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Abstract. We introduce closed sets, which we will call knowledge units,
to represent tight collections of experience, facts, or skills, etc. Associ-
ated with each knowledge unit is the notion of its generators consisting
of those attributes which characterize it.

Using these closure concepts, we then provide a rigorous mathema-
tical model of learning in terms of continuous transformations. We illus-
trate the behavior of transformations by means of closure lattices, and
provide necessary and sufficient criteria for simple transformations to
be continuous. By using a rigorous definition, one can derive necessary
alternative properties of cognition which may be more easily observed in
experimental situations.

1 Introduction

We are concerned with modeling intelligence and learning, but not artificial intel-
ligence or machine learning. Rather we want to model these phenomena as they
might occur in a human mind. It is generally accepted that mental cognition
occurs in the brain, which is itself comprised of a network of neurons, axons,
and synapses. Neuroscientists have a rather clear understanding of the physi-
cal layout of the brain, including which portions are responsible for individual
mental functions [6]. But, how mental processes actually occur is still elusive.
Nevertheless, it is clear that the response to external stimuli occurs in a reactive
network. Thus if we want to model cognitive behavior we must, at some level,
come to grips with network behavior.

In Sect. 2, we will introduce the idea of an experiential operator, ρ, which
expresses a relationship between the elements of a network. The elements can
be raw visual stimuli, at a lower level, or concepts and ideas, at a higher level.

In Sect. 3 we introduce the concept of closure, which identifies closely related
elements. Closure is central to our mathematics. Then, for want of a better term
we call closed sets, knowledge units. Properties of these knowledge units are
developed in Sect. 4.

It is not until Sect. 5 that we actually encounter network transformations that
correspond to learning situations, and define the concept of continuity. We will
examine several continuous network transformations and provide necessary and
sufficient conditions for a simple transformation to be continuous. This section
is the meat of the paper.
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2 The Experiential Operator

Let U denote a finite universe of awarenesses, sensations, etc. that an individual
might experience, U = {. . . , w, x, y, z}.1 We denote sets by {. . .} and by upper
case letters. Thus Y = {x, z} is a set of two possible experiences in U . Y is said
to be a subset of (or contained in) U , denoted Y ⊆ U .

Experiences are related to one another. If z is related to x, say for example
that z can be experienced having once experienced x, we denote the relationship
by x ρ z. Relationships may, or may not, be symmetric; we need not have z ρ x.
Based on known neural morphology [6], most neural cells have many inputs and
relatively few outputs, so we can assume many relationships will be asymmet-
ric. Relationships come in a great many varieties. Experiential events can be
simultaneous or sequenced in time; can be adjacent or distant in space; can be
synonyms or antonyms in a lexical space; or can be friendly or threatening in an
emotional space. But for this paper we assume only one generic relationship. By
ρ we mean that some relationship exists. Throughout this paper we are going
to let the term “experience” be generic. We might have related visual stimuli
comprising a visual object, or related skills comprising a skill set, or related facts
comprising an area of knowledge. All will be regarded as experiential.

Relationships are frequently visualized by means of graphs, or networks, such
as Fig. 1. Here an edge between q and s denotes q ρ s. If no arrow head is present,
it is assumed that the relation is symmetric.

Fig. 1. A very small network depicting the relationships, ρ, between 6 experiential
elements.

While network graphs can provide a valuable intuition, we actually prefer to
regard relationships as operators that map subsets of U onto other subsets in U .
Thus we will denote q ρ s by the expression {q}.ρ = {s}, that is, ρ operating on
q yields s, or because we tacitly assume q is related to itself, and because q ρ t,
{q}.ρ = {q, s, t}. In Fig. 1, {s}.ρ = {s, t, v} and {t}.ρ = {s, t, w}. Using this kind
of suffix notation is a bit unusual, but it has value. One reason for preferring an
operator notation is that in order to experience y it may be necessary to first
experience both v and w, that is, y ∈ {v, w}.ρ, but y �∈ {v}.ρ. For example,
for a neuron y to respond, it may need signals from both v and w. So properly,
1 This finiteness constraint can be relaxed somewhat, but there is relatively little yield

for the resulting complexity.
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ρ is a function on sets, not individual elements of U . A second reason is that in
later sections we will compose the functional operators, and suffix notation lets
us read the composition in a natural left to right manner.

