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of a Risk-Adjusted Disaster Preparedness
and Relief Distribution Problem
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Abstract This chapter proposes a multistage stochastic optimization framework
that dynamically updates the purchasing and distribution decisions of emergency
commodities in the aftermath of an earthquake. Furthermore, the models consider
the risk of exceeding the budget levels at any stage through chance constraints,
which are then converted to Conditional Value-at-Risk constraints. Compared to
the previous papers, our framework provides the flexibility of adjusting the level of
conservativeness to the users by changing risk related parameters. Under some con-
ditions, the resulting linear programming problems are solved through the Stochas-
tic Dual Dynamic Programming algorithm. The preliminary numerical results are
encouraging.

1 Introduction

This chapter proposes a dynamic and stochastic methodology to generate a risk-
averse disaster preparedness and logistics plan that can mitigate demand and road
capacity uncertainties. More specifically, we apply multistage stochastic optimiza-
tion for dynamically purchasing and distributing emergency commodities with time
dependent demands and road capacities. Several authors have dealt with problems
similar to ours, but [2, 4] are the most related papers. In many cases, our approach
can give less conservative solutions than [2], which considers a robust dynamic opti-
mization framework. Furthermore, our approach gives more conservative solutions
than [4], which considers a risk-neutral dynamic stochastic optimization framework
with a finite number of scenarios.
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The structure of the chapter is as follows. In Sect.2, we introduce multistage
stochastic programming models that take risk into account. Section3 presents the
novelty in our application of the risk-averse Stochastic Dual Dynamic Program-
ming (SDDP) algorithm, and Sect. 3.1 presents some preliminary numerical results.
Finally, Sect.4 summarizes the chapter and presents a few future research directions.

2 Risk-Adjusted Multistage Stochastic Programming
Model

We formulate the problem through a risk-adjusted, T -stage stochastic programming
model, where the decisions at the first-stage belong to the preparedness phase, and
the decisions at later stages belong to the response phase of a disaster. The risk adjust-
ments are achieved by adding probabilistic constraints to the risk-neutral formulation
atstagest =1, ..., T — 1. A risk-neutral formulation and solution of this problem
is given in [1].

We make the following two assumptions for the random vector &, whose com-
ponents are the demands and the road capacities: i—The distribution P, of &, is
known, and this P, is supported on a set ; C R%; ii—The random process {Et}thz
is stage-wise independent.

We formulate the T -stage problem through the following dynamic programming
equations. At stage r = 1, the problem is

Min >’ I:Zfz/yzl + ZCI1’"1£| +E[02 (x1.6)]

iel LIeL
st X bkrf, <>My,Viel
keK leL ) (1)
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leL
Prob {0, (legz) <m} =l-m

yu€{0,1},rk. >0,Viel,le L,ke K

where I, L, and K are the set of potential nodes to open storage facilities, the set of
size categories of the facilities, and the set of commodity types, respectively, f;; is
the fixed cost of opening a facility of size [ in location i, g* is the unit acquisition
cost of commodity k at stage ¢, b* is the unit space requirement for commodity &,
M, is the overall capacity of a facility of size /, r,kl. is the amount of commodity k
purchased at stage ¢ in location i, y;; is the location i and the size [ of a facility, n,
and o, are the known budget limit and the significance level at stage ¢, respectively,
and x; is the vector with the components y;;’s and r{‘i’s. Furthermore, in (1), the
first set of constraints limits the capacity of a facility, the second set of constraints
restricts the number of facilities per node, and the chance constraint ensures that
the second-stage cost-to-go function Q, (xl, & 2) does not exceed the budget limit 7,
with high probability.
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For later stages r =2, ..., T — 1 and for a realization &} of &,, the cost-to-go
functions Q, (x,_] , & ) are given by

Min Z |:qu Ty + Z ctt’j’m y T Zp :| +]E[QI+1 (XZ’EH—I)]
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where J and A are the set of nodes that represent shelters and the set of arcs that
represent roads in the network, respectlvely, i+ 1s the unit transportation cost of
commodity k through arc (i/, j ), pt is the unlt shortage cost of commodity &,
my; ;. is the amount of commodity k transported through arc (i’, j'), w;; and zj; are
the shortage amount of commodity k in shelter j and the amount of commodity k&
stored in location i, respectively, k? and ky; ;, are the demand for the commodity
k in shelter j and the road capa01ty of arc (i ] 2 for a realization s, respectively,
and x, is the vector with components r,kl.’s and zj;’s; all values depend on stage ¢.
Moreover, in (2), the first set of constraints represents the flow conservation with
z’]‘,i = 0Vi € I, k € K, the second set of constraints is for the demand satisfaction,
and the third set of constraints is for the road capacity. The stage T problem has the
same three sets of constraints as in (2), but there are no more acquisition decisions
and the remaining inventories are penalized through a unit holding cost h’} Hence,

the objective function at r = 7 becomes
k k ko k
Min 3" | Sk 4 3 eyt S bt
keK | iel @i',j))eA jeJ

It was suggested in [5] to replace the chance constraint by the CV@R,-type
constraint, where CV@R,, is given by

V@R, [0 (x—1,&)] +a 'E[Q (x1,&) — V@R, [0 (x—1,&)]], @

where the Value-at-Risk (V@R,,) in (3) is, by definition, the left-side (I — «)-
quantile of the distribution of Q, (x,_1, §,), and

[0 - V@R, (0], = max{Q; = V@R, (Q,), 0} .
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A problem with a CV @R-type constraint is that it can make the problem infea-
sible. Consequently, it could be convenient to move the CV @ R-type constraint into
the objective function; that is, we redefine the cost-to-go function as

Vi, [Qt (Xzflv ‘Ez)] =10-2)E [Qt (thl’ g;)] +1,CV@R,, [Qt (Xzfl» ‘Sr)]
“4)

where A; € [0, 1] is a parameter that can be tuned for a tradeoff between minimizing
on average and risk control.

