Chapter 2

A Swarm Global Optimization
Algorithm Inspired in the Behavior
of the Social-Spider

2.1 Introduction

The collective intelligent behavior of insect or animal groups in nature such as
flocks of birds, colonies of ants, schools of fish, swarms of bees, and termites have
attracted the attention of researchers. The aggregate behavior of insects or animals
is called swarm behavior. Entomologists have studied this collective phenomenon
to model biological swarms, and engineers applied these models as a framework for
solving complex real-world problems. This branch of artificial intelligence which
deals with the collective behavior of swarms through complex interaction of indi-
viduals without supervision is referred to as swarm intelligence. Bonabeau defined
swarm intelligence as ‘“any attempt to design algorithms or distributed problem
solving devices inspired by the collective behavior of the social insect colonies and
other animal societies” [1]. Swarm intelligence has some advantages such as
scalability, fault tolerance, adaptation, speed, modularity, autonomy, and paral-
lelism [2].

The key components of swarm intelligence are self-organization and division of
labors. In a self-organizing system, each of the covered units may respond to local
stimuli individually and act together to accomplish a global task via division of
labors without a centralized supervision. The entire system can adapt to internal and
external changes efficiently.

Several swarm algorithms have been developed by a combination of deter-
ministic rules and randomness, mimicking the behavior of insect or animal groups
in nature. Such methods include the social behavior of bird flocking and fish
schooling such as the Particle Swarm Optimization (PSO) algorithm [3], the
cooperative behavior of bee colonies such as the Artificial Bee Colony
(ABC) technique [4], the social foraging behavior of bacteria such as the Bacterial
Foraging Optimization Algorithm (BFOA) [5], the simulation of the herding
behavior of krill individuals such as the Krill Herd (KH) method [6], the mating
behavior of firefly insects such as the Firefly (FF) method [7] and the emulation of
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the lifestyle of cuckoo birds such as the Cuckoo Optimization Algorithm
(COA) [8].

Insect colonies and animal groups provide a rich set of metaphors for designing
swarm optimization algorithms. Such cooperative entities are complex system
composed by individuals with different cooperative-tasks where each member tends
to reproduce specialized behaviors depending generally on its gender [9]. However,
most of the swarm algorithms model individuals as unisex performing virtually the
same behavior. Under these circumstances, algorithms waste the possibility to add
new and selective operators as a result of considering individuals with different
characteristics such as sex, task-responsibility, etc. These operators could incor-
porate computational mechanisms to improve several important algorithm charac-
teristics such as population diversity or searching capacities.

Although PSO and ABC are the most popular swarm algorithms for solving
complex optimization problems, they present serious flaws such as premature
convergence and difficulty to overcome local minima [10, 11]. The reason of these
problems is the operators used for modifying the individual positions. In such
algorithms, during their evolution, the position of each agent in the next iteration is
updated yielding an attraction towards the position of the best particle seen so-far
(in case of PSO) or of other randomly chosen individual (in case of ABC). Such
behaviors produce that the entire population, as the algorithm evolves, concentrates
around the best particle or diverges without control, favoring the premature con-
vergence or damaging the exploration-exploitation balance [12, 13].

The interesting and exotic collective behaviors of social insects have fascinated
and attracted the interest of researchers for many years. The collaborative swarming
behavior that we observe in these groups provides survival advantages, where
insect aggregations of relatively simple and “unintelligent” individuals can
accomplish very complex tasks using only limited local information and simple
rules of behavior [14]. Social-spiders are a representative example of social insects
[15]. A social-spider is a spider species whose members maintain a set of complex
cooperative behaviors [16]. Whereas most spiders are solitary and even aggressive
toward other members of their own species, social-spiders show a tendency to live
in groups, forming long-lasting aggregations, often referred to as colonies [17]. In a
social-spider colony, each member, depending on its sex, executes a variety of
tasks, such as predation, mating, web design, and social interaction [17, 18]. The
web, as an important part of the colony, is not only used as a common environment
for all members, but also as a communication channel among them [19] Therefore,
important information (such as trapped prays or mating possibilities) is transmitted
through the web in form of small vibrations. Such information, considered as a local
knowledge, is employed by each member to conduct its own cooperative behavior,
influencing simultaneously the social regulation of the colony [20].

