Order in the Black Box: Consistency
and Robustness of Hidden Neuron
Activation of Feed Forward Neural
Networks and Its Use in Efficient
Optimization of Network Structure

Sandhya Samarasinghe

Abstract Neural networks are widely used for nonlinear pattern recognition and
regression. However, they are considered as black boxes due to lack of transparency
of internal workings and lack of direct relevance of its structure to the problem
being addressed making it difficult to gain insights. Furthermore, structure of a
neural network requires optimization which is still a challenge. Many existing
structure optimization approaches require either extensive multi-stage pruning or
setting subjective thresholds for pruning parameters. The knowledge of any internal
consistency in the behavior of neurons could help develop simpler, systematic and
more efficient approaches to optimise network structure. This chapter addresses in
detail the issue of internal consistency in relation to redundancy and robustness of
network structure of feed forward networks (3-layer) that are widely used for
nonlinear regression. It first investigates if there is a recognizable consistency in
neuron activation patterns under all conditions of network operation such as noise
and initial weights. If such consistency exists, it points to a recognizable optimum
network structure for given data. The results show that such pattern does exist and it
is most clearly evident not at the level of hidden neuron activation but hidden
neuron input to the output neuron (i.e., weighted hidden neuron activation). It is
shown that when a network has more than the optimum number of hidden neurons,
the redundant neurons form clearly distinguishable correlated patterns of their
weighted outputs. This correlation structure is exploited to extract the required
number of neurons using correlation distance based self organising maps that are
clustered using Ward clustering that optimally cluster correlated weighted hidden
neuron activity patterns without any user defined criteria or thresholds, thus auto-
matically optimizing network structure in one step. The number of Ward clusters on
the SOM is the required optimum number of neurons. The SOM/Ward based
optimum network is compared with that obtained using two documented pruning
methods: optimal brain damage and variance nullity measure to show the efficacy of
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the correlation approach in providing equivalent results. Also, the robustness of the
network with optimum structure is tested against perturbation of weights and
confidence intervals for weights are illustrated. Finally, the approach is tested on
two practical problems involving a breast cancer diagnostic system and river flow
forecasting.

Keywords Feed-forward neural networks - Structure optimization - Correlated
neuron activity - Self organizing maps - Ward clustering

1 Introduction

Feed forward neural networks are the most powerful and most popular neural
network for nonlinear regression [1]. A neural network with enough parameters can
approximate any nonlinear function to any degree of accuracy due to the collective
operation of flexible nonlinear transfer functions in the network. However, neural
networks are still treated as black boxes due to lack of transparency in the internal
operation of networks. Since a neural network typically is a highly nonlinear
function consisting of a number of elementary functions, it is difficult to summarize
the relationship between the dependent and independent variables in a way similar
to, for instance, statistical regression where the relationships are expressed in a
simple and meaningful way that builds confidence in the model. In these statistical
models, coefficients or model parameters can be tested for significance and indicate
directly the strength of relationships in the phenomena being modeled. Although
neural networks are used extensively and they can provide very accurate predic-
tions, without internal transparency, it is not easy to ensure that a network has
captured all the essential relationships in the data in the simplest possible structure
in classification or function approximation. Therefore, it is vital for the advance-
ment of these networks that their internal structure is studied systematically and
thoroughly. Furthermore, the validity and accuracy of phenomena they represent
need thorough assessment. Additionally, any consistency in the activation of neu-
rons can reveal possibilities for efficient optimization of the structure of neural
networks.

2  Objectives

The goal of this Chapter is to address in detail the issue of internal consistency in
relation to robustness of network structure of feed forward (multiplayer perceptron)
networks. Specifically, it has the following objectives:
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e To investigate if there is a recognizable pattern of activation of neurons that
reveals the required complexity and is invariable under all conditions of network
operation such as noise and initial weights.

e To investigate the possibility of efficient optimization of structure (i.e., by
pruning) based on internal consistency of neuron activations in comparison to
existing structure optimization methods, such as, optimal brain damage and
variance nullity measure.

e Apply the above structure optimization approach to multi-dimensional data and
practical real-life problems to test its efficacy.

e To test the robustness of a network with the optimum structure against pertur-
bation of weights and develop confidence intervals for weights.

3 Background

Feed forward networks have been applied extensively in many fields. However, little
effort has gone into systematic investigation of parameters or weights of neural
networks and their inter-relationships. Much effort has been expended on resolving
bias variance dilemma (under- or over- fitting) [2] and pruning networks [1, 3-9]. In
these approaches, the objective is to obtain the optimum or best possible model that
provides the greatest accuracy based on either the magnitude of weights or sensitivity.

A network that under-fits, lacks nonlinear processing power and can be easily
corrected by adding more hidden neurons. Over-fitting is more complex and occurs
when the network has too much flexibility. Two popular methods for resolving
over-fitting are early stopping (or stopped search) and regularization (or weight
decay) [10]. In early stopping, a network with larger than optimum structure is
trained and excessive growth of its weights is prevented by stopping training early
at the point where the mean square error on an independent test set reaches a
minimum. Regularization is a method proposed to keep the weights from getting
large by minimizing the sum of square weights in the error criterion along with the
sum of square error. Pruning methods such as optimal brain damage [5-7] and
variance nullity measure [8] make use of this knowledge to remove less important
weights. However, they do not reveal if there is a pattern to the formation of
weights in networks in general and if they are internally consistent, unique, and
robust.

