
Stochastic Dynamic Programming Solution
of a Risk-Adjusted Disaster Preparedness
and Relief Distribution Problem

Ebru Angün

Abstract This chapter proposes a multistage stochastic optimization framework
that dynamically updates the purchasing and distribution decisions of emergency
commodities in the aftermath of an earthquake. Furthermore, the models consider
the risk of exceeding the budget levels at any stage through chance constraints,
which are then converted to Conditional Value-at-Risk constraints. Compared to
the previous papers, our framework provides the flexibility of adjusting the level of
conservativeness to the users by changing risk related parameters. Under some con-
ditions, the resulting linear programming problems are solved through the Stochas-
tic Dual Dynamic Programming algorithm. The preliminary numerical results are
encouraging.

1 Introduction

This chapter proposes a dynamic and stochastic methodology to generate a risk-
averse disaster preparedness and logistics plan that can mitigate demand and road
capacity uncertainties. More specifically, we apply multistage stochastic optimiza-
tion for dynamically purchasing and distributing emergency commodities with time
dependent demands and road capacities. Several authors have dealt with problems
similar to ours, but [2, 4] are the most related papers. In many cases, our approach
can give less conservative solutions than [2], which considers a robust dynamic opti-
mization framework. Furthermore, our approach gives more conservative solutions
than [4], which considers a risk-neutral dynamic stochastic optimization framework
with a finite number of scenarios.
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The structure of the chapter is as follows. In Sect. 2, we introduce multistage
stochastic programming models that take risk into account. Section3 presents the
novelty in our application of the risk-averse Stochastic Dual Dynamic Program-
ming (SDDP) algorithm, and Sect. 3.1 presents some preliminary numerical results.
Finally, Sect. 4 summarizes the chapter and presents a few future research directions.

2 Risk-Adjusted Multistage Stochastic Programming
Model

We formulate the problem through a risk-adjusted, T -stage stochastic programming
model, where the decisions at the first-stage belong to the preparedness phase, and
the decisions at later stages belong to the response phase of a disaster. The risk adjust-
ments are achieved by adding probabilistic constraints to the risk-neutral formulation
at stages t = 1, . . . , T − 1. A risk-neutral formulation and solution of this problem
is given in [1].

We make the following two assumptions for the random vector ξ t whose com-
ponents are the demands and the road capacities: i—The distribution Pt of ξ t is

known, and this Pt is supported on a set �t ⊂ R
dt ; ii—The random process

{
ξ t

}T

t=2
is stage-wise independent.

We formulate the T -stage problem through the following dynamic programming
equations. At stage t = 1, the problem is

Min
∑

i∈I

[
∑

l∈L
fil yil + ∑

k∈K
qk
1rk

1i

]
+ E

[
Q2

(
x1, ξ 2

)]

s.t
∑

k∈K
bkrk

1i ≤ ∑

l∈L
Ml yil ∀i ∈ I

∑

l∈L
yil ≤ 1 ∀i ∈ I

Prob
{

Q2
(
x1, ξ 2

) ≤ η2
} ≥ 1 − α2

yil ∈ {0, 1} , rk
1i ≥ 0,∀i ∈ I, l ∈ L , k ∈ K

(1)

where I , L , and K are the set of potential nodes to open storage facilities, the set of
size categories of the facilities, and the set of commodity types, respectively, fil is
the fixed cost of opening a facility of size l in location i , qk

t is the unit acquisition
cost of commodity k at stage t , bk is the unit space requirement for commodity k,
Ml is the overall capacity of a facility of size l, rk

ti is the amount of commodity k
purchased at stage t in location i , yil is the location i and the size l of a facility, ηt

and αt are the known budget limit and the significance level at stage t , respectively,
and x1 is the vector with the components yil ’s and rk

1i ’s. Furthermore, in (1), the
first set of constraints limits the capacity of a facility, the second set of constraints
restricts the number of facilities per node, and the chance constraint ensures that
the second-stage cost-to-go function Q2

(
x1, ξ 2

)
does not exceed the budget limit η2

with high probability.
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For later stages t = 2, . . . , T − 1 and for a realization ξ s
t of ξ t , the cost-to-go

functions Qt
(
xt−1, ξ

s
t

)
are given by

Min
∑

k∈K

[
∑

i∈I
qk

t r k
ti + ∑

(i ′, j ′)∈A
ck

ti ′ j ′mk
ti ′ j ′ + ∑

j∈J
pk

t w
k
t j

]