To formalize this, we let 2U denote all possible combinations of “experiences”
in the universe U . Mathematically, it is called the power set of U . The rela-
tionship operator, ρ, maps subsets Y ⊆ U into other subsets, Z = Y.ρ ⊆ U . By
convention we assume that every experience is related to itself, so that, for all
Y , Y ⊆ Y.ρ. Consequently, ρ is an expansive operator. This is precisely what
we want; ρ denotes the possibility of expanding one’s realm of experiences. For
example, having the experiences x and y, it may be possible to also experience
z, or {x, y}.ρ = {x, y, z}.

We will also assume that a greater collection of experience will permit a
greater awareness of possible new experience. That is, X ⊆ Y implies X.ρ ⊆ Y.ρ.
Then ρ is said to be a monotone operator.

3 Closure Operators and Knowledge Units

Certain collections of experiences, of facts, of abilities, appear to be more robust
than others. They go by many names in the literature. A cluster of perceived
visual stimuli may be called an external entity, or object. If the granularity of
the base experiential elements, U , is coarser, say that of skills or facts, we might
call a cluster of abilities an area of expertise, such as horseshoeing ; or a cluster
of facts might be regarded as a discipline, such as medieval history or high school
algebra. With so many possible terms and interpretations, we choose to use a
more neutral term. We will call such clusters knowledge units without trying to
specify precisely what such a unit is. In this section we will postulate that this
organizing process can be approximately modeled by a mathematical closure
operator.

An operator ϕ is said to be a closure operator if for all X,Y ⊆ U ,
Y ⊆ Y.ϕ ϕ is expansive,
X ⊆ Y implies X.ϕ ⊆ Y.ϕ ϕ is monotone, and
Y.ϕ.ϕ = Y.ϕ ϕ is idempotent.

There is an extensive literature on closure and closure operators of which [2,5,
9,12,14] are only representative.

Since ρ is both expansive and monotone, it is almost a closure operator itself.
But, ρ need not be idempotent. In Fig. 1, we have {q}.ρ = {qst} ⊂ {qstuv} =
{q}.ρ.ρ. However, we can define a closure operator ϕρ with respect to ρ. Let,

Y.ϕρ =
⋃

z∈Y.ρ

{{z}.ρ ⊆ Y.ρ}. (1)

Readily, if z ∈ Y then z.ρ ⊆ Y.ρ, so Y ⊆ Y.ϕ. We call ϕρ the experiential
closure because it is determined by the experiential operator ρ. Note that any
relationship, ρ, of any type can give rise to a closure operator, ϕρ.
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Proposition 1. ϕρ is a closure operator.

Proof. Readily, Y ⊆ Y.ϕρ by definition. Let X ⊆ Y and let z ∈ X.ϕρ. By (1)
z.ρ ⊆ X.ρ ⊆ Y.ρ hence z ∈ Y.ϕρ. Now let z ∈ Y.ϕρ.ϕρ. Then z.ρ ⊆ Y.ϕρ.ρ =⋃

z∈Y.ϕρ
{z.ρ ⊆ Y.ρ}, hence z ∈ Y.ϕρ. ��

In the network of Fig. 1, observe that {y} is closed, but {v} is not, because
{y}.ρ = {y} ⊆ {vwy} = {v}.ρ, so {v}.ϕρ = {vwy}. Neither is {w} closed,
because {w}.ϕρ = {vwy} = {v}.ϕρ. So, singleton elements need not be closed.

A set Y is said to be closed if Y = Y.ϕ. Because ϕ is expansive, U itself
must be closed. The empty set, Ø, is most often closed, but need not be. (Here,
Ø denotes an “empty set” that contains no elements.)

Normally, we omit the subscript ρ from the closure symbol ϕ because most
results are valid for all closure operators. Only if some property of the relational
closure is required will we use the symbol ϕρ.

By a knowledge unit, Ki, we mean a set closed with respect to ϕρ in U .
That is, the elements of Ki are a tightly bound collection of related experiences
that will be regarded as a unit of knowledge awareness. In Fig. 1, because {st}
is closed, it is a knowledge set, K1. The set {qst} is also closed, and thus also a
knowledge unit, K2. Here, K1 = {st} ⊂ {qst} = K2. We can think of increasing
knowledge awareness with increasing experience or capability.

3.1 An Example of Experiential Closure

The formal definition of experiential closure, ϕρ, as well as the more general
definition with respect to expansive, monotonicity, and idempotency, conveys
little intuitive sense of its being. Here we will examine an example which could
occur in human cognition.