Aires et al. [11-13] in addressing the complexity of internal structure of net-
works have shown that de-correlated inputs (and outputs) result in networks that are
smaller in size and simpler to optimize. This was confirmed by Warner and Prasad
[14]. In addressing uncertainty of network output, Rivals and Personnaz [15]
constructed confidence intervals for neural networks based on least squares esti-
mation. However, these studies do not address the relationships of weights within a
network due to sub-optimum network complexity and uncertainty of response of
the simplest structure.
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Teoh et al. [16] proposes singular value decomposition (SVD) of hidden neuron
activation to determine correlated neuron activations in order to optimize network
structure. It is a step toward meaningful investigation into hidden neuron activation
space; however, as authors point out, the method requires heuristic judgment in
determining the optimum number of neurons. Furthermore, our research, as will be
presented in this chapter, revealed that the most meaningful patterns are found not
in the hidden neuron activation space but in the weighted hidden neuron activation
feeding the output neuron. Xian et al. [17] used an approach based on the
knowledge of the shape of the target function to optimize network structure, which
is only possible for 2- or 3-dimensional data as target function shape cannot be
ascertained easily for high-dimensional data. Genetic and evolutionary algorithms
[18, 19] have also been used for identifying network structure, but they typically
involve time consuming search in large areas in the weight space and rely on
minimum insight from the operation of a network compared to other approaches to
network structure optimisation.

In this Chapter, a systematic and rigorous investigation of the internal structure
and weight formation of feed forward networks is conducted in detail to find out if
there is a coherent pattern to weights formation that reveals the optimum structure
of a network that can be easily extracted based on such knowledge. We also greatly
expand our previous work presented in [20] for structure optimization.

4 Methodology

A one-dimensional nonlinear function shown in Fig. la (solid line) is selected for

simplicity of study and interpretation of the formation of weights in detail. This has
the form

P 03Sinx Ifx<O0 (1)

o Sinx  otherwise

A total of 45 observations were extracted from this function depicted by the solid
line in Fig. 1 and these were modified further by adding a random noise generated
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Fig. 1 Data and the model: a Target data generator and noisy data (random sample 1) generated
from it and b network with redundant neurons [1]
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from a Gaussian distribution with 0 mean and standard deviation of 0.25 as depicted
by dots in Fig. 1. It is worth noting that the size of the extracted data set was
purposely kept relatively small with a reasonably large amount of noise to
approximate a real situation and to test the robustness of networks rigorously. Also,
the fact that the target data generator is known helps assess how the network
approaches the data generator through the cloud of rather noisy data.

This data pattern requires 2 neurons to model the regions of inflection. A larger
network of 4 hidden neurons, as shown in Fig. 1b is, therefore, used for the purpose
of investigation. In this network, the hidden neuron activation functions are logistic,
output neuron is linear, the bias and input-hidden layer neuron weights are depicted
by ag; and aj;, respectively, and hidden-output weights and the corresponding bias
are denoted by b; and by, respectively. The network is extensively studied in the
following sections for patterns of hidden neuron activation as well as robustness of
activation patterns and its potential for structure optimization.

5 Consistency of Network Weights

5.1 Consistency with Respect to Initial Weights

It is desirable that there is just one minimal and consistent set of weights that
produces the global minimum error on the error surface and that the network
reaches that global optimum regardless of the initial conditions. The data set was
randomly divided into 3 sets: training, test and validation, each consisting of 15
observations. The network was trained with the training set based on
Levenberg-Marquardt method [1] on Neural Networks for Mathematica [21] and
test set was used to prevent over-fitting based on early stopping.
(Levenberg-Marquardt is a second order error minimization method that uses the
gradient as well as the curvature of the error surface in weight adaptation).

Since the network has excessive weights, it is expected that it will experience
over-fitting unless training is stopped early. The performance of the optimum
network (validation root mean square error RMSE = 0.318) obtained from early
stopping is shown in Fig. 2a (solid line) along with the target pattern (dashed line)
and training data. It shows that the network generalizes well. The performance of
the over-fitted network that underwent complete training until the training error
reached a minimum is illustrated in Fig. 2b. Here, the network fits noise as well due
to too much flexibility resulting in over-fitting caused by large magnitude weights.
The network has 13 weights and their updates during the first 10 epochs are shown
in Fig. 2c. Over-fitting sets in at epoch 2. Two weights that increase drastically are
two hidden-output weights.
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Fig. 2 Network performance: a Optimum network performance (solid line) plotted with the target
data generator (dashed line) and training data, b over-fitted network performance and ¢ Evolution
of weights during training [1]

The experiment was repeated twice more with two different random weight
initializations. The optimum networks for these two cases produced similar outputs
to that shown in Fig. 2a with validation RMSE of 0.364 and 0.299, respectively.
However, the first case produced over-fitting with complete training similar to the
first weight initialization but the other did not although there were excessive
weights. A closer inspection of the evolution of weights for the latter
non-overfitting case revealed that 4 of the 13 weights in fact grew to large values
after reaching the optimum similar to that shown in Fig. 2c. However, these appear
to have pushed the network to operate in the saturated region of the activation
functions thereby not affecting the network performance.

Are the optimum weights in these three cases similar? Figure 3a shows the 8
input-hidden neuron weights (ag;, a1, g2, a12, 403, 413, and agy, a14) denoted by 1,
2,3,4,5, 6,7 and 8, respectively, for the three weight initializations and Fig. 3b
shows the 5 hidden-output weights (bg, by, by, bs, by) denoted by 1, 2, 3, 4 and 5,
respectively. These show that the values for an individual weight as well as the
overall pattern across all the weights for the three weight initializations are gen-
erally dissimilar. In Fig. 3, the network that did not over-fit was for initialization 3.
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Fig. 3 Parallel plots of magnitude of input-hid weights
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5.2 Consistency of Weights with Respect to Random
Sampling

A good model must be robust against chance variations in representative samples
extracted from the same population. The effect of random sampling on weight
structure was tested by training the same network as in Fig. 1b along with the very
first set of random initial weights (Init-1 in the previous section) on two more
random data sets extracted from the original target function in Fig. la. These new
datasets are labeled random samples 2 and 3 and the original sample used in the
previous section is labeled random sample 1. The optimum network output for
sample 2 was similar to that for sample 1 shown in Fig. 2a and had a validation
RMSE of 0.270 and produced over-fitting with complete training. Results for
sample 3 were interesting in that there was no over-fitting at all with complete
training and the weight evolution for this case revealed that weight remained
constant after reaching the optimum. The validation RMSE for this case was 0.32.
This is natural control of over-fitting by the data and as Siestma and Dow [22] also
illustrated, training with properly distributed noise can improve generalization
ability of networks.

