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Abstract In the online version of Self-Organizing Maps, the results obtained from
different instances of the algorithm can be rather different. In this paper, we explore
a novel approach which aggregates several results of the SOM algorithm to increase
their quality and reduce the variability of the results. This approach uses the variability
of the algorithm that is due to different initialization states. We use simulations to
show that our result is efficient to improve the performance of a single SOM algorithm
and to decrease the variability of the final solution. Comparison with existing methods
for bagging SOMs also show competitive results.
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1 Introduction

Self-Organizing Maps (SOM), [1] have been shown to be powerful methods for
analyzing high dimensional and complex data (see, for instance, [2] for applications
of the method to many different areas). However, the method suffers from its lack of
good convergence properties. In its original version, the theoretical convergence of
the algorithm has only be proved in very limited cases [3] and even in the modified
version in which the training of the SOM is expressed as an energy minimization
problem [4], different runs of the algorithm give different results, that can be very
dependent on the initialization. This problem is even more critical when the data set
to be analyzed is complex or high dimensional.

This paper addresses the issue of aggregating several results of the SOM algorithm,
all obtained on the same data set. Several attempts to combine SOMs while preserving
their topological properties have been proposed in the literature [5-9]. In this paper,
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we present a novel method to combine several SOMs while preserving their topology.
The proposed method combines several ideas taken from the different methods and
allows to explore initialization states. It is both simple and efficient. We present a full
comparison of the different options to aggregate the results of different SOMs and
discuss the most relevant choices. Finally, we show that our approach is a competitive
alternative to the existing methods on real data applications.

The remainder of the paper is organized as follows: in Sect.2, an overview of
aggregation methods for SOMs is presented. In Sect.3, the proposed method is
described. Finally, Sect. 4 presents experimental results and comparisons.

2 An Overview of Aggregation Methods for SOMs

Suppose that B results of the SOM algorithm are given for the items (x;)i=1._n,
(MP®),_i.... . Bach of these results, M” is well defined by its set of prototypes
(pl’j)uzl ,,,,, v and comes with an associated clustering function ¢’ x e R —
(C:)uzlwy, where ij = {xi D oP(x) = u} The purpose is to build a fused or
a merged map, M*, with prototypes (p;;),=1,..v and a clustering function ¢* which
improves and summarizes the B maps into a unique consensual map. Note that all
SOMs have been trained from the same data (x;);—;.. , or from a subset (e.g., a
bootstrap sample) of this data set. They can also have been trained from different
descriptors of the observations (e.g., from different sets of variables observed on the
same items): in this case, the fused map thus corresponds to a map integrating the dif-
ferent descriptors. However, for the sake of simplicity, we will restrict our description
and simulation to the first case (same observations, or eventually, bootstrap samples
from the same observations and same descriptors).

As already explained in [5] in the context of a one-dimensional grid, there is no
ground truth for cluster labelling in the unsupervised framework. A first strategy to
overcome this issue is to perform a re-labelling of the clusters based on the clustering
only: [6] merge together the clusters of different maps with a majority vote scheme.
A “fused” prototype is defined as the centroid of the grouped cluster prototypes over
b =1,..., B and a topology is deduced posterior to the definition of the clusters.
Another approach that uses the different maps in an indirect way is described in
[10]: in this paper, we proposed to use a subset of (x;);, using the most representative
observations of the set of B maps, to train a final SOM from a simpler and more
robust data set. This method is well suited to handle very large data sets. However,
both approaches do not necessary produce a map with a topology similar to the B
merged SOMs and make use of only a small part of the information provided by the
B learned SOMs.

Several attempts to explicitly take advantage of the prior (common) structure of
the maps have been proposed in the literature. A first method consists in constraining
the B SOMs to be as similar as possible by a common initialization. This initialization
can be derived, for instance, from a PCA of (x;);. Then, the different maps are fused
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by averaging the prototypes of the clusters situated at the same position the B SOMs
[7] or by using a majority vote scheme to classify the observations [5]. Alternatively,
[5, 8] also propose to make the B SOMs similar by initializing the b-th SOM with
the final prototypes of the previous one. Baruque and Corchado [8] improves this
approach by weighting the averaging of the prototypes by a cluster quality index.
Similarly, [11] uses a similar strategy to handle streaming or large data sets, splitting
the data into several patches that are sequentially processed by a different SOM
algorithm initialized with the result of the previous one. However, these methods
do not allow to explore the possibilities of different initializations, which can be an
issue in SOM. Moreover, a sequential initialization of the B SOMs prevents from
training them in parallel, which can be an important issue if B is large: using a large
B is advised for stabilizing the result of the algorithm.