In this chapter, a novel swarm algorithm, namely the Social Spider Optimization
(SSO) is presented for solving optimization tasks. The SSO algorithm is based on
the simulation of the cooperative behavior of social-spiders. In the presented
algorithm, individuals emulate a group of spiders which interact to each other based
on the biological laws of the cooperative colony. The algorithm considers two
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different search agents (spiders): males and females. Depending on the sex, each
individual is conducted by a set of different evolutionary operators which mimic the
different cooperative behaviors assumed in the colony. Different to most of the
existent swarm algorithms, in the presented approach, each individual is modeled
considered two different genders. Such fact allows not only to emulate in a better
realistic way the cooperative behavior of the colony, but also to incorporate com-
putational mechanisms to avoid critical flaws present in the popular PSO and ABC
algorithms, such as premature convergence and incorrect exploration-exploitation
balance. To illustrate the proficiency and robustness of the presented approach, it is
compared to other well-known evolutionary methods. The comparison examines
several standard benchmark functions which are commonly considered within the
literature of evolutionary algorithms. The results show a high performance of the
presented method when searching for a global optimum of several benchmark
functions.

This chapter is organized as follows. In Sect. 2.2, are introduced the basic
biological aspects of the algorithm. In Sect. 2.3, the novel SSO algorithm and its
characteristics are both described. Section 2.4 presents the experimental results and
the comparative study. Finally, in Sect. 2.5, conclusions are drawn.

2.2 Biologic Fundamentals

Social insect societies are complex cooperative systems that self-organize within a
set of constraints. Cooperative groups are better at manipulating and exploiting their
environment, defending resources and brood, and allow for task specialization
among group members [21, 22]. A social insect colony functions as an integrated
unit that not only possesses the ability to operate in a distributed manner, but also
undertake enormous construction of global projects [23]. It is important to
acknowledge that global order in social insects can arise as a result of internal
interactions among insects.

A few species of spiders have been documented exhibiting a degree of social
behavior [15]. One can generalize the behavior of these species in two basic forms,
solitary spiders and social spiders [17]. This classification is made based on the
level of cooperative behavior that they exhibit [18]. In general, solitary spiders
create and maintain their own web while live in scarce contact with other indi-
viduals of the same species. In contrast, social spiders form colonies that remain
together on a communal web, where a close spatial separation is presented between
group members [19].

A social spider colony is composed of two fundamental components: members
and a communal web. Members are divided in two different categories, males and
females. An interesting characteristic of social-spiders is the highly female-biased
populations. Some studies suggest that the number of male spiders barely reaches
the 30 % of the total colony members [17, 24]. In the colony, each member,
depending on its gender, cooperate in different activities such as build and maintain
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the communal web, prey capture, mating and social contact [20]. Interactions
among members are either direct or indirect [25]. Direct interactions imply body
contact, or the exchange of fluid, such as mating. For indirect interactions, it is used
the communal web as a “medium of communication”. Through the communal web,
it is transmitted important information available for each colony member [19]. This
information, encoded in form of small vibrations, is a critical aspect for the col-
lective coordination among the members [20]. Since the vibrations depend on the
weight and distance of the elements which provoke them, they are employed by the
colony members to decode several messages, such as size of the trapped preys,
characteristics of the neighboring members, etc.

In spite of the complexity, all the cooperative global patterns, presented in a
colony level, are generated as a result of internal interactions among colony
members [26]. Such internal iterations involve a set of simple behavioral rules
followed by each spider in the colony. Behavioral rules are divided in two different
classes: social interaction (cooperative behavior) and mating [27].

As a social insect, spiders perform cooperative interaction over other colony
members. The way in which this behavior takes place depends on the spider gender.
Female spiders which show a major tendency to socialize present an attraction or
dislike over other spiders irrespective of the gender [17]. For a particular female
spider, such attraction or dislike is commonly developed over other spiders that
according to their vibrations (emitted over the communal web) represent strong
colony members [20]. Since the vibrations depend on the weight and distance of the
members which provoke them, strong vibrations are produced either by big spiders
or neighboring members [19]. The bigger a spider is, the better it is considered as a
colony member. The final decision of attraction or dislike over a determined
member is taken according to an internal state which is influenced by several factors
such as reproduction cycle, curiosity, and other random phenomena [20].

Different to female spiders, the behavior of male members is reproductive ori-
ented [28]. Male spiders recognize themselves a subgroup of alpha males which
dominate the colony resources. Therefore, the male population is divided in two
classes: dominant and non-dominant male spiders [28]. Dominant male spiders
have better fitness characteristics (normally size) in comparison with non-dominant.
As a main behavior, dominant males are attracted to the closest female spider in the
communal web. In contrast, non-dominant male spiders tend to concentrate in the
center of the male population, as a strategy to take advantage of the resources
wasted by the dominant males [29].