In order to find out if there is a pattern to the final structure of optimum weights,
these are plotted (along with those for the very initial random sample 1 used in the
previous section) for comparison in Fig. 4a, b. Here, the weights for random sample
3 stand out in Fig. 4b. Comparison of Figs. 3 and 4 indicate that there is no con-
sistency in the network at this level. However, both non-over-fitted networks- one in
Fig. 4b (sample 3) and the other in Fig. 3b (Init-3)-have similar hidden-output weight
patterns.
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Fig. 4 Final optimum weight structure after training with three random samples: a input-hidden
weights and b hidden-output neuron weights

6 Consistency of Hidden Neuron Activation

Since the weights in Figs. 3 and 4 do not provide any clues as to the existence of an
internally consistent pattern, we next explore hidden neuron activation. Activation
yj for each neuron j is a nonlinear transformation of the weighted sum of inputs:

1

Vi :f(a()_, +aljx) = m

)

The hidden neuron activations for the previous three cases of weight initial-
ization are shown in Fig. 5 as a function of the input x. The Figure reveals an
interesting effect. Although actual weights are not identical for the three cases,
hidden neuron activations follow some identifiable patterns. For example, the first
two cases that produced over-fitting, have a similar pattern of hidden neuron
activation whereas the third case that did not produce over-fitting has a unique
pattern with only partial similarity to the previous two cases [1].

In the first two cases of weight initialization, early stopping was required to
prevent over-fitting. For these, all four activation functions are strongly active in the
range of inputs, as indicated by their slopes at the boundary point where the
activation y is equal to 0.5, and an external measure is required to suppress their
activity. In the third case with no over-fitting however, two of the neurons (solid
lines) have low activity and these do not contribute greatly to the output.

Careful observation of Fig. 5 reveals that in the first two cases, there appear to be
two sets of neurons each consisting of two neurons of similar activity that could
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Fig. 5 Activation functions for the 4 hidden neurons for the three weight initializations for
random sample 1: a Init-1, b Init-2 and ¢ Init-3 (no-over-fitting)
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Fig. 6 Hidden neuron function for random samples: a sample 2, b sample 3 (no over-fitting)

intuitively be interpreted as evidence for redundancy. However, in the third case
where there was no over-fitting, there still seem to be two sets of neurons with
similar activation but the situation is not so clear. For the case of random sampling,
hidden neuron activation patterns for the two networks created from random
samples 2 and 3 are shown in Fig. 6. (The patterns for random sample 1 are shown
in Fig. 5a).

The activation pattern for sample 3 in Fig. 6b did not produce over-fitting;
however, interestingly, this pattern is similar to that for sample 1 which resulted in
over-fitting (Fig. 5a, b). Furthermore, now there is a totally new activation pattern
for random sample 2 (Fig. 6a) with activation of 3 neurons having a positive slope
and one having a negative slope.

Thus, for the six trials (3 weight initializations and 3 random samples), there are
3 distinct activation patterns. In two trial cases, networks did not over-fit but their
activation patterns are dissimilar. As for the search for internally consistent weights
or activations, there is still ambiguity.

7 Consistency of Activation of Persistent Neurons

It is known that the target data generator used in this study (Fig. 1) requires 2
hidden neurons. The experiment so far indicates that in some cases, there is a
persistent 2-neuron structure, such as that in Figs. 5a, b and 6b. In order to confirm
if the ones that are persistent point to the optimum, a network with two hidden
neurons was tested on the random data sample 1 and with 3 random weight ini-
tializations. None of the networks over-fitted even after full training, as expected,
since this is the optimum number of neurons. The network produces a closer
agreement with the target function and data, similar to that shown in Fig. 2a.
However, the hidden neuron functions for the 3 trials produced 3 quite different
patterns as shown in Fig. 7.

Figure 7 displays the main features of all previous networks, e.g., activation
functions can be all positive, all negative or a combination of positive and negative
slopes- and still produce the optimum final output. The figure shows that the
optimum network does not have a unique pattern of activation of neurons and still
produces the correct output. In order to test the optimality of the two-neuron
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Fig. 7 Hidden neuron activations for the optimum 2-neuron network for 3 random weight
initializations for random sample 1

network, another neuron was added and the network trained. This case resulted in a
mild form of over-fitting and required early stopping to stop training at the optimum
weights. Hidden neuron activation patterns were generally similar to Fig. 5a, b (i.e.,
2 functions had negative slope and one had positive slope).

Since the results so far has not yet pointed to a structure that is internally
consistent and robust, we next explore hidden neuron contribution to output
generation.

8 Internal Consistency of Hidden Neuron Contribution
to Output

Contribution of each neuron j to output generation is its weighted activation:
Yweighted; = yjbj (3)

where y; is output of hidden neuron j and b; is the corresponding weight linking
neuron j with the output. Returning to our original 4-neuron network, these
weighted activation patterns for the first three random weight initializations are
presented in Fig. 8.

The plots in Fig. 8 reveal a pattern that is consistent. In each plot, there is one
dominant weighted activation pattern with a negative slope. In Fig. 8b, c, the other
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Fig. 8 Weighted hidden neuron activation and correlation matrices for the three random weight
initializations for random sample 1: a Initialization 1, b Initialization 2, and ¢ Initialization 3
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three patterns are almost parallel to each other. The patterns that are parallel indicate
redundancy. In Fig. 8a also, this pattern is obvious but to a lesser extent. These
observations for the weighted hidden neuron activation are quite convincing and
persistent compared to those observed for the hidden neuron activation in Figs. 5, 6
and 7.

