
Preface

Evolutionary computation (EC) is one of the most important emerging technologies
of recent times. Over the last years, there has been exponential growth of research
activity in this field. Despite the fact that the concept itself has not been precisely
defined, EC has become the standard term that encompasses several stochastic,
population-based, and system-inspired approaches.

EC methods use as inspiration our scientific understanding of biological, natural,
or social systems, which at some level of abstraction can be represented as opti-
mization processes. They intend to serve as general-purpose easy-to-use opti-
mization techniques capable of reaching globally optimal or at least nearly optimal
solutions. In their operation, searcher agents emulate a group of biological or social
entities which interact to each other based on specialized operators that model a
determined biological or social behavior. These operators are applied to a popu-
lation (or several subpopulations) of candidate solutions (individuals) that are
evaluated with respect to their fitness. Thus, in the evolutionary process, individual
positions are successively approximated to the optimal solution of the system to be
solved.

Due to their robustness, EC techniques are well-suited options for industrial and
real-world tasks. They do not need gradient information, and they can operate on
each kind of parameter space (continuous, discrete, combinatorial, or even mixed
variants). Essentially, the credibility of evolutionary algorithms relies on their
ability to solve difficult, real-world problems with the minimal amount of human
effort.

There exist some common features clearly appear in most of the EC approaches,
such as the use of diversification to force the exploration of regions of the search
space, rarely visited until now, and the use of intensification or exploitation, to
investigate thoroughly some promising regions. Another common feature is the use
of memory to archive the best solutions encountered.

Numerous books have been published tacking into account any of the most
widely known methods, namely simulated annealing, tabu search, evolutionary
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algorithms, ant colony algorithms, particle swarm optimization, or differential
evolution, but attempts to consider the discussion of alternative approaches are
scarce.

The excessive publication of developments based on the simple modification of
popular EC methods presents an important disadvantage, in that it distracts attention
away from other innovative ideas in the field of EC. There exist several alternative
EC methods which consider very interesting concepts; however, they seem to have
been completely overlooked in favor of the idea of modifying, hybridizing, or
restructuring traditional EC approaches.

The goal of this book is to present advances that discuss alternative EC devel-
opments or highlight non-conventional operators which prove to be effective in
adapting a determined EC method to a specific problem. This book has been
structured so that each chapter can be read independently from the others. Chapter 1
describes evolutionary computation (EC). This chapter concentrates on elementary
concepts of evolutionary algorithms. Readers that are familiar with EC may wish to
skip this chapter.

In Chap. 2, a swarm algorithm, namely the Social Spider Optimization (SSO), is
presented for solving optimization tasks. The SSO algorithm is based on the sim-
ulation of the cooperative behavior of social spiders. In SSO, individuals emulate a
group of spiders which interact to each other based on the biological laws of the
cooperative colony. Different to the most EC algorithms, SSO considers two dif-
ferent search agents (spiders): males and females. Depending on the gender, each
individual is conducted by a set of different evolutionary operators which mimic the
different cooperative behaviors assumed in the colony. To illustrate the proficiency
and robustness of the SSO, it is compared to other well-known evolutionary
methods.

Chapter 3 presents a nature-inspired algorithm called the States of Matter Search
(SMS). The SMS algorithm is based on the modeling of the states of matter phe-
nomenon. In SMS, individuals emulate molecules which interact to each other by
using evolutionary operations based on the physical principles of the thermal
energy motion mechanism. The algorithm is devised considering each state of
matter one different exploration–exploitation ratio. In SMS, the evolutionary pro-
cess is divided into three phases which emulate the three states of matter: gas,
liquid, and solid. In each state, the evolving elements exhibit different movement
capacities. Beginning from the gas state (pure exploration), the algorithm modifies
the intensities of exploration and exploitation until the solid state (pure exploitation)
is reached. As a result, the approach can substantially improve the balance between
exploration–exploitation, yet preserving the good search capabilities of an EC
method. To illustrate the proficiency and robustness of the proposed algorithm, it
was compared with other well-known evolutionary methods including recent
variants that incorporate diversity preservation schemas.