Mating is an important operation that no only assures the colony survival, but
also allows the information exchange among members. Mating in a social-spider
colony is performed by dominant males and the female members [30]. Under such
circumstances, when a dominant male spider locates to one or more female
members within a specific range, it mates with all the females in order to produce
offspring [31].
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2.3 The Social Spider Optimization (SSO) Algorithm

In this chapter, the operational principles from the social-spider colony have been
used as guidelines for developing a new swarm optimization algorithm. The SSO
assumes that entire search space is a communal web, where all the social-spiders
interact. In the presented approach, each solution within the search space represents
a spider position in the communal web. Every spider receives a weight according to
the fitness value of the solution that the social-spider symbolizes. The algorithm
models two different search agents (spiders): males and females. Depending on the
gender, each individual is conducted by a set of different evolutionary operators
which mimic the different cooperative behaviors assumed in the colony.

An interesting characteristic of social-spiders is the highly female-biased pop-
ulations. In order to emulate this fact, the algorithm starts by defining the number of
female and male spiders that will be characterized as individuals in the search
space. The number of females Ny is randomly selected within the range of 65-90 %
of the entire population N, previously chosen. Therefore, Ny is calculated by the
following equation:

Ny = floor[(0.9 — rand - 0.25) - N] (2.1)

where rand is a random number between [0, 1] whereas floor(-) maps a real number
to an integer number. The number of male spiders N,, is computed as the com-
plement between N and Ny. It is calculated as follows:

N, =N —N; (2.2)

Therefore, the complete population S, composed by N elements, is divided in
two sub-groups F and M. The Group F assembles the set of female individuals
(F = {f1,f2,...,fy,}) whereas M groups the male members (M = {m;, m,, ...,
my, }), where S=FUM(S = {s|,s2,...,8y}), such that S={s; =f,s, =
fo,.. 8y =fy, Sy, 1 =my, Sy 2 =my,... sy =my, }.

2.3.1 Fitness Assignation

In the biological metaphor, the spider size is the characteristic that evaluates the
individual capacity to perform better its assigned tasks. In the presented approach,
every individual (spider) receive a weight w; which represents the solution quality
that corresponds to the spider i (irrespective of the gender) of the population S. In
order to calculate the mass of every spider the next equations are used:

_ J(si) — worsts (23)

"~ bests — worsts
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where J(s;) is the fitness value obtained by the evaluation of the spider position s;
with regard to the objective function J(-). The values worsts and bests are defined
as follows (considering a maximization problem):

= = i 2.4
bests ke{Tff,N}(J(sk))andWOrSts ke{%{?w}(](sk» (2.4)

2.3.2 Modeling of the Vibrations Through the Communal
Web

The communal web is used as a mechanism to transmit information among the
colony members. This information, encoded in form of small vibrations, is a critical
aspect for the collective coordination for all individuals in the population. The
vibrations depend on the weight and distance of the spider which provoke them.
Since the distance is relative to the individual that provokes the vibrations and the
member who detects them, members near to the individual that provokes the
vibrations perceive stronger vibrations in comparison with members located in
distant positions. In order to reproduce this process, the vibrations perceived by the
individual i as a result of the information transmitted by the member j are modeled
according to the following equation:

2

Vib,‘_j = Wj . e_d"-f (25)

where the d;; is the Euclidian distance between the spiders i and j, such that
dij = s —s]-

Although it is virtually possible to compute the perceived-vibrations considering
any pair of individuals, three special relations are considered in the SSO approach:

1. The vibrations Vibc; perceived by the individual i (s;) as a result of the infor-
mation transmitted by the member ¢ (s.). Where c is an individual that has two
important characteristics, it is the nearest member to i and posses a higher
weight in comparison to i(w, > w;).

2

Vibe; = we - e e (2.6)

2. The vibrations Vibb; perceived by the individual i as a result of the information
transmitted by the member b (s;). Where b is the individual with the best weight

(best fitness value) of the entire population S, such that w;, = ) {mzax }(wk).
e{12,..N

Vibb; = wy, - ¢ % (2.7)
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Fig. 2.1 Configuration of each special relation: a Vibc;, b Vibb; and ¢ Vibf;
3. The vibrations Vibf; perceived by the individual i (s;) as a result of the information
transmitted by the member f (s;). Where fis the nearest female individual to i.
—_J2
Vibf; = wy - e s (2.8)

Figure 2.1 shows the configuration of each special relation: (a) Vibc;, (b) Vibb;

and (c) Vibf;.

2.3.3 Initializing the Population
Like other evolutionary algorithms, the SSO is an iterative process; where the
first step is to randomly initialize the entire population (females and males).