Consider the retina of the eye, where the close packing of cells (frequently
called “pixels”, and here shown as hexagonal, even though the retina is never
quite so regular) endows each receptive cell with 6 neighbors. Figure 2 illustrates
a simulated portion of the retinal structure with a mottled pattern of 43 excited
cells (black dots) which we will denote by Y . We seek an experiential closure of
Y based on an adjacency relation, ρ. The pixels, or neural cells, containing an
× in Fig. 3(a) denote the extent of Y.ρ. If all the neighbors of an ×-cell are also
×-cells, then it is in Y.ϕρ which is shown as Fig. 3(b). Surely, a process that can
extract more “solid” objects in a natural kind of mottled camouflage will convey
survival benefit, and might be “built-in”.

It was shown in [16] that this spatial closure operator can be implemented
in parallel by “expanding” each stimulated element in Y then expanding its
complement thus contracting Y .

Since it is assumed that virtually all processing of information passing back
from the retina to the visual cortex occurs in parallel; that spatial retinal rela-
tionships are preserved in some of this visual pathway; and that this pathway
consists of alternating odd/even cell layers [18], it is plausible to regard this
example as an actual, but vastly oversimplified, cognitive process.
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Fig. 2. A mottled pattern on a simulated retina.

Fig. 3. Closure within the mottled pattern of Fig. 2

This example of a closure operator has been set within the context of visual
cognition. It does not necessarily imply that this black and white “cartoon”
example mimics an actual visual process. Real visual cognition is far more com-
plex, for example, we see in multiple frequencies (color). But, it does establish
that closure concepts are compatible with known aspects of visual physiology,
and illustrates how a closure operator can extract “identifiable” objects from a
pattern.

A well-known property of closure systems is that if X and Y are closed then
their intersection X ∩Y must be closed; or equivalently, X.ϕ∩Y.ϕ = (X ∩Y ).ϕ.
Readily, we encounter many different kinds of experiential relationships in the
real world, say ρ1, ρ2, . . . , ρn. We can show by counter example that X.ϕρ1&ρ2

�=
X.ϕρ1

∩ X.ϕρ2
. But, for all X, X.ϕρ1

∩ X.ϕρ2
= X.ϕρ1·ρ2

. That is, the inter-
section of closed sets corresponds to closure based on concatenated, rather than
concurrent, relationships, which seems to be what occurs in the visual pathway.

4 Generators and Knowledge Lattices

If K is a closed knowledge unit there exists at least one set Y ⊆ K such that
Y.ϕ = K. (It may be K itself.) Y is said to be a generator of K. A reasonable
interpretation of generating sets is that these are a set of features of K that
serve to characterize K.
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Readily, the set Y is a generator of Y.ϕ, as is any set Z, Y ⊂ Z ⊆ Y.ϕ. If for
all X ⊂ Y , X.ϕ ⊂ Y.ϕ = K then Y is said to be a minimal generator of K.2

In general, a closed set K may have several minimal generating sets, denoted
K.Γ = {Y1, . . . Ym} where Yi.ϕ = K, 1 ≤ i ≤ m. For example, in Fig. 1, {qv, qw}
are both minimal generators of {qstvwy}.

4.1 Knowledge Lattices

It is assumed that our knowledge is structured. One way of doing this is to
partially order the knowledge units by containment to form a lattice. Because
U itself must be closed (ϕ is expansive) and because X ∩ Y must be closed,
any collection of discrete closed sets can be partially ordered by containment
to form a complete lattice. We call them knowledge lattices, denoted Lϕ.
Figure 4 illustrates the knowledge lattice, Lϕ, associated with the experiential
operator, ρ, of Fig. 1. Doignon and Falmange called such lattices “knowledge
spaces” [4]. This idea of knowledge spaces has generated a considerable amount
of psychological literature.3 Ganter and Wille [5] regard a lattice of closed sets
as a “concept lattice”. In both theories the lattice structure is central; for us, it
will be important, but ancillary.

Fig. 4. Closed set lattice, Lϕ, of Fig. 1. Four set differences have been labeled.

A closed set Km in Lϕ is said to cover Ki if Ki ⊂ Km and there exists no
set Kj such that Ki ⊂ Kj ⊂ Km. That is, Km is the next set above Ki in the
lattice.4 We can think of the difference, Km−Ki, as being the skill/experience
set differentiating an individual with knowledge unit Ki from one with Km.
2 If for all closed sets K, there is a unique minimal generating set, the closure operator

is said to be antimatroid. While antimatroid knowledge systems, such as [4,5], are
mathematically most interesting, they seem, in practice, to be most rare.