The activation patterns that are parallel can be identified by their strong corre-
lation. This way, it should be possible to eliminate redundant neurons. The cor-
relation matrix for the 3 sets of weighted hidden neuron activation plots are
presented below each figure in Fig. 8. The correlation matrices for Fig. 8a, c clearly
indicate that neurons 1, 2 and 4 are very highly correlated and all these are inversely
correlated with neuron 3 activity. In matrix for Fig. 8b, neurons 1, 2, and 3 are
highly correlated and they are inversely correlated with neuron 4 activity. The fact
that the correlation coefficients are strong indicate consistency and resilience of the
activation patterns. Highly correlated patterns can be replaced by a single repre-
sentative, leaving two neurons for the optimum network as required. Furthermore,
correlation confirms that the optimum network has one neuron with positive
weighted activation and another with negative activation for all 3 weight
initializations.

The weighted activation patterns and correlations for the network trained with
different random samples (samples 2 and 3) are shown in Fig. 9. Results for sample
1 is in Fig. 8a.

Analogous to Fig. 8, highly correlated structure of weighted hidden neuron
activation patterns for random samples 2 and 3 is evidenced in Fig. 9 where the left
image indicates that neurons 1 and 3 as well as neurons 2 and 4 are highly cor-
related in an opposite sense. The right image indicates that neurons 1, 2, and 4 are
highly correlated with each other and inversely correlated with neuron 3. By
replacing the correlated neurons with a representative, an optimum 2-neuron
structure is obtained for both these cases.

The above experiment was conducted for 5- and 3-neuron networks with early
stopping and results are presented in Fig. 10.
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Fig. 9 Weighted hidden neuron activation for the random data samples 2 and 3 and corresponding
correlation matrices
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Fig. 10 Weighted hidden neuron activation of a 3-neuron a and 5-neuron b networks and
corresponding correlation matrices

Figure 10 illustrate convincingly that the redundant neurons can be identified by
their high correlation. By removing redundant neurons, both networks are left with
2 (optimum number) of neurons.

In summary, the network attains a consistent pattern of weighted hidden neuron
activation for this data regardless of the number of hidden neurons, initial weights
and random data samples. By replacing highly correlated neurons with similar sign
(+ or —) with a single representative, the optimum structure for this example can be
obtained with certainty. In what follows, the robustness of weights and hidden
neuron activation patterns is further investigated by examining the results obtained
from regularization.

9 Internal Structure of Weights Obtained
from Regularization

Regularization is another method used to reduce the complexity of a network
directly by penalizing excessive weight growth [10]. The amount of regularization
is controlled by the parameter 6 shown in Eq. 4 where MSE is the mean square error
and wj is a weight in the total set of m weights in the network. In regularization, W
is minimized during training.

W =MSE+3Y w (4)

Jj=1

The user must find the optimum regularization parameter through trial and error.
Too large a parameter exerts too much control on weight growth and too small a
value allows too much growth. In this investigation, the original four-neuron
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Fig. 11 Comparison of accuracy of networks with weights optimized from regularization and
early stopping [1]

network in Fig. 1b with the first set of random initial weights used earlier (Init-1 in
Fig. 3) was trained on random sample 1 shown in Fig. la. Three regularization
parameters, 0.0001, 0.001 and 0.02, were tested. For the first two values, weights
initially grew and then dropped to optimum values and from then on they remained
constant. For these, the network followed the target pattern closely but the smallest
regularization parameter of 0.0001 resulted in the smallest validation MSE of 0.276
which is smaller than that obtained from early stopping (MSE = 0.318). With the
parameter value of 0.001, MSE is similar to that obtained from early stopping. For
the largest chosen parameter of 0.02, however, weights are controlled too much and
therefore, they are not allowed to reach optimum values. In this case, the network
performance was very poor.

The experiment was continued further and Fig. 11 shows RMSE for various
values of regularization parameter. The horizontal line indicates the RMSE obtained
from early stopping. The figure indicates that for this example, regularization can
produce networks with greater accuracy than early stopping. However, considering
the trial and error nature of regularization, early stopping is efficient. Furthermore,
Fig. 11 highlights the sensitivity of RMSE to regularization parameter beyond a
certain value.

9.1 Consistency of Weighted Hidden Neuron Activation
of Networks Obtained from Regularization

The hidden neuron activations for the two regularization parameters (0.0001 and
0.001) that produced smaller than or similar validation MSE to early stopping are
plotted in Fig. 12. They illustrate again that the correlation structure as well as the
2-neuron optimum structure identified in the previous investigations remain
persistent.



28 S. Samarasinghe

(a) y—weighted (b) y-weighted

; — Neu- 1 6 — Neu-1
1 ---Neu-2 4 -~ Neu-2
T X Neu- 3 2 Neu-3
Neu- 4 X Neu- 4

1 —0.999 —0.768 0.959 1 —0.993 — 0961 0976

—-0999 1 0.830 —0.977 || —0993 1 0.949 — 0.950

—-0.768 0830 1 — 0.854 —-0961 0949 1 —0.969

0.959 — 0977 —0.854 1 0976 —0.950 —0.969 1

Fig. 12 Weighted hidden neuron activations for regularization parameters 0.0001 a and 0.001
b and corresponding correlation matrices

10 Identification of Correlated Weighted Hidden Neuron
Activations Using Self Organizing Maps

Previous sections demonstrated that the redundant neurons can be identified by the
correlation of their weighted neuron activations. It is useful, if these can be iden-
tified automatically. In this section, SOM is used to efficiently cluster similar
activation patterns. Such approach would be especially useful for larger networks.
An input vector to SOM contains weighted hidden neuron activation (b;y;) for each
neuron over the input data. Input vectors were normalized to 0 mean and unit
standard deviation and the correlation distance was used as the distance measure
[1]. The normalized activation patterns for each network presented so far were
mapped to a 2-dimensional SOM [23] (4 neuron map) and the most efficient
number of clusters was determined by the Ward clustering [24] of SOM neurons.
Ward is an efficient statistical clustering method suitable and effective for relatively
small datasets. Figure 13 presents the results for only two networks, one with 4
neurons that was depicted as random weight initialization 2 in Fig. 8b and the other
with 5 neurons presented in Fig. 10b. Maps were trained very quickly with default
parameter settings of the program [21] indicating the efficiency of clustering highly
correlated patterns.