+ E
[
Qt+1

(
xt , ξ t+1

)]

s.t zk
ti + ∑

(i, j ′)∈A
mk

ti j ′ − ∑

( j ′,i)∈A
mk

t j ′i = rk
t−1,i + zk

t−1,i ∀i ∈ I, k ∈ K
∑

(i ′, j)∈A
mk

ti ′ j − ∑

( j,i ′)∈A
mk

t ji ′ + wk
t j = νks

t j ∀ j ∈ J, k ∈ K

∑

k∈K
bk

(
mk

ti ′ j ′ + mk
t j ′i ′

)
≤ κs

ti ′ j ′ ∀ (
i ′, j ′) ∈ A

∑

k∈K
bk

(
zk

ti + rk
ti

) ≤ ∑

l∈L
Ml yil ∀i ∈ I

Prob
{

Qt+1
(
xt , ξ t+1

) ≤ ηt+1
} ≥ 1 − αt+1

rk
ti , mk

ti ′ j ′ , wk
t j , zk

ti ≥ 0∀i ∈ I, j ∈ J, k ∈ K , (i ′, j ′) ∈ A

(2)

where J and A are the set of nodes that represent shelters and the set of arcs that
represent roads in the network, respectively, ck

ti ′ j ′ is the unit transportation cost of
commodity k through arc

(
i ′, j ′), pk

t is the unit shortage cost of commodity k,
mk

ti ′ j ′ is the amount of commodity k transported through arc
(
i ′, j ′), wk

t j and zk
ti are

the shortage amount of commodity k in shelter j and the amount of commodity k
stored in location i , respectively, νks

t j and κs
ti ′ j ′ are the demand for the commodity

k in shelter j and the road capacity of arc
(
i ′, j ′) for a realization s, respectively,

and xt is the vector with components rk
ti ’s and zk

ti ’s; all values depend on stage t .
Moreover, in (2), the first set of constraints represents the flow conservation with
zk
1,i = 0∀i ∈ I, k ∈ K , the second set of constraints is for the demand satisfaction,
and the third set of constraints is for the road capacity. The stage T problem has the
same three sets of constraints as in (2), but there are no more acquisition decisions
and the remaining inventories are penalized through a unit holding cost hk

T . Hence,
the objective function at t = T becomes

Min
∑

k∈K

⎡

⎣
∑

i∈I

hk
T zk

T i +
∑

(i ′, j ′)∈A

ck
T i ′ j ′mk

T i ′ j ′ +
∑

j∈J

pk
T wk

T j

⎤

⎦ .

It was suggested in [5] to replace the chance constraint by the CV@Rα-type
constraint, where CV@Rα is given by

V@Rα

[
Qt

(
xt−1, ξ t

)] + α−1
E

[
Qt

(
xt−1, ξ t

) − V@Rα

[
Qt

(
xt−1, ξ t

)]]
+ (3)

where the Value-at-Risk (V@Rα) in (3) is, by definition, the left-side (1 − α)-
quantile of the distribution of Qt

(
xt−1, ξ t

)
, and

[
Qt − V@Rα (Qt )

]
+ = max {Qt − V@Rα (Qt ) , 0} .
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A problem with a CV@R-type constraint is that it can make the problem infea-
sible. Consequently, it could be convenient to move the CV@R-type constraint into
the objective function; that is, we redefine the cost-to-go function as

Vλt

[
Qt

(
xt−1, ξ t

)] := (1 − λt )E
[
Qt

(
xt−1, ξ t

)] + λtCV@Rαt

[
Qt

(
xt−1, ξ t

)]

(4)

where λt ∈ [0, 1] is a parameter that can be tuned for a tradeoff between minimizing
on average and risk control.