3 Over 400 references can be found at the web site <cord.hockemeyer@uni-graz.at>.
4 Because U is discrete, there always is a “next” set above Ki in L, unless Ki = U ,

the maximal element.
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In Fig. 4, {gstvwy}−{qst} = {vwy} and {qstvwy}−{stvwy} = {q}. Explicitly
showing the set differences as we have done in 4 instances in Fig. 4 can be an
aid to understanding Proposition 2 which follows.

Proposition 2. If a closed set K covers the closed sets K1, . . . ,Km in Lρ, then
X is a generator of K if and only if X ∩ (K − Ki) �= Ø for all 1 ≤ i ≤ m.

Proof. A rigorous proof can be found in [8], here we present a more intuitive
argument.

A knowledge unit is the smallest closed set containing some set, X, of expe-
riences. Suppose X is a generator of K. Now, if X does not embrace at least one
element from K−Ki then X.ϕ = Ki, not K.

Conversely, Lρ contains a number of knowledge units, Ki, and if X includes
at least one experience that differentiates each one from K, then X must char-
acterize K; it must be a generator. ��

That is, the generators of a knowledge unit are precisely those features which
differentiate it from other knowledge units in the lattice. By Proposition 2, if one
knows the generators of a closed knowledge unit, one knows the closed sets it
covers, and conversely given the lattice of closed sets one can determine all the
generators. It is worthwhile convincing oneself of this unusual result by actual
trial. In Fig. 4, {qstvwy} covers {qst}, {qsy}, {qty}, and {stvwy} with respective
differences being {vwy}, {tvw}, {svw}, and {q}. Using Fig. 1, convince yourself
that both of the sets {qv} and {qw}, each of which intersect all four set differences
are actually generators of {qstvwy}.

Suppose U consists of visual stimuli. If X generates K, a closed set of related
stimuli, constituting a visual object, then X consists of those visual attributes
that characterize the object; and differentiate it from other similar objects, Ki.
On the other hand, if K represents an ability level in high-school algebra, as in [4],
then X represents those skills necessary to advance from lesser sets of algebraic
abilities, Ki to K. Finally, if K represents knowledge of the Napoleonic wars,
then questions embodying the facts found in a generator, X, would comprise an
excellent test of the student’s knowledge. The concept of generators resonates
with many educational themes depending on the network granularity.

Experiential networks are real. The neural networks of the mind are real; our
social networks are real; the related collections of facts we call knowledge are
real. Our rendition of these real networks by ρ may be an over simplification;
but it is an abstract depiction of real phenomena. In contrast, these knowledge
lattices are not real. They have no existential counterpart that we know of.
They are purely a mathematical construct designed to help us understand the
organization and structure of real networks; and in the next section, to help us
understand how their structure can change under dynamic transformation. This
is an important distinction. While in this section, and the next, we may seem to
be fixated on these knowledge lattices. We are really most concerned about the
underlying network of experiential relationships.

Do the concepts of closure and generators correspond to real phenomena?
Even though we have no compelling proof, we believe they do. It seems clear that
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our minds are capable of identifying and labeling, in some fashion, related collec-
tions of experiential input. Several cognitive psychologists have emphasized this
fact. Objects that are linguistic nouns appear to invariably behave as closed con-
cepts, with adjectives often fulfilling the role of generating features. Replacing a
cluster of primitive experiential elements with a single label can optimize neuron
use because it facilitates the internal representation at a coarser granularity. It
seems necessary for “abstract” thought.

Similarly, it seems apparent that the mind, on many levels, apprehends
objects and abstractions of the real world by abbreviated collections of salient
features. This, too, represents an economical use of neurons — which must be
important to all organisms. Whether generators exactly model this phenomenon
is unclear; but surely they represent an abstraction of this capability.

Our imposition of a formal lattice structure as a mathematical device to com-
prehend the organization of experiential networks may be a major contribution
of this paper. In the following sections we will see where this leads us.

5 Transformation as Learning

The notion of transformation is a familiar one in educational psychology; for
example, the process of internalization has been described by the Russian psy-
chologist, Lev Vygotsky, as a “series of transformations” [3]. In this section we
will develop the idea of transformation as a mathematical function. Most of us
are familiar with polynomial functions, which describe numerical change — the
speed of a falling object is a quadratic function of it’s time of flight. But now, we
let a transformation be a function that describes a change of structure. It requires
a different mathematical mind set. It is one reason we use suffix notation.