The algorithm begins by initializing the set S of N spider positions. Each spider
position, f; or m;, is a n-dimensional vector containing the parameter values to be
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optimized. Such values are randomly and uniformly distributed between the
pre-specified lower initial parameter bound p]lf‘w and the upper initial parameter

bound p'"

;7" just as it described by the following expressions:

IV high g high v
D =pi™ +rand(0,1) - (p;"" — pi™*)  mi; = pi” +rand(0,1) - (p;"*" — pi™*)

i=1,2,..,Nsj=1,2,....,n k=1,2,.. .Nuwj=1,2,....n
(2.8)

where j, i and k are the parameter and individual indexes respectively whereas zero
indicates the initial population. Hence, f;; is the jth parameter of the ith female
spider position.

2.3.4 Cooperative Operators

2.3.4.1 Female Cooperative Operator

Social-spiders perform cooperative interaction over other colony members. The
way in which this behavior takes place depends on the spider gender. Female
spiders present an attraction or dislike over other spiders irrespective of the gender.
For a particular female spider, such attraction or dislike is commonly developed
over other spiders that according to their vibrations (emitted over the communal
web) represent strong colony members. Since the vibrations depend on the weight
and distance of the members which provoke them, strong vibrations are produced
either by big spiders or neighboring members relative to the individual which
perceives them. The final decision of attraction or dislike over a determined
member is taken according to an internal state which is influenced by several factors
such as reproduction cycle, curiosity, and other random phenomena.

In order to emulate the cooperative behavior of the female spider, a new operator
is defined. The operator considers the position change of the female spider i at each
iteration. Such position change (which can be of attraction or repulsion) is computed
as a combination of three different elements. The first one involves the change in
regard to the nearest member to i with a higher weight (this member produces the
vibration Vibc;). The second one considers the change regarding the best individual
of the entire population S (such individual produces the vibration Vibb;). Finally, the
third one implements the incorporation of a random movement. Since the final
movement of attraction or repulsion depends on several random phenomena, this
election is modeled as a stochastic decision. For this operation, a uniform random
number r,, is generated within the range [0, 1]. If r,, is smaller than a threshold PF,
an attraction movement is generated; otherwise, a repulsion movement is produced.
Therefore, such operator can be modeled as follows:
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. £+ o0 Vibe; - (s. — £5) -+ B - Vibb; - (s — ££) + 0 - (rand — 1)  with probability PF
et =
5 — o Vibe; - (sc — £5) — B Vibb; - (s — ££) + 3 - (rand — 1) with probability 1 — PF
(2.9)

where o, ff, d and rand are random numbers between [0, 1] whereas k represents the
iteration number. The individual s, and s; represent the nearest member to i with a
higher weight and the best individual of the entire population S, respectively.

Under this operation, each particle presents a movement which combines the
past position, with the attraction or repulsion vector over the local best element s,
and the global best individual seen s, so-far. This particular type of interaction
avoids the quick concentration of particles in only one point and encourages each
particle to search around a local candidate region in its neighborhood (s.), rather
than interacting with a particle (s;) in a distant region of the domain. The use of this
scheme has two advantages. First, it prevents the particles from moving toward the
global best position making the algorithm less susceptible to premature conver-
gence. Second, it encourages the particles to explore their own neighborhood
thoroughly before converging toward global best position. Therefore, it provides
the algorithm with global search ability and enhances the exploitative behavior of
the presented approach.

2.3.4.2 Male Cooperative Operator

According to the biological behavior of the social-spider, male population is
divided in two classes: dominant and non-dominant male spiders. Dominant male
spiders have better fitness characteristics (normally size) in comparison with
non-dominant. Dominant males are attracted to the closest female spider in the
communal web. In contrast, non-dominant male spiders tend to concentrate in the
center of the male population, as a strategy to take advantage of the resources
wasted by the dominant males.

For emulating such cooperative behavior, the male members are divided in two
different groups (dominant members D and non-dominant members ND) according
to their position with regard to the median member. Male members, with a weight
value above the median value within the male population, are considered the
dominant individuals D. On the other hand, the individuals under the median value
are labeled as non-dominant ND males. In order to implement such computation,
the male population M (M = {m;, my,...,my, }) is arranged according to their
weight value, in a decreasing order. Thus, the individual whose weight wy, ;  is
located in the middle is considered the median male member. Since the indexes of
the male population M in regard to the entire population S are incremented by the
number of female members Ny, the median weight is indexed by Ny + m. According
to this, change of positions for the male spider can be modeled as follows:
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m! + o - Vibf; - (sp —mf) + 6 - (rand —3) if wy, i > Wi,

k f,/ﬁll N k :
m; +o - | G —m; if Wy, +i SWN4m

Zh:lef“’
(2.10)

where the individual s; represents the nearest female individual to the male member
i whereas (3", mf - wy, -,/ STh", Wy, +4) correspond to the weighted mean of
the male population M.