The expectation and the CV@R in (4) usually make the problem analytically
untractable. A possible way to deal with this problem is to use Sample Aver-
age Approximation (SAA). That is, sample &, from its distribution P, to obtain

S = {’;‘} e, fv’}, where N, is the sample size at stage ¢. Then, setting A, = 0
in (4) and for a fixed X,_;, solve the stage ¢ problem to obtain the N, opti-
mal values O, (X,—1,&;), ..., QO (Xr—1,&). Let O,y < Qry <+ < Q1 <

- < Qy,(n,) be the order statistics obtained from these optimal values, and ¢ be
the smallest integer that satisfies ¢« > N, (1 — «;). This Q; ) is an estimate of
V@R [Q, (i,_l, Et)] so that (4) is estimated through

(1= 1)~ M
N : EQ, (Xi-1. &) + 1 Qi + Nt;tZ[Qf (X-1.&) — Qrol, -

s=1

3 Stochastic Dual Dynamic Programming Applications

The Stochastic Dual Dynamic Programming (SDDP) algorithm was introduced in
[3], and the risk-averse SDDP algorithm was applied to an SAA problem in [6].
Furthermore, a detailed description of the risk-neutral SDDP algorithm applied to an
SAA problem was given in [1]. We do not give further detail on the SDDP algorithm,
but refer to the papers above.

The novelty in our application of the risk-averse SDDP follows from the following
proposition.

Proposition 1 For a realization &} of &, and at a given X,_,, a subgradient g} of
Vi, [Qr (xi=1., &,)] is computed through

gs _ { — (1 — )\.[ +)\.t0t;1) B‘;Tﬂ:f — ()"t — )»tOl;I) B;L)Tﬂt(t) lth (ft_l, S‘;) > Qt,(t)
S =
—(1 =B s — 0BT if Or (1. &) < 0.0

where 1t} is the vector of dual variables corresponding to the first set of constraints
fort =3,..., T, and to the first and the second set of constraints fort = 2, Bj is the
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matrix whose entries are given by the coefficients of r* | .andz* | .fort =3,...,T,

and by the coefficients of rtk_lyi and y;; for t =2, and B;l) and n,(‘) correspond
to Q,'(L).

N
Then, a subgradient g, of (4) is estimated through g, = Nl > g
" s—1

3.1 Numerical Results

We consider three consumable emergency commodity types, 10 potential locations
for facilities, and 30 shelters in the two boroughs of Istanbul. The data for costs
and volumes of commodities, the data for costs and capacities of facilities, and the
population data are the same as in [1]. Furthermore, [7] estimated the total numbers
of buildings that are prone to be damaged at various levels for an earthquake of
magnitude 7.3 on the Richter scale; these data are also summarized in [1].

We model the random demand v,kj for commodity k at shelter j and random
capacity ;o for any arc (i’, j') at stage t (t =2, ..., T) as follows:

Utkj = 8:( (S-tfl,j + gt,j) V] € J and Krirjr = 1) * WVOI, j/) €A

where Sl" is the amount of commodity k needed by a single individual during stage ¢,
Gi—1,j is the number of evacuees who were expected to arrive at shelter j by the end
of stage (t — 1), and ¢, ; is the random additional number of evacuees who arrive at
shelter j at stage . Moreover, 7 is the capacity of a single vehicle, t(¢) is the length
of stage ¢, w(i’, j') is the actual distance between nodes i’ and j', and y;;/; is the
random speed of the vehicle. Both ¢; ; and y;;/;» are assumed to be normal; see [1].

We consider T = 6 stages, and concentrate on the first 72h in the aftermath
of an earthquake. The stopping criterion of the SDDP algorithm is the maximum
number of iterations, which is 100. All computational experiments are conducted
on a workstation with Windows 2008 Server, three Intel(R) Xeon(R) CPU E5-2670
CPUs of 2.60 GHz, and 4 GB RAM. The linear programming problems are solved
by ILOG CPLEX Callable Library 12.2.

So far we have only experimented with risk-related parameters, namely A and
«. Values of A closer to 1 and values of « closer to 0 make the 6-stage problems
more risk-averse. In Fig. 1, for « = 1% (on the left) the lower bounds on the 6-
stage costs for A = 0.4 and A = 0.5 stabilize at almost the same value. Foro = 5%
(on the right), however, the lower bound for the more risk-averse case (A = 0.5)
stabilizes at a value which is much lower than the lower bound of the less risk-averse
case (A = 0.4); this is due to the fact that for the A = 0.5 case, facilities store more
emergency commodities, and hence the shortage amounts and the penalty costs are
much lower compared to the 1 = 0.4 case.
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Fig. 1 Changes in the lower bound on the 6-stage costs for « = 1% on the left and « = 5% on
the right

4 Conclusions

In this chapter, we formulate a short-term disaster management problem through a
multistage stochastic programming model. The model takes the risk of exceeding
the budget level at that stage into account through a chance constraint, which is then
converted into a CV@R-type constraint. Because the CV @ R-type constraint can
make the problem infeasible, that constraint is further added to the objective function.
Under some assumptions, the resulting problem is solved through the Stochastic
Dual Dynamic Programming (SDDP) algorithm. The numerical results are very
preliminary, but nevertheless encouraging; the model responds to the risk factors,
namely A and «, as it should. Furthermore, the solution time of a risk-adjusted
problem is not worse than a risk-neutral one.

Future research should include the derivation of a stopping rule for the risk-
adjusted SDDP. Moreover, more numerical experiments should be done concerning
the risk factors and testing the model sensitivities to various cost parameters.
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