By a transformation, U
f−→ U ′, we mean a function f which for every set

Y ⊆ U , assigns a set Y.f = Y ′ ⊆ U ′. (We use Y ′ to denote the image of Y in U ′).
Of most interest will be the effect, K.f of transforming closed knowledge units,
and how the transformation will affect their relationship with other knowledge
units, Ki.f . The importance of using a power set as the domain and codomain of
a transformation is that elements can be functionally inserted or removed from
the system. For example, consider the transformation f depicted by Fig. 5 which
adds a completely new element, r, to the network of Fig. 1. That is, Ø.f = {r},
so {y}.f = {ry}, and all closed sets containing q now contain {qr}.

In the mathematics of the real line, the behavior of functions is typically
visualized by the familiar graph plotting the value y = f(x) for all x along
the x-axis. When the function is defined on sets of discrete elements a different
approach must be taken. We prefer to illustrate its behavior by what happens
to the closed set/knowledge lattice. Although f must be defined for all sets,
Y ⊆ U , we use only these closed sets to visualize the process. In Fig. 5 the lower
transformation Lϕ

f∗−→ L′
ϕ′ illustrates its behavior with respect to the knowledge

lattice. This transformation, f , is a classic example of a smooth, well-behaved
lattice morphism.
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Fig. 5. A transformation U
f−→ U ′ that adds a completely new element r′ to the

network of Fig. 1.

A transformation U
f−→ U ′ is said to be monotone if for all sets X,Y in

U , X ⊆ Y implies X.f ⊆ Y.f . Monotonicity is essential throughout the fol-
lowing mathematical approach.5 Observe that the transformation f of Fig. 5 is
monotone, in that Ki ⊆ Km in Lϕ implies Ki.f ⊆ Km.f in L′

ϕ′ .

5.1 Continuous Transformations

In high school we are told that a “continuous” function, f(x), is one whose graph
can be drawn without lifting one’s pencil from the paper. The more precise
definition encountered in real analysis is quite analogous to the definition that
follows.6 A discrete transformation, U

f−→ U ′, is said to be continuous if for
all Y ⊆ U ,

Y.ϕ.f ⊆ Y.f.ϕ′ (2)

This is the traditional definition of continuity for functions on discrete spaces
[9–11,20,21]. Yet this short equation conveys little intuitive sense of its import.
The transformation f of Fig. 5 is continuous; it is “smooth”. Continuity takes
on additional importance when viewed as a function on knowledge lattices.
5 In artificial intelligence (A.I.), learning is said to be “monotonic” if no new piece

of information can invalidate any existing “knowledge” as represented by a set of
rules. That concept of knowledge involves a notion of logical contradiction, not just
the simple inclusion or deletion of experiential input. There is an abundance of
literature about A.I. architectures which support both monotonic and non-monotonic
reasoning [13,17]. Our use of the term is rather different.

6 A real function y = f(x) is said to be continuous if for any open set Oy containing
y, there exists an open set Ox containing x such that f(Ox) ⊆ Oy = Of(x), or using
suffix notation x.O.f ⊆ y.f.O′.
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It effectively asserts that if a learning transformation is continuous, it only
expands the knowledge units of an individuals experiential awareness. That is,
if K = Y.ϕ then K.f ⊆ Y.f.ϕρ′ = K ′.

Before considering more fully what comprises continuous transformations in a
cognitive context it can be valuable to examine the purely formal characteristics
of continuity.

Proposition 3. Let (U,ϕ)
f−→ (U ′, ϕ′), (U ′, ϕ′)

g−→ (U ′′, ϕ′′) be monotone

transformations. If both f and g are continuous, then so is U
f · g−→ U ′′.

Proof. We have X.ϕ.f ⊆ X.f.ϕ′ for any X ∈ U and Y.ϕ′.g ⊆ Y.g.ϕ′′ for any
Y ∈ U ′. Consequently, as g is monotone, X.ϕ.f.g ⊆ X.f.ϕ′.g ⊆ X.f.g.ϕ′′. Thus
f · g is continuous. ��
Proposition 4. Let (U,ϕ)

f−→ (U ′, ϕ′) be monotone, continuous and let Y.f =
Y ′ be closed. Then Y.ϕ.f = Y ′.

