] on Intersection Graph Theory is an excellent resource,
as well as a good reference for most notations used in this paper. For other ones, not
defined here, please use Harary’s Graph Theory [22].

On the other hand, the study of similar concepts for digraphs has just started.
Beineke and Zamfirescu [4] and Sen et al. [35] introduced and studied in different
contexts a natural analogue of the intersection graphmodel for digraphs. Beineke and
Zamfirescu [4] made for the first time a connection between these new intersection
digraphs and transformations on digraphs.

Definitions
A digraph D = (V , A) has V as vertex set, and A as arc set. We may also use the
notationsV(D) andA(D), to denoteV andA, respectively. Note that, unless otherwise
specified, fromnowonDmayhave loops but nomultiple arcs,D isweakly connected,
and has at least two points.

Let’s consider a family of ordered pairs of subsets of a set U, and to each ordered
pair let’s assign a vertex v ∈ V . Let Sv (source set) be the first set in the ordered pair
assigned to v, and Tv (terminal set) be the second one. The intersection digraph of
this family of ordered pairs of sets, F = {(Sv, Tv)}v∈V , is the digraph D that has V
as vertex set and uv ∈ A iff Su ∩ Tv �= ∅.

In [4, 35], it was shown that every digraph is the intersection digraph of ordered
pairs of subsets of some set U. In [43, 44], it was shown that the line, middle, total,
and subdivision digraph of a digraph D can all be generated as intersection digraphs
of ordered pairs of subsets of a universal set of symbols U, which contains only
vertices and arcs of the digraph D, the digraph to be transformed.

This type of intersection digraph representation, using only elements of the
transformed digraph, could make possible a unique computer treatment of all these
transformations of the same digraph.

Let the intersection number, i#(D), of a digraph D be the minimum size of a
set U, such that D is the intersection digraph of ordered pairs of subsets of U. We
are raising here the problem of expressing the intersection number of a transformed
digraph as a function of the size of the vertex set or arc set of the original digraph
that was transformed, and we solve this problem for most transformation digraphs
we mentioned here.

The transformations on digraphs we consider in this paper are all based on the
concept of directed adjacency, which throughout this paper will simply be called
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adjacency. This adjacency can be between two points (x is adjacent to y, iff xy is an
arc), two arcs (α is adjacent to β, iff the ending point of the first arc is the starting
point of the second, e.g. α = xy and β = yz), and one of each (x is adjacent to any
arc α = xz having x as starting point, and any arc α = xz is adjacent to its ending
point, in this case z). Furthermore, x is called a source (sink), iff there are no points
adjacent to (from) x, and x is called a carrier iff it is adjacent both to exactly one
other vertex, and from exactly one other vertex.

The transformations of the digraph D express adjacencies within D in various
ways: The line digraph reflects the adjacencies among the arcs in D, the original
digraph. The total digraph reflects the adjacencies between all elements of the origi-
nal digraph: between vertices, between arcs, and between vertices and arcs (meaning
one of each). The middle digraph reflects the adjacencies inD between arcs, between
vertices and arcs, but not the adjacencies between vertices. The well-known subdi-
vision digraph reflects only the adjacencies in D, that exist between vertices and
arcs.

Nextwewill define these 4 transformations for a digraphD = (V , A), andmention
theorems given in [44], that generate these transformations as intersection digraphs,
using U = V ∪ A, which means that the universal set U, of the intersection digraph
consists only of elements of D.

The line digraph, denoted L(D), of the digraph D has as vertex set A, the arc set
of D, and there is an arc in L(D) from one vertex ûv [NB: ûv will denote the vertex
in L(D), that represents the arc uv in D] to another vertex ŵz iff v ≡ w, i.e. the
adjacency of the arcs in D is preserved for the corresponding vertices in L(D).

The total digraph, denoted T (D), of the digraph D has as vertex set V ∪ A, and
two such elements are connected by an arc in T (D) iff the corresponding elements
in D are adjacent in D.

The middle digraph, denoted M(D), of the digraph D, has as vertex set V ∪ A,
and two such vertices in M(D) are connected by an arc in M(D) iff they are not
both vertices in D, and the corresponding elements in D are adjacent in D.

The subdivision digraph, denoted S(D), of the digraph D, has as vertex setV ∪ A,
and two such elements are connected by an arc in S(D) iff one of them is an arc and
the other one a vertex of D, and they are adjacent in D. This is equivalent to the more
common definition of a subdivision digraph, which defines it is as the digraph we
obtain from D by attaching one extra point on each arc of D and thus subdivide each
arc into two new arcs in S(D).