Another approach to preserve the topology property of the map is to align the
different maps on one of them, which serves as a reference for the topology: in [12],
the map is chosen arbitrarily, and the other maps are fused sequentially to this first
one, averaging the prototypes (p%), of the current map to the closest prototypes of
the current fused map (p}}),,. To leverage the problem of the choice of the map that is
used to align the other maps, [9] proposes to choose a reference map that is the best
one according to a given clustering quality criterion. However, this method makes
the result strongly dependent on the choice of the first map because only its topology
is used, whereas the topologies of the next maps are not utilized as such.

3 Description of the Optimal Transformation Method

It is well known that the quality of the SOM strongly depends on its initialization.
Given different maps obtained from different (random) initializations, we propose
to find the “best” transformation that can be used to obtain two comparable results
between two distinct maps. The optimal one-to-one transformation between proto-
types in general might be difficult to define so we restrict ourselves to transformations
that strictly preserve the topology of the map, i.e. the set of linear isometric trans-
formations (rotation and/or symmetry). To do so, only square maps with m rows and
columns are considered (i.e., using the notations introduced in the previous section,
U = m?): in these maps, the clusters are supposed to be positioned on a 2D grid at
coordinates {(kq, k2)}k|,k2=1 _____ me

Then, 7 denotes the set of all transformations, 7 : R?2 — R2, that let the map glob-
ally invariant: more precisely, 7 is composed of the set of rotations {rg }oe(0,x/2,7,37/2}
and of the transformations {ry o s}y, with s the symmetry with respect to the axis
passing by the points (”’TH, 0) and (’”;’l , m) For a given map M with prototypes
(pu)u andagiven T € 7, the transformed map T (M) is the map in which the unit u,
with coordinates (k¥ , k%) in N?, has a prototype denoted by pI which is the prototype
pu of the original map, u’ being the unit located at 7! (k¥, k4).

When comparing two maps, the mean of the squared distances (in R?) between
the prototypes of the two maps that are located at the same position is calculated.
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For two maps M and M’, with respective prototypes (p,), and (p,),, we define
a distance between two maps as the distance between their respective prototypes
positionned at the same coordinates:

|
DM M) =—3> lipu— I )
u=1

The best transformation between the current fused map and the next map to be fused
is chosen according to this distance. The two maps are then fused using the optimal
transformation before they are merged, as described in Algorithm 1. The optimal

Algorithm 1 Optimal transformation

Initialization M*! < M!
forb:2 — Bdo
Optimal transformation

T; := arg min D (M*’b_l, T(Mb))
TeT

Fusion between M*?~1 and T (MP?). Provides: M*P
end for
Return M* := M*B

transformation is found by computing the distance between the maps to be fused,
T (MP?), and areference map, which can be the first of the list, MU forinstance.! The
fusion between the map is performed as suggested in [7] by averaging the prototypes
located at the same position:

B
N 1
Yu=1,...,m% 2 ::EZpS'T. 2)
b=1

In the method described in the previous section, all maps are fused in an arbitrary
order. However, as pointed out in [9], the maps may have very different qualities and
may also be very different: merging a very peculiar map with a poor quality might
lead to deterioration of the results instead of improving them. In this section, two
strategies are presented to leverage this problem.

The first one uses a measure of quality of the maps and first rank the maps from
the one with the best quality to the one with the worse quality: M1, ..., M®),
Standard quality measures for SOM can be used to perform this ranking [13]: (i) the
quantization error (QE), ZZ’; Dk, ecx Ixi — pi||?, which is a clustering quality
measure, disregarding the map topology; (ii) the topographic error (TE) which is the

I'The current fused map, M*?~! has also been used as a reference map, with no difference in the
final result. Using M is thus a better strategy, because optimal transformation can be computed in
parallel.
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simplest of the topographic preservation measure: it counts the ratio of second best
matching units that are in the direct neighborhood on the map of the best matching
units for every (x;);. However, for small maps and relatively simple problems, this
measure has a small variability and can lead to many equally ranked maps.