In Chap. 4, an EC algorithm inspired by the collective animal behavior (CAB) is
presented. In this algorithm, the searcher agents represent a group of animals that
interact to each other based on simple behavioral rules which are modeled as
mathematical operators. Such operations are applied to each agent considering that
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the complete group has a memory storing their own best positions seen so far, by
using a simple competition principle. The approach has been compared to other
well-known optimization methods. The results confirm a high performance of the
proposed method for solving various benchmark functions.

In Chap. 5, a novel biologically inspired algorithm, namely Allostatic
Optimization (AO), is presented. The AO algorithm uses as metaphor the allostasis
mechanisms for designing an optimization methodology. AO provides a
population-based search procedure under which all individuals, also seen as body
conditions, are defined within the multidimensional space. They are generated or
modified by using several evolutionary operators that emulate the different opera-
tions employed by the allostasis process, whereas the fitness function evaluates the
capacity of each individual (body condition) to reach a steady health state (good
solution). Different to several popular EC methods, AO implements evolutionary
operators that avoid concentrating most of the particles in only one position
favoring the exploration process and eliminating the flaws related to the premature
convergence. The approach has been compared to other well-known evolutionary
algorithms. The results confirm a high performance of the proposed method for
solving various benchmark functions.

In Chap. 6, a swarm algorithm, called the Locust Search (LS), is presented for
solving some optimization tasks. The LS algorithm is based on the behavioral
modeling of swarms of locusts. In LS, individuals represent a group of locusts
which interact to each other based on the biological laws of the cooperative swarm.
The algorithm considers two different behaviors: solitary and social. Depending on
the behavior, each individual is conducted by a set of evolutionary operators which
mimics different cooperative conducts that are typically found in the swarm.
Different to most of existent swarm algorithms, the behavioral model in the pro-
posed approach explicitly avoids the concentration of individuals in the current best
positions. Such fact allows not only to emulate in a better realistic way the coop-
erative behavior of the locust colony, but also to incorporate a computational
mechanism to avoid critical flaws that are commonly present in the popular particle
swarm optimization and differential evolution, such as the premature convergence
and the incorrect exploration–exploitation balance. In order to illustrate the profi-
ciency and robustness of the proposed approach, its performance is compared to
other well-known evolutionary methods. The comparison examines several stan-
dard benchmark functions which are commonly considered in the literature.

Chapter 7 presents an EC method called the Adaptive Population with Reduced
Evaluations (APREs) for solving optimization problems which are characterized by
demanding an excessive number of function evaluations. APRE reduces the number
of function evaluations through the use of two mechanisms: (1) adapting dynami-
cally the size of the population and (2) incorporating a fitness estimation strategy
that decides the amount of individuals to be evaluated with the original fitness
function and the amount of individuals to be estimated by a very simple approxi-
mated model. APRE begins with an initial random population which will be used as
a memory during the evolution process. After initialization, it is selected the ele-
ments to be evolved. Its number is automatically modified in each iteration. With
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the selected elements, a set of new individuals is generated as a consequence of the
execution of the seeking operation. Afterward, the memory is updated. For this
process, the new individuals produced by the seeking operation compete against the
memory elements to build the final memory configuration. Finally, a sample of the
best elements contained in the final memory configuration is undergone to the
refinement operation. This cycle is repeated until the maximum number the itera-
tions have been reached. Different to other approaches that use an already existent
EA as framework, the APRE method has been completely designed to substantially
reduce the computational cost without degrading its good search capacities.

Different to global optimization, the main objective of multimodal optimization
is to find multiple global and local optima for a problem in one single run. Finding
multiple solutions to a multimodal optimization problem is especially useful in
engineering, since the best solution may not always be the best realizable due to
various practical constraints. In Chap. 8, the multimodal characteristics of the CAB
algorithm are exposed in Chap. 4. The main objective is to analyze the particular
CAB operators that permit its multimodal performance.

Finally, Chap. 9 presents a variant of the SSO algorithm (exposed in Chap. 2) for
solving constrained optimization problems. The method, called SSO-C, implements
additional mechanisms that the original one. For constraint handling, SSO-C
incorporates the combination of two different paradigms in order to direct the search
toward feasible regions of the search space. In particular, it has been added: (1) a
penalty function which introduces a tendency term into the original objective
function to penalize constraint violations in order to solve a constrained problem as
an unconstrained one and (2) a feasibility criterion to bias the generation of new
individuals toward feasible regions increasing also their probability of getting better
solutions.
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