In the Fig. 1 below we exemplify all these transformations for a digraph D0, with
the vertex set V(D0) = {a, b, c, d, e, f , g}, where the two types of vertices and the
three types of arcs of the transformed digraphs are marked in such a way that they
intuitively show their provenience: The empty (bold) points represent the vertices
of the original digraph D0, (respectively those vertices corresponding to arcs in D0),
while the wavy (double) [plain] arcs in any transformed or original digraph represent
the adjacencies that exist between vertices in the original digraph D0 (represent
the adjacencies that exist between arcs in D0) [represent the adjacencies that exist
between vertices and arcs and arcs and vertices in D0].
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2 Results

Theorem A [44]
L(D), the line digraph of D = (V , A), is the intersection digraph of the family F

of ordered pairs of subsets of the universal set U = V , defined by:
F = {(Sûv, Tûv)}ûv∈A(L(D)), where Sûv = {v}, and Tûv = {u}.
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Fig. 1 The Figure shows a digraph and its line, subdivision, middle, and total digraph, respectively
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Theorem B [44]
T (D), the total digraph of D = (V , A), is the intersection digraph of the family

F = {(Sε, Tε)}ε∈U , of ordered pairs of subsets of the universal setU = V ∪ A, defined
by:

Sε = {ε} ⋃{ε̂u : ε̂u ∈ A} and Tε = {ûε : ûε ∈ A}, for all ε ∈ V ,
Sε = Sûv = {ûv, v} and Tε = Tûv = {u}, for all ε ∈ A, ε = ûv.

Theorem C [44]
M(D), themiddle digraph ofD = (V , A), is the intersection digraph of the family

F = {(Sε, Tε)}ε∈U , of ordered pairs of subsets of the universal setU = V ∪ A, defined
by:

Sε = {ε} and Tε = {ûε : ûε ∈ A}, for all ε ∈ V ,
Sε = Sûv = {ûv, v} and Tε = Tûv = {u}, for all ε ∈ A, ε = ûv.

Theorem D [44]
S(D), the subdivision digraph of D = (V , A), is the intersection digraph of the

familyF = {(Sε, Tε)}ε∈U , of ordered pairs of subsets of the universal setU = V ∪ A,
defined by:

Sε = {ε} and Tε = {μ ∈ U : ε adjacent to μ, and exactly one of ε, μ is an arc}.
Next, we will aim at minimizing the number of symbols in the universal set, U.

The intersection number, i#(G), of an undirected graph G is the minimum size
of a set U, such that G is the intersection graph of subsets of U. For the undirected
case, Erdös et al. [12] showed that the intersection number of G equals the minimum
number of complete subgraphs needed to cover its edges. Sen et al. [35] proved
an analogous result for digraphs. They defined the generalized complete bipartite
subdigraph (abbreviated GBS) to be the subdigraph generated by vertex sets X, Y ,
the arcs of which are all xy such that x ∈ X, and y ∈ Y . Note that X and Y need not
be disjoint (this is how loops are covered) which justifies the “generalized” term. If
K is a GBS we shall call X(K) and Y(K) its X, respectively Y , sets. They gave the
following:

Theorem E ([35]). The intersection number of a digraph equals theminimumnumber
of GBSs required to cover its arcs.

We shall further give results that will express the intersection numbers of trans-
formation digraphs of a digraph D, as functions of the numbers of vertices of D, that
are sinks, sources or not sinks or not sources.

We will study the case of the line digraph separately, as it has an additional
property: it satisfies the Heuchenne Condition, abbreviated here as H condition.

We say that a digraph fulfills the H condition iff for every four of its vertices,
call them u, v, w and z, not necessarily distinct, the existence of the arcs uv,wv,wz
implies the existence of the arc uz.

Theorem F ([25]). A digraph is a line digraph iff the H condition is fulfilled.
Let D satisfy the H condition, and let C = {Kσ}1≤σ≤i#(D) be a set of minimum size,

of GBSs that cover all arcs in D.
In D, let uv be an arc in some Kσ ∈ C. It is easy to see that, given the H condition,

all arcs adjacent from u, and all arcs adjacent to v in D, must also belong to Kσ since
C is of minimum size. We can now define an equivalence relation R on the arc set
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A(D) by stating that two arcs are related iff one of the following is fulfilled: (a) they
have the same starting point; (b) they have the same ending point; (c) there is an arc
in A(D) from the starting point of one arc to the ending point of the other. It is easy
to see that the set of GBSs induced by the equivalence classes generated by R is of
minimum size, and we proved the following lemma.

Lemma 1 If H condition holds then C is uniquely determined in D.