The top two images in Fig. 13 are graphs of Ward likelihood index (vertical axis)
against likely number of clusters. The higher the index, more likely that the corre-
sponding number of clusters is the optimum. These images reveal that undoubtedly
there are two clusters of activation patterns. The index for other possible cluster sizes
is almost zero, which increases the confidence in the two-cluster structure. The
bottom images of Fig. 13 show these two clusters on the corresponding SOMs. Here,
the two clusters are depicted by brown and black colors, respectively. For example,
in the bottom left image, one clusters has 3 correlated patterns distributed in two
neurons and the other cluster has one pattern, whereas, in the bottom right image,
depicting a 5 neuron network, 2 patterns are grouped into the cluster depicted by the
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Fig. 13 Self organizing map/Ward clustering of correlated weighted hidden neuron activation
patterns. a 4-neuron network and b 5 neuron network

top left neuron and the other three patterns are spread among the bottom two neurons
that form the second cluster. The optimum network structure is obtained by selecting
one representative from each cluster and then retraining the network. Similar
two-cluster neuron maps were found for all the networks presented previously
revealing that, for this example, networks maintain consistent patterns in their
internal structure at the level of weighted hidden neuron activation feeding the
output neuron. Importantly, the network structure is optimized in one iteration of
clustering correlated hidden neuron activation patterns.

11 Ability of the Network to Capture Intrinsic
Characteristics of the Data Generating Process

A good model not only should follow the target data but also must capture the
underlying characteristics of the data generating process. These can be represented
by first and higher order derivative of the generating process. When a network
model converges towards the target function, all the derivatives of the network must
also converge towards the derivatives of the underlying target function [25, 26].
A new network with two hidden neurons (7 weights in total) was trained and its
weighted hidden neuron activation patterns are shown in Fig. 14a that highlights the
features already described. The network model is given in Eq. 5 and its first and
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Fig. 14 Optimum network characteristics: a weighted hidden neuron activations b and ¢ gradient
and second derivative (solid line), respectively, of network function superimposed on the
corresponding values for the target data generator function (dashed line)

second derivatives are superimposed on those of the target function in Fig. 14b, c.
They show that, notwithstanding the small sample size and large noise, both
derivatives follow the corresponding trends in the target function reasonably well
indicating that the trained network is a true representation of the data generating
process and can be used for gaining further insight into the process such as sen-
sitivities and errors as well as for further ascertaining the robustness of the weights.

4.34 9.23
1+ 1.25¢7127%  142.65¢037«

=091+ (5)

12 Comparison of Correlation Approach with Other
Network Pruning Methods

Since it is clear in all the previous experiments that redundant neurons in too
flexible networks form highly correlated weighted hidden neuron activation pat-
terns, it is interesting to find out if other pruning methods identify the neurons with
the most consistent patterns and prune the redundant ones. A notable feature of the
commonly used pruning methods is that they optimize the structure iteratively and
require a certain amount of heuristic judgment. In what follows, two pruning
methods, Optimal Brain Damage (OBD) [5-7] and Variance Nullity measure
(VN) [8] are implemented and compared with the proposed correlation method.

12.1 Network Pruning with Optimum Brain Damage (OBD)

In OBD [5-7], weights that are not important for input-output mapping are found and
removed. This is based on a saliency measure of a weight, as given in Eq. 6, that is an
indication of the cost of setting it to zero. The larger the s;, the greater the influence of
w; on error. It is computed from the Hessian (H) which is the matrix containing the
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second derivative of error with respect to a pair of weights in the network. This matrix
is used in error minimization and weight update by the Levenberg Marquardt method
[1]. Since Hessian is nonlocal and computationally intensive, an approximation is
used by utilizing only the diagonal entries (H;;) of the Hessian matrix.

Si :H”le/z (6)

The original 4 neuron network (Fig. 1b) with the first set of initial weights
(Init-1) that was trained using a regularization parameter of 0.0001 on the random
sample 1 (Fig. 1a) was pruned using saliency measure of the weights. The network
was pruned in stages. In the first stage, 5 (or 40 %) of the 13 weights were pruned
and the reduced network that retained neurons 2, 3, and 4 was re-trained. The
network was further subjected to pruning in the next stage and 2 more weights were
removed resulting in a total removal of 7 or (54 %) of the weights from the original
network. What remained were neurons 2 and 3 with bias on neuron 2 eliminated
leaving 6 weights in the optimum network. The 2 weighted hidden neuron acti-
vations for the retrained network are plotted in Fig. 15 by a solid line and a dashed
line. (The other set will be discussed shortly). These resemble those of neuron 2 and
3 of the full network in Fig. 8a indicating that the OBD has identified and removed
the redundant neurons.

The network performs similarly to that shown in Fig. 2a. Any further pruning
resulted in severe loss of accuracy and therefore, the above network was the
optimum network obtained from OBD. The output z of the pruned network is [1]

2.63 5.86
=536 7
¢ e T 17034509 )

Equations 5 and 7 are not identical as the network obtained from the proposed
correlation method has all 7 weights associated with the hidden and output neurons
whereas the one from OBD has only 6 weights. This also reveals that the network
can still have redundant bias weights. If a set of weights that are invariant is desired,
these redundant weights can be pruned with potentially one extra weight pruning
step applied to the trained network with the optimum number of neurons.