By using this operator, two different behaviors are produced. First, the set D of
particles is attracted to others in order to provoke mating. Such behavior allows to
incorporate diversity in the population. Second, the set ND of particles are attracted
to weighted mean of the male population M. This fact is used to partially control the
search process according to the average performance of a sub-group of the popu-
lation. Such mechanism acts as a filter which avoids that very god individuals or
extremely bad individuals influence the search process.

2.3.5 Mating Operator

Mating in a social-spider colony is performed by dominant males and the female
members. Under such circumstances, when a dominant male m, spider (g € D)
locates a set Ef of female members within a specific range r (range of mating), it
mates, forming a new brood s,,,, which is generated considering all the elements of
the set T* that, in turn, has been generated by the union E® Um,. It is important to
emphasize that if the set E¢ is empty, the mating operation is canceled. The range
r is defined as a radius which depends on the size of the search space. Such radius
r is computed according to the following model:

high
S e )
2-n

(2.11)

In the mating process, the weight of each involved spider (elements of T¢)
defines the probability of influence of each individual into the new brood. The
spiders with heavier weight are more probable to influence the new product, while
elements with lighter weight have a lower probability. The influence probability Ps;
of each member is assigned using the roulette method, which is defined as follows:

Wi

PS,’ - = >
ZjeT" wj

(2.12)

where i € TS.
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Once the new spider is formed, it is compared, the new spider candidate s,
with the worst spider s, of the colony, according to their weight values (where
Wiyo = el 1rr%in N}(wl)). If the new spider is better than the worst spider, the worst
spider is replaced by the new one. Otherwise, the new spider is discarded and the
population does not suffer changes. In case of replacement, the new spider assumes
the sex and the same index of the replaced spider. Such fact assures that the entire
population S maintains the original rate between female and male members.

In order to illustrate the mating operation, it is considered an example, where
Fig. 2.2a is used as optimization problem. It is also assumed a population S of seven
different 2-dimensional members (N = &), five females (Ny = 5) and two males
(N, = 3). Figure 2.2b shows the initial configuration of the presented example. In
the example, three different female members f,(s;), f3(s3) and f4(s4) constitute the
set E? located inside of the influence range r of a dominant male my(s7). Then, the
new candidate spider s,,,, is generated from the elements f;, f3, f4 and m, which
constitute the set T2. Therefore, the value of the first decision variable Spew,1 for the
new spider is chosen by means of the roulette mechanism considering the values
already existing from the set {f271, Basfar,mo } The value of the second decision
variable sy, is also chosen in the same manner. Table 2.1 shows the data for

A1

2 2+

.?3

3 )

-2

-2 -1 0 1 2 3

Fig. 2.2 Example of the mating operation: a optimization problem, b initial configuration before
mating and ¢ configuration after the mating operation
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constructing the new spider through the roulette method. Once the new spider s,
is formed, it is calculated its weight wy,,,. As S, is better than the worst member f,
present in the population S, f; is replaced by s,.,. With the replacement, s,
assumes the same sex and index than f,. Figure 2.2c shows the configuration of
S after the mating process.

Under this operation, new generated particles exploit locally the search space
inside of the range of mating in order to find better individuals.

2.3.6 Computational Procedure

The computational procedure for the presented algorithm can be summarized as
follows:

Step 1 Considering N as the total number of n-dimensional colony members, define the
number of male N,, and females Ny in the entire population S

N¢ = floor[(0.9 — rand - 0.25) - N] and N,, =N — Ny,

where rand is a random number between [0, 1] whereas floor(-) maps a real number
to an integer number

Step 2 | Initialize randomly the female (F = {f},f5,...,fy,}) and male

M = {m;,m,,...,my, }) members where S = {s; =f1,8, =f5,...,sy, =

fy, SN, 1 =My, Sy, 12 =My,.... Sy = my, } and calculate the range of mating
S

r=—"""mn

for (i = L;i<Ny+1;i++)

for j = L;j<n+1;j++)

£ = P+ rand(0, 1) - (p'" — plov)
end for

end for

for (k= 1;k<Ny+ 1;k++)

for j = L;j<n+1;j++)

m; = pj +rand - (p;"" — pl*)
end for
end for

Step 3 Calculate the weight of every spider of S (Sect. 2.3.1)
for (i=1,i<N+1;i++)

