
Chapter 2
Two-Degree-of-Freedom PID Controllers
Structures

As in most of the existing industrial process control applications, the desired value of
the controlled variable, or set-point, normally remains constant (regulatory control
or disturbance rejection operation) but needs to be changed (servo-control or set-
point tracking operation) we are mainly interested in the two-degree-of-freedom
(2DoF) implementation of the PID control algorithms. The extra parameter that the
2DoF control algorithm provides is used to improve their servo-control behavior
while considering the regulatory control performance and the closed-loop control
system robustness [1–5]. This 2DoF feature can be incorporated both into a PI or a
PID control algorithm. Although all the controllers with a proportional integral (PI)
control algorithm are implemented in the same way, have the same transfer function,
this is not the case with commercial controllers with proportional integral derivative
(PID) control algorithms.

In fact, usually, the control algorithm implementation is manufacturer dependent
and not all of its variations are available in the same controller. Even more, the
controllers manufacturers use different names for the same PID algorithm [6]. The
diversity of the PID control algorithms is evident in [7]. In addition, it would be
the case that a tuning rule of interest had been obtained using a control algorithm
different from the one implemented in the controller to tune. In this case, controller
parameters conversion is required that will also indicate if the pursued equivalent
controller exists.

On that basis, the most widely used PID control algorithms are presented in this
chapter by also providing conversion formulae that allows to convert the parameters
of one algorithm from those obtained for another formulation. As it will be seen this
conversion will not always be possible, showing some formulations are more general
than others.
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2.1 Proportional Integral Derivative Control Algorithm

Consider the general controller block diagram depicted in Fig. 2.1. The output or
control effort of a proportional (P) integral (I) and derivative (D) control algorithm
is given, in general, by

U (t) = Action {UP(t) + UI (t) + UD(t) + Ub}, (2.1)

if 0% ≤ U (t) ≤ 100%, and 0 or 100%, depending on the controller action if the
controller output reaches one of its limits.

In (2.1) UP is the proportional term or proportional control action, given by

UP(t) = K p E(t) = K p[R(t) − Y (t)], (2.2)

with a proportional gain K p; UI is the integral term or integral control action, given
by

UI (t) = Ki

∫ t

0
E(ξ)dξ = Ki

∫ t

0
[R(ξ) − Y (ξ)]dξ, (2.3)

with an integral gain Ki ; and UD the derivative term or derivative control action,
given by

UD(t) = Kd
dE(t)

dt
= Kd

d[R(t) − Y (t)]
dt

, (2.4)

with a derivative gain Kd .The controller output bias Ub is usually set to 50%. In
(2.1)–(2.4) controller inputs R(t) and Y (t), and output U (t) change in the range
from 0 to 100%.

The controller Action sign, +1 (Reverse) or −1 (Direct), must be selected equal
to the controlled process gain sign to preserve the negative feedback characteristic
of the control loop.

In the following, we will assume that the controller Action has been selected
correctly, that all the closed-loop control variables are within their corresponding 0–
100% range, and that the control system is initially at a steady-state stable operating

Fig. 2.1 Controller block diagram
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Fig. 2.2 Closed-loop control block diagram

point given by {Ro, Yo, Uo}. Then, we only consider deviation variables {r , y, u}
around this operating point and then the controller output bias will not be included
in following controllers equations.

A linear control system is based on a linearized process model description that
relates deviation variables from its operating point values. On that basis, the lin-
earized closed-loop control system for variable deviations r(s), y(s), u(s), and d(s)
is reduced as depicted in Fig. 2.2, where P(s) is the transfer function of the controlled
process model and Cr (s) and Cy(s) the controller aspects applied to the set-point
and the feedback signal, respectively. The possible measurement noise n(s) has been
also included.

2.2 Two-Degree-of-Freedom (2DoF) PID Control
Algorithms

The most widely used proportional integral derivative or PID control algorithms
are briefly described below. Each formulation is provided by a specific notation
for its parameters in order to distinguish the corresponding implementations when
proceeding later on to provide the conversion equations from one algorithm to the
other.

2DoF Standard PID

The “textbook” 2DoF proportional integral derivative control algorithm is the Stan-
dard PID whose output is given by the following [8–10]:

u(t) = K p

{
ep(t) + 1

Ti

∫ t

0
ei (ξ)dξ + Td

ded(t)

dt

}
, (2.5)

or

u(s) = K p

{
ep(s) + 1

Ti s
ei (s) + Tds

αTds + 1
ed(s)

}
, (2.6)
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Fig. 2.3 Two-degree-of-freedom Standard PID controller

with

ep(s) = βr(s) − y′(s), (2.7)

ei (s) = r(s) − y′(s), (2.8)

ed(s) = γ r(s) − y′(s), (2.9)

y′(s) = y(s) + n(s), (2.10)

where K p is the controller gain, Ti the integral time constant, Td the derivative time
constant, β and γ the set-point weights, and α the derivative filter constant. The
2DoF PID block diagram is depicted in Fig. 2.3.