Fig. 15 Weighted hidden y-weighted
neuron activation patterns for -
networks pruned by OBD and - == 5 —— Neuron 2
Variance nullity S~ | Neuron 3
41>
~
3 N
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12.2 Network Pruning Based on Variance of Network
Sensitivity

In this section, the same original network used in the previous section is pruned
using a very different method- variance analysis of the sensitivity of the output of
the network to perturbation of weights- as proposed by Engelbrecht [8]. Variance
nullity (VN) measure tests whether the variance of the sensitivity of network output
over all input-output patterns is significantly different from zero. It is based on a
hypothesis test using x* (chi square) distribution to test statistically if the parameter
should be pruned. If the sensitivity with respect to a parameter is denoted by Sy
then the variance of the sensitivity for N patterns can be expressed as

2
(Sgi - :uS() )

i=1
O’g‘“ = # (8)

M=

where |igg is the mean sensitivity. This is used to obtain an expression for a variance
nullity measure 7y, that indicates the relevance of a parameter as

yo= TN s ©

0%

where 67 is a value close to zero. The hypothesis that the variance is close to zero is
tested for each parameter 6 with the null and alternative hypotheses of

H, : 0'259 = 620
) 5 (10)
Hy:079<07

Under the null hypothesis, v follows a x> (N-1) where N-1 is the degree of
freedom. A parameter is removed if the alternative hypothesis is accepted with the
condition y, <. where vy, is a critical x> value obtained from Ve = Xlz\l—l.(l— 2/2)"
The a is the level of significance which specifies the acceptable level of incorrectly
rejecting null hypothesis. Smaller values result in a stricter pruning algorithm.

The success of the algorithm depends on the value chosen for 020. If it is too
small, no parameter is pruned. If too large, even relevant parameters will be pruned.
Thus, some trial and error is necessary. The method was applied to the original
4-neuron network described in this chapter with an initial value of 0.01 for %, at
0.05 significance level. Only one weight was targeted for pruning. When it was
increased to 0.1, all six weights associated with neurons 1 and 4 became targets for
pruning leaving those for neurons 2 and 3, that are the required neurons, with all 7
corresponding weights. This outcome, in terms of exactly which neurons remain, is
similar to that obtained from OBD in the previous section and in both these cases,
variance nullity and OBD, considerable subjective judgment is required in setting
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Fig. 16 The pruned network based on correlated activity patterns plotted with networks pruned by
OBD and variance nullity and the target function

up the parameters. The weighted hidden neuron activations for the retrained net-
work obtained from variance nullity method are plotted in Fig. 15b indicating that
the two methods produce almost identical activation patterns. The corresponding
plot for the network obtained from the correlation method was shown in Fig. 14a.
Here the shape of the patterns are the same as those for VN and OBD based
networks; however, since the initial weights are different in this case, one activation
pattern has shifted vertically but this effect is offset by the larger bias weight (0.91
in Eq. 5) on the output neuron when the final output is produced. The important
point is that the slopes and trends of the patterns are identical for the 3 methods.
The final network output from variance nullity based weight pruning is

248 5.38
= -5.09 11
‘ - 1+1.57¢ 199~ + 1+0.235 ¢0-465x (11)

which is very similar to that obtained from OBD (Eq. 7). Reason why Eqs. 7 and 11
are similar is that both of them were retrained with the same set of original initial
weights that remained on the network after pruning. In the network obtained from
the correlation method, new initial weights were used as only one representative
from each cluster was used. The three network outputs are superimposed on the
target function in Fig. 16.

Figure 16 reveals that the performance of the two full networks with 7 weights
obtained from the proposed method and variance nullity method is closer to the
target function than that with 6 weights obtained from OBD. The validation RMSE
from the proposed correlation method, variance nullity and OBD were, 0.272, 0.272
and 0.285, respectively. However, the proposed method is more efficient and does
not require heuristic judgment as in OBD and Variance Nullity. This point applies
to other past approaches for structure optimization, such as singular value
decomposition as well. The validation RMSE for the correlation based network
(0.272) is slightly smaller than that for the best full networks obtained from reg-
ularization (0.276) and early stopping (0.318).
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13 Robustness and Uncertainty of Networks

13.1 Robustness

The fact that the optimum networks do not match the target pattern perfectly is due
to the large noise deliberately added to the data generated from the true function.
The noise allows a number of possible outputs that follow the target function
closely. Smaller the noise, the tighter the band around the target function within
which output of various optimum networks can lie. In order to test this interval,
optimum weights were perturbed by randomly adding noise from a Gaussian dis-
tribution with O mean and standard deviations of 0.01, 0.05, 0.1, to 0.2. Thus there
were 4 sets of weights. The network output for these 4 sets of weights showed that
the weights are robust against variations up to 0.1 standard deviation which is
equivalent to £30 % random perturbation of the weights. The 0.2 standard deviation
representing +60 % random perturbations was detrimental to the network perfor-
mance (see p. 238 of [1]).

13.2 Confidence Interval for Weights

Since the weights are robust against perturbation of at least up to £30 %, confidence
intervals for weights were developed for a noise level of £15 % (noise standard
deviation of 0.05). Ten sets of weights, each representing a network, were drawn by
superimposing noise on the optimum weights of the network obtained from the
proposed approach based on correlation of weighted hidden neuron activation.
Confidence intervals were constructed using methods of statistical inference based
on sampling distribution as:

Sy
Vn

where W is the mean value of a weight, s,, is the standard deviation of that weight,
and n is the sample size. In this case, we have 10 observations. The t | is the
t-value from the t-distribution for (1-a)) confidence level and degree of freedom (dof)
of n-1. The 95 %confidence intervals were constructed for each of the 7 weights and
the resulting 95 % Confidence Intervals (CIs) for the network performance are
plotted in Fig. 17a with the two solid lines depicting upper and lower limits. In this
figure, the smaller dashed line represents the mean and larger dashed line is the
target function.