Proof. Let Y.f be closed in U ′. Because f is continuous Y.ϕ.f ⊆ Y.f.ϕ′ = Y.f ,
since Y.f is closed. By monotonicity, Y.f ⊆ Y.ϕ.f , so Y.ϕ.f = Y.f . ��
Proposition 5. Let (U,ϕ)

f−→ (U ′, ϕ′) be monotone. Then f is continuous if
and only if X.ϕ = Y.ϕ implies X.f.ϕ′ = Y.f.ϕ′.

Proof. Let f be continuous, and let X.ϕ = Y.ϕ. By monotonicity and conti-
nuity, X.f ⊆ X.ϕ.f = Y.ϕ.f ⊆ Y.f.ϕ′. Similarly, Y.f ⊆ X.f.ϕ′. Since Y.f.ϕ′

is the smallest closed set containing X.f and X.f.ϕ′ is the smallest closed set
containing Y.f , X.f.ϕ′ = Y.f.ϕ′.

Conversely, assume f is not continuous. So there exists Y with Y.ϕ.f �⊆ Y.f.ϕ′

There exists X ∈ Y.ϕ−1. X.f ⊆ X.ϕ.f = Y.ϕ.f �⊆ Y.f.ϕ′, so X.f.ϕ′ �= Y.f.ϕ′,
contradicting the condition. ��
Corollary 1. If (U,ϕ)

f−→ (U ′, ϕ′) is a monotone, continuous transformation
and X generates K (X.ϕ = K) then X.f generates K.f.ϕ′.

Note that even though f is monotone and continuous, and K is closed with
respect to ϕ, K.f need not be closed with respect to ϕ′. However, by Corollary 1,
K.f must be a generating set of K.f.ϕ′.

Continuous transformations are very well-behaved with other demonstrable
properties, c.f. [11]. It is our conjecture that continuous transformations of a
human’s experiential network (as exemplified by ρ) corresponds to our “natural”
reaction to new experience and stimuli. It is an, almost automatic, response to
novel experiences.

5.2 Small Incremental Change

The key to continuous learning is not just exposure to new experience, but how
that new experience is integrated with other related experience. It has been sug-
gested that new experience, new stimuli, is integrated into our memory, or knowl-
edge structure, as we sleep. Apparently this occurs through the creation of new
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axons and synaptic connections [1]. Some researchers believe that the elimination
of connections may be as equally important as creating new ones [19].

It was shown in [14], that if a discontinuity exists, it will manifest itself at a
single experiential event.

Proposition 6. If there exists Y such that Y.ϕ.f �⊆ Y.f.ϕ′ then there exists a
singleton set {y} ⊆ Y.ρ such that {y}.ϕ.f �⊆ {y}.f.ϕ′.

This makes testing for continuity viable.
The following two propositions characterize continuous transformations that

add, or delete, edges/relationships within a network. In both Propositions 7 and
8, we assume that U ′ = U , and that f is the identity function on Lϕ, and that
y′ = {y}.f denotes the same node, but within the new structure of L′

ϕ′ . In the
statement of these propositions we use the term x.η. By Y.η, which we call the
neighborhood of Y , we mean the set Y.η = Y.ρ − Y , that is, the immediate
neighbors of Y with respect to ρ.7

In Proposition 7 we show that new links can be continuously created between
two experiential events x and z if there already exists a reasonably close rela-
tionship. Granovetter [7], and many other sociologists have observed this phe-
nomenon.

Proposition 7. Let U
f−→ U ′ be the identity transformation. If f adds an edge

(x′, z′) to create a network ρ′, it will be continuous at x if and only if for all
y ∈ x.η, if x ∈ y.ϕ then z ∈ y.ρ.

Proof. Assume that ∃y ∈ x.η, x ∈ y.ϕ but z �∈ y.η. Since x ∈ y.ϕ, x.η ⊆ y.ρ.
But, because z �∈ y.η, x′.η′ �⊆ y′.ρ′ and y.ϕ.f �⊆ y.f.ϕ′.