J(si)—worstg

Wi = bests—worsts

here bests = J(s, d ts = i J(s
where bestg ke{rll.lzéfw}( (sx)) and worstg ke{?,lzl?.,zv}( (sx))
end for

(continued)
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(continued)

Step 4 Move female spiders according to the female cooperative operator (Sect. 2.3.4)
for i = 1;i<Ny+ L;i++

Calculate Vibc; and Vibb; (Sect. 2.3.2)

If (r,, <PF); where r,, € rand(0, 1)

£ =5+ o Vibe; - (sc — £5) + B - Vibb; - (s, — £5) + 6 - (rand — 1)

else if

£ = £5 — o Vibe; - (sc — £5) — B+ Vibb; - (s — £) + 6 - (rand — 1)

end if

end for

Step 5 Move the male spiders according to the male cooperative operator (Sect. 3.1.4)
Find the median male individual (WN; +m) from M

for (i = 1;i<Ny+ L;i++)

Calculate Vibf; (Sect. 2.3.2)

If Wy 0> Wi )

m{ ! =mf + o Vibf; - (sf —mf) +6 - (rand — )

else if
Nm
m, Wy, .
mi ! =mf 4o —Z":.\‘rm - — mf
ht W
end if
end for

Step 6 | Perform mating operation (Sect. 2.3.5)
fori=1;i<N,+ L;i++

If (m; € D)

Find E'

If (E is not empty)

Form s, using the roulette method
If Whew > Wio)

Swo = Snew

end if

end if

end if

end for

Step 7 | If the stop criteria is met, the process is finished; otherwise, go back to Step 3

2.3.7 Discussion About the SSO Algorithm

Evolutionary algorithms (EA) have been widely employed for solving complex
optimization problems. These methods are found to be more powerful than con-
ventional methods based on formal logics or mathematical programming [32]. In an
EA algorithm, search agents have to decide whether to explore unknown search
positions or to exploit already tested positions in order to improve their solution
quality. Pure exploration degrades the precision of the evolutionary process but
increases its capacity to find new potentially solutions. On the other hand, pure
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exploitation allows refining existent solutions but adversely drives the process to
local optimal solutions. Therefore, the ability of an EA to find a global optimal
solution depends on its capacity to find a good balance between the exploitation of
found-so-far elements and the exploration of the search space [33]. So far, the
exploration—exploitation dilemma has been an unsolved issue within the framework
of evolutionary algorithms.

EA define individuals with the same property, performing virtually the same
behavior. Under these circumstances, algorithms waste the possibility to add new
and selective operators as a result of considering individuals with different char-
acteristics. These operators could incorporate computational mechanisms to
improve several important algorithm characteristics such as population diversity or
searching capacities.

On the other hand, PSO and ABC are the most popular swarm algorithms for
solving complex optimization problems. However, they present serious flaws such
as premature convergence and difficulty to overcome local minima [10, 11]. The
reason of these problems is the operators used for modifying the individual posi-
tions. In such algorithms, during their evolution, the position of each agent in the
next iteration is updated yielding an attraction towards the position of the best
particle seen so-far (in case of PSO) or of other randomly chosen individual (in case
of ABC). Such behaviors produce that the entire population, as the algorithm
evolves, concentrates around the best particle or diverges without control, favoring
the premature convergence or damaging the exploration-exploitation balance [12,
13].

Different to other EA, in SSO, each individual is modeled considered two dif-
ferent genders. Such fact allows incorporating computational mechanisms to avoid
critical flaws present in the popular PSO and ABC algorithms, such as premature
convergence and incorrect exploration-exploitation balance. Since the optimization
point of view, the use of the social-spider behavior as metaphor introduces inter-
esting concepts in the evolutionary algorithms: The fact of dividing the entire
population in different search-agent categories and the employment of specialized
operators applied selectively to each of them. Using this framework, it is possible to
improve the balance between exploitation and exploration, conserving in the same
population, individuals who achieve efficient exploration (female spiders) and
individuals that verify extensive exploitation (male spiders). Furthermore, the
social-spider behavior mechanism introduces an interesting computational scheme.
Such scheme presents three important particularities. First, individuals are separately
processed according to their characteristics. Second, the operators share the same
communication mechanism. This mechanism allows employing important infor-
mation of the evolutionary process to modify the influence of each operator. Third,
although the operators modify the position of only an individual type, they use
global information (positions of all individual types) in order to perform the mod-
ification. Figure 2.3 presents a schematic representation of the algorithm-data-flow.
According to Fig. 2.3, the female cooperative and male cooperative operators pro-
cess only female or male individuals, respectively. However, the mating operator
modifies both individual types.
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Fig. 2.3 Schematic
representation of the
algorithm-data-flow

Initialization
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2.4 Experimental Results

A comprehensive set of 19 functions, collected from Refs. [34-40], has been used
to test the performance of the presented approach. Table 2.2 present the benchmark
functions used in our experimental study. In the table, n indicates the dimension of
the function, f(x*) the optimum value of the function, X the optimum position and
S the search space (subset of R"). A detailed description of each function is given in
Table 2.2.