In order to assess all the models developed so far, network outputs from 4
random weight initializations using the proposed method involving correlation of
weighted hidden neuron activations were superimposed along with outputs from
OBD and variance nullity (6 curves altogether) on the above confidence interval

(1 - OC)CI =w :l:[o:.,nfl (12)
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Fig. 17 Confidence Interval (CI) bands and comparison of optimum networks: a Mean and 95 %
confidence interval limits for the correlation based network and b optimum network performance
from the 3 methods superimposed on the Cls

plots containing the original data. The results are shown in Fig. 17b that illustrates
that that all models are within the confidence limits for the entire range of the data
and covers most of the target function (larger dashed line). The target function is the
combination of two functions (Eq. 1 and also see Fig. 14b) and all networks
experience difficulty in the region near the axes origin where the two functions
merge.

13.3 2-D Function Approximation

In this section, the correlation of weighted hidden neuron activation is tested on a
two-dimensional problem. The function from which 120 data vectors were gener-
ated is shown in Fig. 18a. The network was trained with 15 hidden neurons with
sigmoid functions and linear output function. Training was done with Levenberg
Marquardt method with early stopping to optimise the network. The optimum
network output is shown in Fig. 18b. After training, weighted hidden neuron
activations were analysed and the correlation matrix is given in Fig. 18c.

The weighted hidden neuron activations were projected onto a 16-neuron SOM
and trained SOM weights were clustered with Ward clustering. Figure 19a shows
the Ward index plot which clearly indicates 7 clusters as the optimum. The SOM
clustered into 7 groups are shown in Fig. 19b.

A new network was trained with 7 hidden neurons and results identical to
Fig. 18b was found confirming that the optimum number of hidden neurons is 7. In
order to test further, individual networks were trained with hidden neuron numbers
increasing from 1 to 10 with a number of weight initializations. Root Mean Square
Error (RMSE) plot for these cases are shown in Fig. 20 which clearly indicates that
the 7 neurons do provide the minimum error.
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Fig. 18 a Two-dimensional target function, b and network prediction and ¢ correlation of
weighted activation of the 15 hidden neurons in the network (colours visually display the general
character and strength of correlations across neurons)
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Fig. 19 a Ward index against number of clusters; b SOM clustered into optimum number of 7
clusters: yellow (neurons 1, 6, 7), red (5, 14), brown (3,9, 10), cyan (4, 13), pale blue (2, 11), dark
blue (8, 15) and green (12)
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Fig. 20 RMSE for increasing number of hidden neurons trained for a number of random weight
initialisations

14 Optimising a Network for Practical Real-Life Problems

14.1 Breast Cancer Classification

Correlation of weighted hidden neuron networks were also tested on a real world
problem of breast cancer classification. In this study, a total of 99: 46 malignant and
53 benign, samples obtained from The Digital Database for Breast Ultrasound
Image (DDBUI) was used to develop a feed forward network for breast cancer
classification. Using a preprocessing and feature selection approach, 6 features were
selected with the ability to discriminate between cancer and healthy cases. These
were: depth-width ratio of the dense mass and its shape and margin, blood flow, age
and a newly identified effective feature called central regularity degree (CRD) that
explicitly incorporates irregularity of the mass that has been known to be indicative
of malignancy [27].

Networks were developed with sigmoid hidden and output neurons on 70 % and
30 % training and testing data, respectively, and trained with Levenberg Marquardt
method and early stopping. First a network with a large number of hidden neurons
was developed and then the number of neurons were decreased gradually, every
time comparing results with previous results. It turned out that 15 hidden neurons
provide optimum results: Training (100 % Sensitivity, Specificity and Accuracy)
and Testing (100, 90.9, 95.4 %, respectively, for the above measure). Then we
tested the clustering of weighted hidden neuron activation approach on the best
network using SOM topology with 20 neurons. The trained SOM results are shown
in Fig. 21 where several individual SOM neurons represent a number hidden
neurons as indicated by Fig. 21a—hidden neuron groups (4, 7, 10), (6, 12) and
(14, 15) each share an SOM neuron. Other neurons are each represented by an
individual SOM neuron. The U-matrix in Fig. 21b shows further similarity among
the nodes. For example, neurons (8, 1, 9) were found close to each other (blue
colour on the top right corner of the map) and were considered as one cluster by
Ward clustering that divided the SOM into 9 clusters suggesting that 9 neurons
should adequately model the data.
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Fig. 21 Twenty neuron SOM representing hidden neuron activation patterns. a Distribution of
15 neurons over the map; b U-matrix for the 15 hidden neurons (blue colour indicates
similarity/closeness)

To test this finding, a 9 neuron network was trained and tested on the same data
sets as before and the network accuracy (95.4 %), sensitivity (100 %) and speci-
ficity (90.9 %) were found to be the same as those for the 15 neuron network. Thus
the SOM/Ward reduced the number of neurons without any comprise on the net-
work performance confirming that the redundant weighted hidden neuron activa-
tions do form correlated clusters and the number of these clusters indicate the
required number of neurons.

14.2 River Flow Forecasting

The efficacy of the correlation method was tested in another complex real world
problem of river flow forecasting for a multi-basin river system in New Zealand and
the detail results were presented in [28]. Forecasting river flows are very compli-
cated due to the effect of daily, monthly, seasonal and yearly variability of the
contributing factors of rainfall and temperature etc. The inputs, selected from an
extensive feature selection process, were: previous month’s flow, current temper-
ature and a river basin geometric factor and the output was current month’s flow.
The data were divided into training (70 %) and calibration (30 %) with 1079 and
269 data points, respectively, and validation set with 63 data points. In the original
study, it was found that 70 hidden neurons (logistic activation) and one linear
output neuron provided the optimum results.
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To test this result, a network with 100 hidden neurons with logistic function was
trained and the weighted hidden activations of 100 neurons were projected onto a
100 neuron square SOM. Results showed that the 100 patterns were projected onto
59 SOM neurons and the Ward method further clustered these neurons indicating
that 2 and 3 neurons provided the highest Ward Likelihood Index, which is much
smaller than the original optimum of 70 neurons found by trial and error.
A 2-neuron network was trained and the results (training R? = 0.88; Validation
R’ = 0.71) were similar to original results [28]. Results for 59 and 70 neurons were
similar.