To avoid an extreme instantaneous change at the controller output signal when
a set-point step change occurs normally γ is set to zero [11, 12]. In this case (2.6)
reduces to

u(s) = K p

{
βr(s) − y′(s) + 1

Ti s

[
r(s) − y′(s)

] −
(

Tds

αTds + 1

)
y′(s)

}
, (2.11)

that will be denoted as P I D2. In addition, in the following it is assumed that the
measurement noise is filtered, then y′(s) ≈ y(s).

The controller output (2.11) may be rearranged, for analysis purposes, as follows:

u(s) = K p

(
β + 1

Ti s

)
r(s) − K p

(
1 + 1

Ti s
+ Tds

αTds + 1

)
y(s), (2.12)

where the Cr (s) and Cy(s) controller aspects read as

Cr (s) = K p

(
β + 1

Ti s

)
, (2.13)
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Cy(s) = K p

(
1 + 1

Ti s
+ Tds

αTds + 1

)
, (2.14)

being the controller parameters θc = {
K p, Ti , Td , α, β, γ = 0

}
. Although the Stan-

dard form is the classical implementation of the PID control algorithm, the following
forms are also found in the control literature [10, 12, 13].

2DoF Parallel PID

The parallel or “independent gains” PID control algorithm is

u(s) =
(

βp K p + Ki

s

)
r(s) −

(
K p + Ki

s
+ Kds

αp Kds + 1

)
y(s), (2.15)

where the Cr (s) and Cy(s) controller aspects read as

Cr (s) =
(

βp K p + Ki

s

)
, (2.16)

Cy(s) =
(

K p + Ki

s
+ Kds

αp Kds + 1

)
, (2.17)

with parameters θcp = {
K p, Ki , Kd , αp, βp, γp = 0

}
. K p is the proportional gain,

Ki the integral gain, and Kd the derivative gain.

2DoF Series or “Industrial” PID

The 2DoF version of the series “interacting” implementation of the PID algorithm is

u(s) = K ′
p

(
β ′ + 1

T ′
i s

)
r(s) − K ′

p

(
1 + 1

T ′
i s

)(
T ′

ds + 1

α′T ′
ds + 1

)
y(s), (2.18)

where the Cr (s) and Cy(s) controller aspects read as

Cr (s) = K ′
p

(
β ′ + 1

T ′
i s

)
, (2.19)

Cy(s) = K ′
p

(
1 + 1

T ′
i s

) (
T ′

ds + 1

α′T ′
ds + 1

)
, (2.20)

with parameters θ ′
c = {

K ′
p, T ′

i , T ′
d , α

′, β ′, γ ′ = 0
}
.

2DoF Ideal PID with Filter

A commonly used PID implementation in Internal Model Control (IMC)-based con-
troller design is given by the following:

u(s) = K ∗
p

(
β∗ + 1

T ∗
i s

)
r(s) − K ∗

p

(
1 + 1

T ∗
i s

+ T ∗
d s

) (
1

T f s + 1

)
y(s), (2.21)
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where the Cr (s) and Cy(s) controller aspects read as

Cr (s) = K ∗
p

(
β∗ + 1

T ∗
i s

)
, (2.22)

Cy(s) = K ∗
p

(
1 + 1

T ∗
i s

+ T ∗
d s

)(
1

T f s + 1

)
, (2.23)

with parameters θ∗
c = {

K ∗
p, T ∗

i , T ∗
d , T f , β

∗, γ ∗ = 0
}
. T f is the controller intput filter

time constant.

2.3 PID Control Algorithms Conversion Relations

As it can be observed from the presented PID forms, whereas the reference con-
troller aspect takes the same form in all formulations, it is the feedback part the
one that prevents a direct translation of the controller parameters from one formu-
lation to another. This is important because some of the existing tuning rules have
been conceived for a specific PID formulation. As an example, the derivations of the
celebrated SIMC tuning [14] are with the Series or Industrial formulation in mind,
whereas much of the other proposals are based on the Standard one. Due to the pos-
sibility that the control PID algorithm of the controller to tune be different to the one
considered by the tuning rule to use it is necessary to have conversion relations to
obtain “equivalent” parameters between two or more of them [15]. In what follows,
we present conversion formulae to get the controller parameters for one specific PID
formulation starting from the parameters got for another different one.