Therefore, another approach is introduced to make a trade-off, while ranking the
maps, between clustering and topographic qualities: the average rank of the maps is
computed as:

P guanii T Tiopo

b quanti
= 3
" 2 )

where r2 . is the rank of the map M? according to its quantization error (the best

quanti
map is ranked first) and similarly for rf(’,po with the topographic error and the maps
were finally ranked by increasing order of (r?),.

Taking advantage of this ordering of the maps, the previous method can be mod-
ified using two different strategies:

1. the similarity strategy: following an idea similar to [9], the maps are merged by
similarity: the merging process is initialized with the best map: M*! « M®,
Then, this map is merged only with the maps that resemble this reference map. To
do so, a simple ascending hierarchical clustering is performed between the maps
(T (M®))p—1....p, with (T)"), obtained by comparison with the reference map
M. This clustering is based on the distance introduced in (1) and the hierarchical
tree is cut using the method described in [ 14]. Finally, the maps in the same cluster
as MW are fused to M*1;

2. the ordering strategy: an alternative approach is performed sequentially by merg-
ing the maps by increasing rank M, M® . The merging process is stopped
at M) with B’ < B (and usually B’ < B) when the quality of the fused map
M*B" would not increase anymore by merging it with MZ'*D (actually, two
strategies are investigated: stopping when the quality measure is not increasing
or stopping when the quality measure has not increased for the last 5 % B fused
maps).

4 Simulations

Methodology. In all the simulations, B = 100 maps are generated using the standard
SOM. The optimal B has not been investigated in this paper and the number of
fused maps was simply taken large enough so that the fusion makes sense. All
maps were built with approximately m = \/% units and 5 x n iterations of the
stochastic algorithm and equipped with a Gaussian neighborhood controlled with
the Euclidean distance between units on the grid. The size of the neighborhood was
progressively decreased during the training. All simulations have been performed
using the R package SOMbrero.> The 100 maps are then fused using one of the

Zhttp://cran.r-project.org/web/packages/sombrero, version 1.0.
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strategies described below and the performance of the different methods are finally
assessed using various quality criteria for the resulting maps M*: (i) two criteria
already mentioned in Sect.3 that are standard to measure the quality of the SOM:
(1) QE and TE; (ii) a criterion which uses the ground truth, when available (i.e.,
an a priori group for the observations), the normalized mutual information (NMI)
[15] between the unit of the map and the a priori group. This criterion quantifies the
resemblance between the a priori group and the clustering provided by the SOM (it
is comprised between 0 and 1, a value of 1 indicating a perfect matching between the
two classifications). Note that this criterion must be interpreted with care because if
the a priori groups are split between several units of the map, each of these units being
composed of one group only (which is expected for SOM results), the criterion can
be lower than when the groups are split between less units which are all composed
of several groups (which would be a less expected result). Thus, this criterion has to
be interpreted only together with the QE and the TE values.

The performance of the method is also assessed in term of stability. It is
expected that several runs of one aggregating method give similar (thus stable)
results. This stability is estimated in terms of: (i) the distance between two final
maps obtained from two different runs of the same method. If M* and M*
are two maps, the quantity D(M*, T*(M*)), where D is defined as in (1) and
T* := argmingegr D(M*, T (M™)), is computed. This gives an estimation of the
dissemblance between two maps from the prototype (hence the topological) per-
spective. If calculated over 250 different final maps, this quantity helps to quantify
the stability of the final prototypes provided by a given aggregation method; (ii) the
NMI between the final classes of two final maps obtained from two different runs of
the same method. This gives an estimation of the dissemblance from the clustering
perspective for a given aggregation method.

250 fusions for each method are performed using the methodology described
above. This permits to compute average quality as stability criteria as well as to have
an overview of the distribution of these criteria when the method is repeated.

Compared methods. The comparisons performed in this section aim at com-
paring our approach to existing ones (which are described in Sect.2) as well as to
investigate several options of the method (as discussed in Sect. 3).