15 Summary and Conclusions

This chapter presented the results from a systematic investigation of the internal
consistency and robustness of feed forward (multi-layer perception) networks. It
demonstrated that weighted hidden neuron activations feeding the output neuron
display meaningful and consistent patterns that are highly correlated for redundant
neurons. By representing each correlated group with one neuron, the optimum
structure of the network is obtained. Furthermore, the chapter illustrated that the
correlated activation patterns can be mapped on to a self organizing map
(SOM) where Ward clustering convincingly revealed the required number of
clusters. The chapter also compared the proposed method with two pruning
approaches from literature: Optimal Brian Damage (OBD) and Variance Nullity
(VN) and demonstrated the efficacy of the proposed correlation based method.
A clear advantage of the correlation method is that it does not require heuristic
judgment in selecting parameters for optimizing the network as in other methods.
Another advantage is that network is optimized in one step of clustering correlated
weighted hidden neuron activation patterns thus minimizing the time and effort
spent on structure optimization. Yet another advantage is that as the redundant
neurons are highly correlated, they cluster easily on the SOM with default network
learning parameters and Ward clustering automatically produces the required
optimum number of neurons. This chapter used a one-dimensional problem to allow
the presentation of a thorough assessment of various modeling issues deemed
important and demonstrated that the insights gained are relevant to larger problems
as well by successfully applying the concept to multi-dimensional and complex real
world problems. These demonstrated that the approach is robust to initial weights,
random samplings and for networks with logistic activation function and either
linear or logistic output neuron activation function. In future, it will be useful to test
the validity of the method for other activation functions and networks.
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Appendix: Algorithm for Optimising Hidden Layer of MLP
Based on SOM/Ward Clustering of Correlated Weighted
Hidden Neuron Outputs

IL

Train an MLP with a relatively larger number of hidden neurons

For input vector X, the weighted input u; and output y; of hidden neuron j are:

n

Mj = a()j+ Zaijx,-
i=1

i =f (1)

where a,; is bias weight and a;; are input-hidden neuron weights. f is transfer
function.
The net input v; and output z; of output neuron k are:

ve =boc+ Y by

J=1

z =f(n)

where b, is bias weight and by, are hidden-output weights.

. Mean Square error (MSE) for the whole data set is:

1
MSE = —
2

Z (t — 25)2]

where ¢ is target and N is the sample size.
Weights are updated using a chosen method of least square error minimisation,
such as Levenberg Marquardt method:

Wi = Wp—1 — 8Rdm

where d,, is sum of error gradient of weight w for epoch m, R is inverse of
curvature, and ¢ is learning rate.

Repeat the process 1 to 4 until minimum MSE is reached using training,
calibration (testing) and validation data sets.

SOM clustering of weighted hidden neuron outputs

Inputs to SOM
An input vector X; into SOM is:

Xj = yjbj;
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where y; is output of hidden neuron j and b; is its weight to output neuron in
MLP. Length n of the vector X; is equal to the number of samples in the original
dataset.

Normalise X; to unit length

SOM training
1. Projecting weighted output of hidden neurons onto a Self Organising Map:

n
Mj = E wl:,-x,-
i=1

where u; is output of SOM neuron j and wy; is its weight with input component x;

2. Winner selection: Select winner neuron based on the minimum correlation
distance between an input vector and SOM neuron weight vectors (same as
Euclidean distance for normalised input vectors)

dj=Xx—W;

3. Update of weights of winner and neighbours at iteration t:
Select neighbourhood function NS(d, f) (such as Gaussian) and learning rate
function f(¢) (such as exponential or linear) where d is distance from winner to a
neighbour neuron and t is iteration.

w;i(t) = wj(r — 1) + B(t)NS(d, 1) [x(1) — wi(t — 1)]

4. Repeat the process until mean distance D between weights W; and inputs x,, is
minimum.

D:ZZ(xn—wi)z

i=1 néEc;

where k is number of SOM neurons and c; is the cluster of inputs represented by
neuron i

[I. Clustering of SOM neurons

Ward method minimizes the within group sum of squares distance as a result of
joining two possible (hypothetical) clusters. The within group sum of squares is the
sum of square distance between all objects in the cluster and its centroid. Two
clusters that produce the least sum of square distance are merged in each step of
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clustering. This distance measure is called the Ward distance (d,,.4) and is
expressed as:

n*ns) )
Ayand = (ri X; — X
wan (nr+n5) || T s”
where x, and x; are the centre of gravity of two clusters. n, and n are the number of
data points in the two clusters.

The centre of gravity of the two merged clusters X, (., is calculated as:

* *
Xr(new) = (n,-xr +ng Xs)

Ny, + N

The likelihood of various numbers of clusters is determined by WardIndex as:

1 [ d—d 1 [ Ad,
WardIndex = — - — %=L ) —
Arnaer = Ne (d,l—d,2> NC <Ad,1)

where d, is the distance between centres of two clusters to be merged at current step
and d,_; and d,_, are such distances in the previous two steps. NC is the number of
clusters left.

The numbers of clusters with the highest WardIndex is selected as the optimum.

IV. Optimum number of hidden neurons in MLP

The optimum number of hidden neurons in the original MLP is equal to this
optimum number of clusters on the SOM.
Train an MLP with the above selected optimum number of hidden neurons.
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