Conversion from a 2DoF Parallel PID to a Standard PID

A P I D2 controller (2.11) equivalent to the 2DoF Parallel PID (2.15) is found using
the following relations:

K p = K p, (2.24)

Ti = K p

Ki
, (2.25)

Td = Kd

K p
, (2.26)

α = αp K p, (2.27)

β = βp, (2.28)

γ = γp = 0. (2.29)

There is a direct relation between the Standard and Parallel PID algorithms then this
last one will not be further considered.
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Conversion from a 2DoF Series PID to a Standard PID

It is possible to obtain a Standard 2DoF PID controller (2.11) equivalent to the 2DoF
Series PID (2.18) using the following relations:

K p = F ′
c K ′

p, (2.30)

Ti = F ′
cT ′

i , (2.31)

Td = (1 − α′F ′
c)T

′
d

F ′
c

, (2.32)

α = F ′
cα

′

1 − α′F ′
c

, α′ < 1 + T ′
i

T ′
d

, (2.33)

β = β ′

F ′
c

, (2.34)

γ = γ ′ = 0, (2.35)

F ′
c = 1 + (1 − α′)T ′

d

T ′
i

. (2.36)

where F ′
c (2.36) is the P I D2s to P I D2 conversion factor. It takes into account the

derivative filter constant α′.
The conversion constraint in (2.33) usually holds then we may say that there is a

Standard PID equivalent to a Series one.

Conversion from a 2DoF Ideal PID with Filter to a Standard PID

A Standard 2DoF PID controller (2.11) equivalent to the Ideal PID with filter (2.21),
denoted by P I D2F , can be obtained using the following relations:

K p = F∗
c K ∗

p, (2.37)

Ti = F∗
c T ∗

i , (2.38)

Td = T ∗
d

F∗
c

− T f , T ∗
d > F∗

c T f , (2.39)

α = F∗
c T f

T ∗
d − F∗

c T f
, (2.40)

β = β∗

F∗
c

, (2.41)

γ = γ ∗ = 0, (2.42)

F∗
c = 1 − T f

T ∗
i

, (2.43)

T f < T ∗
i , for PI T f = 0. (2.44)

where F∗
c (2.44) is the P I D2F to P I D2 conversion factor.
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In this case, an equivalent P I D2 controller cannot always be obtained as shown
in (2.39) and (2.44).

Using the conversion factors presented above, exact equivalent feedback (Cy(s))
and set-point (Cr (s)) controllers transfer functions for a P I D2 (2.12) may be
obtained for 2DoF PID controllers given by (2.15), (2.18), and (2.21).

Exact equivalent controllers guarantee to obtain the same control system perfor-
mance and robustness in case a 2DoF PID controller is replaced with a PID controller
with a different 2DoF algorithm.

Conversion from a 2DoF Standard PID to a Series PID

In the other direction a 2DoF Series PID controller equivalent to a 2DoF Standard
one can be found using the following relations:

K ′
p = Fc K p, (2.45)

T ′
i = FcTi , (2.46)

T ′
d = (1 + α)Td

Fc
, (2.47)

α′ = αFc

1 + α
, (2.48)

β ′ = β

Fc
, (2.49)

γ ′ = γ = 0, (2.50)

Fc = 0.5

[
1 + αTd

Ti
+

√
1 − (4 + 2α)Td

Ti
+ α2T 2

d

T 2
i

]
. (2.51)

Due to the constraint imposed by (2.51) there will not always exist a Series PID
equivalent to a Standard PID. It will only exist if

α2

(
Td

Ti

)2

− (4 + 2α)

(
Td

Ti

)
+ 1 > 0. (2.52)

If the P I D2 derivative filter constant is taken as α = 0.1 there is a Series equivalent
PID controller only if Ti > 4.20 Td . Figure2.4 shows that this constrain increases
as α increases.

As can be seen in same figure quadratic inequality (2.52) can be approximated by
the following straight line for 0 ≤ α ≤ 1.0:

Ti

Td
> 4.05 + 1.80 α. (2.53)
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Fig. 2.4 Ti /Td condition to
obtain a Series PID
equivalent to a Standard PID
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There is a Series PID controller
equivalent to a Standard PID.

Conversion from a 2DoF Standard PID to an Ideal PID with Filter

The P I D2F is a more general control algorithm and, as indicated above, not always
an equivalent P I D2 controller may be obtained from the P I D2F but it is always
possible to obtain a P I D2F control algorithm equivalent to the P I D2 using the
following relations:

K ∗
p = Fcf K p, (2.54)

T ∗
i = Fcf Ti , (2.55)

T ∗
d =

(
1 + α

Fcf

)
Td , (2.56)

T f = αTd , (2.57)

β∗ = β

Fcf
, (2.58)

γ ∗ = 0, (2.59)

Fcf = 1 + αTd

Ti
. (2.60)

where Fcf (2.60) is the P I D2 to P I D2F conversion factor.
Considering the above we may say that in the 2DoF PID controllers parametric

space θ ′
c ⊂ θc ⊂ θ∗

c . Controller parameters conversion equations show that the
derivative filter constant (α, αp, α′) must be take into account to obtain an equivalent
controller with a different control algorithm from a given one.
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Fig. 2.5 2DoF PID
controllers conversion

To summarize the above relations a 2DoF PID controllers conversion chart is
shown in Fig. 2.5. The solid arrows indicate directions on where there are always
equivalent controllers and the dashed arrows the directions on where there are con-
straints to obtain equivalent controllers. As can be seen in this chart the 2DoF Ideal
PID with filter is the most general proportional integral derivative control algorithm.