Next, we can see that, if we apply Lemma 1 to L(D), which by Theorem F fulfills
condition H, then each GBS, Kσ ∈ C, induced in L(D) by the relation R defined
above, corresponds to exactly one vertex in D. That vertex in D is 1) adjacent from
all arcs of D that correspond to the vertices in X(Kσ), which means that it is not
a source, and 2) adjacent to all arcs of D that correspond to the vertices in Y(Kσ),
which means that it is not a sink. Since Kσ contains at least one arc, that vertex in D
must be neither a source nor a sink. This proves the next lemma and theorem.

Lemma 2 There is a one-to-one correspondence between the set C of GBSs and the
set of all vertices in D, that are neither sources nor sinks.

Theorem 1 i#(L(D)), the intersection number of L(D) equals the number of ver-
tices of D that are neither sources nor sinks.

Let’s consider now the subdivision digraph, S(D), of the digraph D. It is easy to see
that, since in S(D) in every semipath (NB: walk in the graph without following the
directions of the arcs, see [22]), every second vertex is a carrier, S(D) satisfies the H
condition. From Lemma 1 we know that S(D) has a unique minimum set of GBSs
that cover all its arcs, and each such GBS is induced by the arc set of one of the
equivalence classes generated by the equivalence relation R, defined for Lemma 1.
In fact, the point (c) in the definition of R cannot occur in S(D), and thus each GBS
in S(D) is a star (see [22]), which (a) has a source as the center, and any remaining
vertex is a sink, or (b) has a sink as the center, and any remaining vertex is a source.
We can attach these GBSs to only those vertices in S(D), that correspond to vertices
in D. To each source (sink) will correspond exactly one GBS, consisting in a star
with n arms, where n is the out-degree (in-degree) of the source (sink) in D. To each
of the other vertices, we will attach exactly two GBSs, one for the in-coming arcs,
and the other for the out-coming arcs. We thus proved:

Lemma 3 i#(S(D)) equals the number of vertices of D that are not sources, added
to the number of vertices of D that are not sinks.

From now on, let’s consider that D contains no loops.
Neither M(D) nor T (D) satisfies the H condition, generally.
Wewill show next that, in the case of bothM(D) and T (D), although the covering

of the arcs by a set of GBSs of minimum size may not be unique, their intersection
numbers are equal to the intersection number of S(D). We will do this by extending
the GBSs we formed for the S(D) to also cover all the arcs that are inM(D) or T (D)

but not in S(D), by allocating each such arc, say xy, new to S(D), to the GBS that
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contains all arcs in S(D) adjacent to y. Similarly, we could allocate xy to x, instead
of to y, thus defining a generally different set of GBSs, that cover all arcs in M(D)

or T (D).
In order to prove that this new set of GBSs is of minimum size it is enough to

show that we cannot construct a GBS in M(D) or T (D) that contains two arcs α
and β, that belong to two different GBSs in S(D). Any arc in S(D) joins a vertex
that represents a vertex in D with (i.e. to or from) a vertex that represents an arc in D.
The latter must also be a carrier in S(D). If α and β have a common endpoint, then
this can only represent a vertex in D, as it is not a carrier. In this case they must be
in the same GBS in S(D). If the starting point of α is the same point as the ending
of β, then by the definition of the GBS, we would need to have a loop at that point,
which is not allowed in S(D), even if D had loops. If α and β do not have a common
endpoint, say α is the arc xz and β is the arc yt, with all endpoints distinct, then the
GBS must also contain the arcs xt and yz. Let’s assume, without loss of generality,
that x and t represent vertices, while y and z represent arcs in the original D, that we
transformed. In addition, note that the arc in D represented by y must be adjacent
to the arc in D represented by z. A contradiction follows from the fact that y and z
must both be carriers in S(D), and D may not contain a loop. We therefore proved
the following results.

Lemma 4 No GBS in M(D) or T (D) may contain two arcs that belong to two
different GBSs in S(D).

Theorem 2 If D contains no loops, i#(T (D)) = i#(M(D)) = i#(S(D)), that is the
intersection numbers of T (D), M(D) and S(D) are all equal to the number of
vertices of D that are not sources, added to the number of vertices of D that are not
sinks.

We would like to note here, that Lemma 4 is no longer true when D has loops, as the
number of GBSs covering all arcs in T (D) might be reduced from the one covering
S(D). For instance, the subgraph induced by the vertex set {g, ĝg, ̂gf } in T (D0) in
our Figure forms one GBS, while in S(D) and M(D) the same subgraph must be
covered by two GBSs, due to the lack of the loop at the vertex g in S(D) andM(D).

The problem of finding equivalent results for other transformations of digraphs,
such as various power digraphs, remains also open.
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