2.4.1 Performance Comparison to Other Swarm Algorithms

The SSO algorithm was applied to 19 functions whose results have been compared
to those produced by the Particle Swarm Optimization (PSO) method [3] and the
Artificial Bee Colony (ABC) algorithm [4]. These are considered as the most
popular swarm algorithms in many optimization applications. In all comparisons,
the population has been set to 50 individuals. The maximum iteration number for all
functions has been set to 1000. Such stop criterion has been selected to maintain
compatibility to similar works reported in the literature [41, 42].

The parameter setting for each algorithm in the comparison is described as
follows:

1. PSO [3]: The parameters are set to ¢; = 2 and ¢, = 2; besides, the weight factor
decreases linearly from 0.9 to 0.2.

2. ABC: The algorithm has been implemented using the guidelines provided by its
own reference [4], using the parameter limit = 100.

3. SSO: Once determined experimentally, the parameter PF was set to 0.7. It is
kept for all experiments presented in this section.
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The experiment compares the SSO to other algorithms such as PSO and ABC.
The results for 30 runs are reported in Table 2.3 considering the following per-
formance indexes: the Average Best-so-far (AB) solution, the Median Best-so-far
(MB) and the Standard Deviation (SD) of best-so-far solution. The best outcome for
each function is boldfaced. According to this table, SSO delivers better results than
PSO and ABC for all functions. In particular, the test remarks the largest difference
in performance which is directly related to a better trade-off between exploration
and exploitation.

A non-parametric statistical significance proof known as the Wilcoxon’s rank
sum test for independent samples [43, 44] has been conducted over the “average
best-so-far” (AB) data of Table 2.2, with a 5 % significance level. Table 2.4 reports
the p-values produced by Wilcoxon’s test for the pair-wise comparison of the
“average best so-far” of two groups. Such groups are formed by SSO vs. PSO and
SSO vs. ABC. As a null hypothesis, it is assumed that there is no significant
difference between mean values of the two algorithms. The alternative hypothesis

Table 2.3 Minimization SSO ABC PSO

result of benchmark functions "2 () [AB_| 196E-03 | 290E-03 | LOOE+03

MB | 281E-03 | 150E-03 | 2.08E-09
SD | 996E-04 | 144E-03 | 3.05E+03
Ak |AB | 137E-02 | 135B-01 | 5.17E+01
MB | 134B-02 | 1.0SE-01 | 5.00E+0l
SD | 3.11E-03 | 80IE-02 | 2.02E+01
£(x) |AB | 4276-02 | LI3E+00 | 8.63E+04
MB | 349E-02 | 6.11E-01 | 8.00E+04

SD 3.11E-02 1.57E+00 5.56E+04
Sa(x) AB 5.40E—02 5.82E+01 1.47E+01
MB 5.43E-02 5.92E+01 1.51E+01
SD 1.01E-02 7.02E+00 3.13E+00
f5(x) AB 1.14E+02 1.38E+02 3.34E+04
MB 5.86E+01 1.32E+02 4.03E+02
SD 3.90E+01 1.55E+02 4.38E+04