First, our method, which merges several maps obtained from several initialization
states, is compared to the standard bagging approach, in which several maps are
trained from bootstrap samples from the similar initialization states. More precisely,
bootstrap strategies are:

e the method denoted by B-Rand, which uses a common random initialization to
learn B = 100 maps from 100 bootstrap samples coming from the original data
set. Then, the prototypes that are positioned at the same coordinates, are averaged
to obtain the final map M* (as suggested in [7]);

e the method denoted by B-PCA, which uses a common PCA initialization to learn
B = 100 maps from 100 bootstrap samples coming from the original data set (as
suggested by [5]). The PCA initialization consists of initializing the prototypes by
regularly positioning them along the coordinates of the projection of the data set
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on the first two axis of the PCA. Then, the prototypes that are positioned at the
same coordinates, are averaged to obtain the final map M*;

e the method denoted by B-Seq, which uses a sequential initialization of the B = 100
maps: the first map is initialized randomly and trained with a bootstrap sample
and the b-th map is initialized with the final prototypes of the (b — 1)-th map and
trained with another bootstrap sample. Finally, the final map M*, is obtained by
averaging the prototypes of the B = 100 maps, that are positioned at the same
coordinates, as suggested in [8].

These strategies are compared with our method and its bootstrap version, respec-
tively denoted by RoSyF (for “Rotation and Symmetry Fusion”) and B-RoSyF.
RoSyF learns B = 100 maps, each from a different random initial state and using
the whole data set (x;);=1,.., and B-RoSyF learns B = 100 maps from 100 bootstrap
samples coming from the original data set.

Finally, we also compare RoSyF with the approach consisting in selecting only
one map from the B maps, the map supposed to be the best for instance. More
precisely, using the B = 100 maps generated during the training of the RoSyF
method, we selected one of the B = 100 maps (i) randomly (this method is denoted
by Best-R), (ii) with the smallest QE (this method is denoted by Best-QE or (iii)
with the smallest TE (this method is denoted by Best-TE).

Datasets and results. This section compares the results obtained on two datasets
coming from the UCI Machine Learning Repository® as available in the R package
mlbench.* More precisely, the data “Glass” (n = 214, d = 10 and 7 a priori groups)
[16] and the data “Vowel” (n = 990, d = 10 and 11 a priori groups) [17] are
used. The SOM parameters are set to m = 5 and 1 000 iterations for “Glass” and
m = 10 with 5 000 iterations for “Vowel”. The different strategies, and especially
the relevance of using different initial states instead of different bootstrap samples
with the same initialization, is evaluated. The results are provided in Table 1.

First, note that for almost all quality criteria and datasets, RoSyF obtain better
results than the methods based on different bootstrap samples (all differences are sig-
nificant according to Wilcoxon test, risk 5 %). B-RoSyF slightly deteriorates RoSyF
performances. Cottrell etal. [18, 19] reported that the SOM algorithm is highly insen-
sitive to initialization if run on the same data set as compared to what is obtained if
bootstrap samples are used. However, it seems that the quality of the aggregated map
is much better when different initial states are used on the same data set rather than
different bootstrap samples with a common initial state, whatever this initial state is.
Second, the TE obtained by RoSyF is always the lowest, just after the one obtained
by Best-TE (which always selects the map with the lowest TE) but with a better QE
and a better NMI. Again, all these differences are significant according to Wilcoxon
tests (risk: 5%). On a clustering quality point of view, RoSyF is the method that
obtains the second lowest quantization error, just after Best-QE which is designed
to select the map with the lowest QE. Also, from a classification point of view, its
performance is also very good: in average, RoSyF ranks first for the NMI criterion.

3http://archive.ics.uci.edu/ml.
“http://cran.r-project.org/web/packages/mlbench.
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Table1 Method performance comparison (mean and standard deviation of different quality criteria;
QE has been multiplied by 100)

|B-Rand| B-PCA | B-Seq | B-RoSyF |RoSyF |Best-R | Best-QE | Best-TE

“Glass”
mean QE 855.10 | 855.93 |854.97 | 609.84 597.81 [595.09 | 560.69 | 593.68
sd QE 10.30 |9.43 9.24 23.10 9.82 1552 | 545 13.96
mean TE(%) |11.95 |1242 |11.77 | 0.01 0.01 0.10 0.04 0.00
sd TE (%) 6.09 6.53 6.45 0.04 0.07 0.24 0.17 0.00
mean NMI (%) | 15.80 |15.77 |16.00 | 18.92 17.86 | 15.64 16.37 15.87
sd NMI (%) 3.38 3.15 3.30 2.09 1.38 2.20 2.03 2.21