Conversely, assume f is discontinuous. First, we observe that x.ϕ.f ⊆ x.f.ϕ′,
since the addition of an edge (x′, z′) cannot reduce the closure x′.ϕ′. So, f must
be discontinuous at y ∈ x.η; that is, ∃w ∈ y.ϕ such that w′ �∈ y′.ϕ′, because
w′.η �⊆ y′.ρ′. Readily w′ = x′ (or z′). After adding the edge (x′, z′), x′.η′ �⊆ y′.ρ′

only if z′ �∈ y′.η, that is z �∈ y.η. ��
We say f is “discontinuous at x” even though the actual discontinuity may occur
at y ∈ {x}.η ⊆ {x}.ρ as noted in Proposition 6. This slight abuse of terminology
allows us to focus on the structure surrounding the node x before (x′, z′) is
created.

Observe that the creation of the link (t′, v′) in Fig. 6 is continuous because for
{s, w} ⊆ t.ρ, we have t �∈ s.ϕ and t �∈ w.ϕ, so Proposition 7 is satisfied vacuously.

Next we show that a link between two experiential events x and z can be
continuously deleted if they are not too closely connected.

Proposition 8. Let U
f−→ U ′ be the identity transformation. If f deletes an

edge (x, z) from ρ′, it will be discontinuous at x if and only if either
(a) z ∈ x.ϕ and z.ϕ �= x.ϕ or
(b) there exists y ∈ x.ϕ, with z ∈ y.η.

7 Note that the η operator is normally neither expansive nor monotone.
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Proof. Suppose (a), z ∈ x.ϕ. Since (x, z) is being deleted z′ �∈ x′.η′. Conse-
quently, {x}.ϕ.f �⊆ {x′}.f.ϕ′. The last conjunct x.ϕ �= z.ϕ of condition (a)
covers the special case described in [15].

Suppose (b) that ∃y ∈ x.ϕ and z ∈ y.η. {y′} ⊆ x.ϕ.f , but z′ �∈ x′.η′ implies
that y′.η′ �⊆ x′.η′, hence y′ �∈ x′.ϕ′ = x.f.ϕ′. Now, {x}.ϕ.f �⊆ {x}.f.ϕ′, and f is
discontinuous.

Conversely, suppose f is not continuous at x. Then by Proposition 6, either
(1) {x}.ϕ.f �⊆ {x}.f.ϕ′ or (2) for some y ∈ {x}.η, {y}.ϕ.f �⊆ {y}.f.ϕ′.

Assume the former, then ∃ some w ∈ {x}.ϕ such that w′ = w.f �∈ {x}.f.ϕ′.
Since (x, z) is the only edge being deleted, w must be z.

Now assume the latter. If y ∈ {x}.ϕ then y.η ⊆ x.ρ. If z �∈ y.η then {y}.ϕ.f ⊆
{y}.f.ϕ′; but f is assumed to be discontinuous, so z ∈ y.η. ��

Fig. 6. A transformation g that adds a new connection (t′, v′) to the network of Fig. 1.

In Fig. 6, consider the inverse function, g−1 which removes the edge (t′, v′).
By Proposition 8, it is not continuous because s′ ∈ t′.ϕ′ and v′ ∈ s′.η′ satisfying
condition (b) for discontinuity. We can verify the discontinuity, because t′ϕ′ =
{s′t′} in L′, so t′.ϕ′.g−1 = {st} �⊆ {t} = {t′}.g−1.ϕ.

If f and g are both continuous single edge additions or deletions, then by
Proposition 3, their composition f · g is as well. It would be mathematically
satisfying, if conversely every continuous restructuring of ρ could be decomposed
into primitive single edge transformations; but in [14], it is shown that this need
not be true.

6 Summary

Our goal has been to explore whether properties of closure operators and closed
set systems can be relevant to modeling cognitive processes. We have presented ρ
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as an experiential operator. We have considered closed sets as units of knowledge
that can be characterized by their generators and partially ordered to form a
knowledge lattice We have couched learning in terms of transformations.

Proposition 8 provides necessary and sufficient conditions for a specific kind
of transformation which removes a link in a relationship to be continuous. It
seems to be a widely held contention that learning involves the acquisition of
more experiences and more data. In early childhood when our neural capabilities
are growing this would seem so. But, even at an early age, children appear to
be condensing raw stimuli into abstract identifiable concepts. In the process of
learning, deletion seems to be as valuable as addition. In many forms of autism,
it is the inability to delete and control an overload of raw sensory images that
is problematic.

We believe we have demonstrated that an approach to network comprehen-
sion based on closed sets and continuous transformation can be a potentially
valuable tool for modeling cognitive behavior. It will certainly take further refine-
ment, including consideration of multiple experiential relationships, and consid-
erable experimental testing to validate that claim.
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