Jo(x) AB 2.68E—03 4.06E—-03 1.00E+03
MB 2.68E—03 3.74E-03 1.66E—09
SD 6.05E—04 2.98E—03 3.06E+03

fi(x) AB 1.20E+01 1.21E+01 1.50E+01
MB 1.20E+01 1.23E+01 1.37E+01
SD 5.76E—01 9.00E—01 4.75E+00

fa(x) AB 2.14E+00 3.60E+00 3.12E+04

MB 3.64E+00 8.04E-01 2.08E+02

SD 1.26E+00 3.54E+00 5.74E+04
(continued)
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Table 2.3 (continued) SSO ABC PSO
folx) AB 6.92E—05 1.44E—04 2.47E+00
MB 6.80E—05 8.09E-05 9.09E-01
SD 4.02E—-05 1.69E—04 3.27E+00
Sio(x) AB 4 44E—-04 1.10E-01 6.93E+02
MB 4.05E-04 4.97E-02 5.50E+02
SD 2.90E-04 1.98E-01 6.48E+02
S (x) AB 6.81E+01 3.12E+02 4.11E+02
MB 6.12E+01 3.13E+02 4.31E+02
SD 3.00E+01 4.31E+01 1.56E+02
Siz(x) AB 5.39E-05 1.18E—04 4.27E+07
MB 5.40E-05 1.05E—-04 1.04E-01
SD 1.84E—05 8.88E—-05 9.70E+07
Sfiz(x) AB 1.76E—03 1.87E—03 5.74E-01
MB 1.12E-03 1.69E—03 1.08E-05
SD 6.75E-04 1.47E-03 2.36E+00
Sia(x) AB —9.36E+02 —9.69E+02 —9.63E+02
MB —9.36E+02 —9.60E+02 —9.92E+02
SD 1.61E+01 6.55E+01 6.66E+01
fis(x) AB 8.59E+00 2.64E+01 1.35E+02
MB 8.78E+00 2.24E+01 1.36E+02
SD 1.11E+00 1.06E+01 3.73E+01
Sie(x) AB 1.36E—02 6.53E—01 1.14E+01
MB 1.39E—-02 6.39E-01 1.43E+01
SD 2.36E—03 3.09E-01 8.86E+00
fiz(x) AB 3.29E-03 5.22E—02 1.20E+01
MB 3.21E-03 4.60E—02 1.35E-02
SD 5.49E-04 3.42E-02 3.12E+01
fis(x) AB 1.87E+00 2.13E+00 1.26E+03
MB 1.61E+00 2.14E+00 5.67E+02
SD 1.20E+00 1.22E+00 1.12E+03
Sio(x) AB 2.74E-01 4.14E+00 1.53E+00
MB 3.00E-01 4.10E+00 5.50E-01
SD 5.17E—02 4.69E—-01 2.94E+00

Maximum number of iterations = 1000

considers a significant difference between the “average best-so-far” values of both
approaches. All p-values reported in Table 2.4 are less than 0.05 (5 % significance
level) which is a strong evidence against the null hypothesis. Therefore, such
evidence indicates that SMS results are statistically significant and that it has not
occurred by coincidence (i.e. due to common noise contained in the process).
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:al\’;,eilz"‘ P :va:luits produced  Eynction SSO versus ABC SSO versus PSO
KO Al T — T
versus PSO over the “average /(%) 0.048 0.059
best-so-far” (AB) values from  f;(x) 5.4E—-04 6.2E-07
Table 2.3 fu(x) 1.4E-07 4.7E-05
£5(x) 0.045 7.1E-07
So(x) 2.3E-04 5.5E-08
£ (x) 0.048 0.011
S (x) 0.017 0.043
fo(x) 8.1E—04 2.5E-08
fio(x) 4.6E—06 1.7E-09
fir(x) 9.2E-05 7.8E-06
fia(x) 0.022 1LIE-10
fiz(x) 0.048 2.6E—05
fia(x) 0.044 0.049
fis(x) 45E-05 7.9E-08
fie(x) 2.8E-05 4.1E-06
fir(x) 7.1E-04 6.2E-10
fis(x) 0.013 8.3E-10
fio(x) 4.9E-05 5.1E-08

2.5 Summary

In this chapter, a novel swarm algorithm, namely the Social Spider Optimization
(SSO) has been presented for solving optimization tasks. The SSO algorithm is
based on the simulation of the cooperative behavior of social-spiders. In the pre-
sented algorithm, individuals emulate a group of spiders which interact to each
other based on the biological laws of the cooperative colony. The algorithm con-
siders two different search agents (spiders): males and females. Depending on the
sex, each individual is conducted by a set of different evolutionary operators which
mimic the different cooperative behaviors assumed in the colony.

Different to most of the existent swarm algorithms, in the presented approach,
each individual is modeled considered two different genders. Such fact allows not
only to emulate in a better realistic way the cooperative behavior of the colony, but
also to incorporate computational mechanisms to avoid critical flaws present in the
popular PSO and ABC algorithms, such as premature convergence and incorrect
exploration-exploitation balance.

SSO has been experimentally tested considering a suite of 19 benchmark functions.
The performance of SSO has been also compared to the following swarm algorithms:
the Particle Swarm Optimization method (PSO) [16], and the Artificial Bee Colony
(ABC) algorithm [38]. Results have confirmed a high performance of the presented
method in terms of the solution quality for solving most of benchmark functions.



2.5 Summary 31

®

The SSO’s remarkable performance is associated with two different reasons:

the defined operators allow a better particle distribution in the search space,

increasing the algorithm’s ability to find the global optima; and (ii) the division of
the population in different individual types, provides the use of different rates
between exploration and exploitation during the evolution process.
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