“Vowel”
mean QE 847.57 | 847.73 | 84791 | 550.78 545.88 |547.44 | 531.30 | 548.23
sd QE 11.82 |10.88 |11.63 5.18 1.01 7.10 2.39 6.72
mean TE (%) |5.89 6.06 5.80 0.07 0.07 0.19 0.20 0.00
sd TE (%) 3.62 3.46 3.37 0.10 0.08 0.14 0.14 0.00
mean NMI (%) | 7.11 6.76 7.03 9.47 9.57 9.64 9.53 9.53
sd NMI (%) 1.44 1.37 1.49 0.12 0.11 0.66 0.54 0.72

Also note that all quality criteria have a low variability: the standard deviations is
almost always the lowest: RoSyF is the method which has the best coefficient of
variation (mean divided by the standard deviation) for all quality criteria.

Table 2 (and Fig. 1 for the dataset “Vowel”) provides a comparison of the stability
criteria. For this data set, RoSyF has the best stability, either in term of prototype
stability (even though B-PCA and B-Seq also have a good prototype stability) and
even more in term of class stability. These differences are significant according to
Wilcoxon tests (risk: 5 %). The results indicate that the method is indeed appropriate
to improve the quality of the final map but also that it is very stable and gives very
similar results if used several times, with different initializations of the prototypes
and different training of the merged maps.

The relevance of stopping the merging process before all the maps have been fused
has also been evaluated.’ This comparison shows that there is only a small benefit in
stopping the merging process before all maps have been used: most strategies lead
to an highly deteriorated TE. Only stopping the training process when TE increases
(TE-Inc) or based on the similarity strategy described in Sect. 3 are valid approaches
in terms of quality criteria. However, a stability analysis shows that all these strategies
strongly deteriorate the stability of the final map: merging all maps is the approach
that provides the best stability, either in term of prototype comparison than in term of
class comparison, except for TE-Inc which provides a slightly more stable clustering

SFor the sake of paper length, detailed results are not reported but only described.
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Table 2 Method stability comparison (mean and standard deviation of different stability criteria;
D has been multiplied by 10 000)

| B-Rand | B-PCA | B-Seq | B-RoSyF | RoSyF| Best-R | Best-QE | Best-TE

“Glass”

mean D 70.85 67.22 | 67.06 | 149.65 67.07 | 2047.14 | 1302.27 | 1581.49
sd D 38.62 32.32 | 31.24 | 335.14 310.74| 1557.08 | 1170.39 | 1186.28
mean NMI (%) | 64.77 65.60 | 65.88 | 83.54 87.47 | 49.15 54.41 49.86
sd NMI (%) 6.37 6.32 6.23 5.83 5.11 10.81 9.57 10.26
“Vowel”

mean D 59.89 61.33 | 59.21 | 15.30 11.07 | 681.87 | 535.32 | 716.81
sd D 31.19 33.33 | 31.42 | 5.77 3.87 27523 | 185.06 | 343.41
mean NMI (%) | 57.32 56.83 | 57.70 | 90.83 92.39 | 72.53 74.94 72.11
sd NMI (%) 5.32 5.21 5.20 1.59 1.33 3.29 2.66 3.37
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Fig. 1 Normalized mutual information (NMI) between pairs of clusterings obtained from the 250
final maps generated by the different approaches

but very different prototypes. All these strategies use only few maps (less than 10
maps in average), except again TE-Inc which uses 89.4 maps in average for the
“Glass” dataset and is thus very close to the maximum number of available maps
(100). Actually, additional simulations (not shown for the sake of paper length)
merging more than 100 maps proved that the stability increases with the number
of fused maps (up to a certain number which was for our dataset between 500 to
1000 maps). A trade-off has thus to be found between computational time required
to generate a large number of maps and stability of the results. This question is still
under study.
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5 Conclusion

Although most work on SOM ensembles are based on bootstrapping techniques, this
paper presents an approach allowing to explore different initial states for the map.
The method improves the stability of the fused map, both in term of prototypes and in
terms of clustering. We are currently investigating how to choose an optimal number
B of maps to fuse as well as weighting schemes based on various quality criteria:
this approach is already promising to improve the results, especially the stability of
the final map.
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