2.4 PID Controller with Two Input Filters

The different signals that enter the PID controller are normally filtered in different
ways before they enter the controller. However, as pointed out in [16], a proper choice
of these filters can improve the performance of the feedback loop considerably.
Therefore, it is important to keep these filters in mind during the design procedures.
In order to include into the controller design the measurement noise filter and also
to have more freedom for the servo-control design, the control algorithm may be
aggregated with two input filters as depicted in Fig. 2.6 [16, 17]. These filters should
be considered as an integral part of the design procedure.

The control algorithm is of independent gains (ideal parallel PID implementation)
whose output signal is given by [8]:

u(s) = K p
[
r ′(s) − y′(s)

] + Ki

s

[
r ′(s) − y′(s)

] − Kdsy′(s), (2.61)

where K p is the controller proportional gain, Ki the integral gain, and Kd the
derivative gain (γ = 0).
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Fig. 2.6 Closed-loop control system of a controller with two input filters

The set-point r and feedback y signals are filtered before they enter the controller.
Then r ′ and y′ in (2.61) are given by

r ′(s) = Fr (s)r(s), y′(s) = Fy(s) [y(s) + n(s)] . (2.62)

Using (2.62) into (2.61), it is obtained that

u(s) =
(

K p + Ki

s

)
Fr (s)r(s) −

(
K p + Ki

s
+ Kds

)
Fy(s) [y(s) + n(s)] .

(2.63)

In a compact form (2.63) is expressed as

u(s) = Cr (s)Fr (s)r(s) − Cy(s)Fy(s) [y(s) + n(s)] . (2.64)

The set-point filter Fr (s) is selected strictly proper and given by the transfer function

Fr (s) = σ Tr s + 1

(Tr s + 1)2
, (2.65)

where Tr is its time constant and σ an adjustable parameter. Filter (2.65) avoids to
have a step change in the controller output when a set-point step change is made.

The feedback filter (“noise filter”) Fy(s) is selected of first order for PI controllers,
given by

Fy(s) = 1

D f y(s)
= 1

T f s + 1
, (2.66)

with time constant T f , and of second order for PID controllers, given by

Fy(s) = 1

D f y(s)
= 1

T 2
f /2s2 + T f s + 1

, (2.67)

to provide high-frequency roll-off (measurement noise attenuation) with either con-
trollers.
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Input filters transfer function gains are constrained to be equal, lims→0 Fr (s) =
lims→0 Fy(s), to ensure that in steady state the controller integral action operates on
the error signal.

Considering Fr and Fy as part of the “controller” be designed the selectable
parameters of the set-point controller are θcr = {

K p, Ki , Tr , σ, γ = 0
}
, and corre-

sponding to the feedback controller θcy = {
K p, Ki , Kd , T f

}
. Then, parameters of

the controller as a whole are θc
.= θcr

⋃
θcy = {

K p, Ki , Kd , T f , Tr , σ, γ = 0
}
.

The set-point and feedback signal filters combination with the PID control algo-
rithm is denoted as P I D2I F controller. For tuning rules comparison, in addition to
the quantitative performance and robustness indices and the responses shapes, the
process control-oriented characteristics of the P I D2I F controllers must bring to the
front.

With the P I D2I F controllers there is not any abrupt change at the controller
output when a step change is made on the set-point. To mimic this characteristic with
a 2DoF PID controller its proportional set-point weight β must be made zero. With
this, the second degree of freedom is lost and the servo-control response delayed.

The other important characteristic of the P I D2I F controllers is their frequency
response roll-off. It is normal that in process control applications the feedback signal
be corrupted with high-frequency measurement noise. If this noise is not properly
filtered it will generate high control signal variations resulting in a deterioration of
the final control element. If a measurement noise filter is added to a Standard PID
controller after its tuning the filter dynamics will affect the control system robustness
and performance. Then, it is essential that both these characteristics be part of the
controller design from the beginning.

Chapter Remarks

The (2DoF) PID algorithm implementations are presented as well as the conversion
relations between their parameters.

From the presented PID algorithms the Ideal PID with filter is the more general
one.

The aggregation of the deal PID control algorithm with two input filters allows
to include two important industrial features: high-frequency roll-off and lack of a
control effort abrupt change on a step set-point modification.
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