The expectation and the CV@R in (4) usually make the problem analytically
untractable. A possible way to deal with this problem is to use Sample Aver-
age Approximation (SAA). That is, sample ξ t from its distribution Pt to obtain
St := {

ξ 1
t , . . . , ξ

Nt
t

}
, where Nt is the sample size at stage t . Then, setting λt = 0

in (4) and for a fixed xt−1, solve the stage t problem to obtain the Nt opti-
mal values Qt

(
xt−1, ξ

1
t

)
, . . . , Qt

(
xt−1, ξ

Nt
t

)
. Let Qt,(1) < Qt,(2) < · · · < Qt,(ι) <

· · · < Qt,(Nt ) be the order statistics obtained from these optimal values, and ι be
the smallest integer that satisfies ι ≥ Nt (1 − αt ). This Qt,(ι) is an estimate of
V@R

[
Qt

(
xt−1, ξ t

)]
so that (4) is estimated through

(1 − λt )

Nt

Nt∑

s=1

Qt
(
xt−1, ξ

s
t

) + λt Qt,(ι) + λt

Ntαt

Nt∑

s=1

[
Qt

(
xt−1, ξ

s
t

) − Qt,(ι)
]
+ .

3 Stochastic Dual Dynamic Programming Applications

The Stochastic Dual Dynamic Programming (SDDP) algorithm was introduced in
[3], and the risk-averse SDDP algorithm was applied to an SAA problem in [6].
Furthermore, a detailed description of the risk-neutral SDDP algorithm applied to an
SAA problemwas given in [1]. We do not give further detail on the SDDP algorithm,
but refer to the papers above.

The novelty in our application of the risk-averse SDDP follows from the following
proposition.

Proposition 1 For a realization ξ s
t of ξ t and at a given xt−1, a subgradient gs

t of
Vλt

[
Qt

(
xt−1, ξ t

)]
is computed through

gs
t =

{
−

(
1 − λt + λtα

−1
t

)
BsT

t π s
t −

(
λt − λtα

−1
t

)
B(ι)T

t π
(ι)
t if Qt

(
xt−1, ξ

s
t
)

> Qt,(ι)

−(1 − λt )BsT
t π s

t − λt B(ι)T
t π

(ι)
t if Qt

(
xt−1, ξ

s
t
) ≤ Qt,(ι)

where π s
t is the vector of dual variables corresponding to the first set of constraints

for t = 3, . . . , T , and to the first and the second set of constraints for t = 2, Bs
t is the



Stochastic Dynamic Programming Solution … 13

matrix whose entries are given by the coefficients of rk
t−1,i and zk

t−1,i for t = 3, . . . , T ,

and by the coefficients of rk
t−1,i and yil for t = 2, and B(ι)

t and π
(ι)
t correspond

to Qt,(ι).

Then, a subgradient ĝt of (4) is estimated through ĝt = 1
Nt

Nt∑

s−1
gs

t .

3.1 Numerical Results

We consider three consumable emergency commodity types, 10 potential locations
for facilities, and 30 shelters in the two boroughs of Istanbul. The data for costs
and volumes of commodities, the data for costs and capacities of facilities, and the
population data are the same as in [1]. Furthermore, [7] estimated the total numbers
of buildings that are prone to be damaged at various levels for an earthquake of
magnitude 7.3 on the Richter scale; these data are also summarized in [1].

We model the random demand νk
t j for commodity k at shelter j and random

capacity κt i ′ j ′ for any arc (i ′, j ′) at stage t (t = 2, . . . , T ) as follows:

νk
t j = δk

t

(
ςt−1, j + ςt, j

) ∀ j ∈ J and κti ′ j ′ = η ∗ τ(t)
ω(i ′, j ′)/γti ′ j ′

∀(i ′, j ′) ∈ A

where δk
t is the amount of commodity k needed by a single individual during stage t ,

ςt−1, j is the number of evacuees who were expected to arrive at shelter j by the end
of stage (t − 1), and ςt, j is the random additional number of evacuees who arrive at
shelter j at stage t . Moreover, η is the capacity of a single vehicle, τ(t) is the length
of stage t , ω(i ′, j ′) is the actual distance between nodes i ′ and j ′, and γti ′ j ′ is the
random speed of the vehicle. Both ςt, j and γti ′ j ′ are assumed to be normal; see [1].

We consider T = 6 stages, and concentrate on the first 72h in the aftermath
of an earthquake. The stopping criterion of the SDDP algorithm is the maximum
number of iterations, which is 100. All computational experiments are conducted
on a workstation with Windows 2008 Server, three Intel(R) Xeon(R) CPU E5-2670
CPUs of 2.60GHz, and 4GB RAM. The linear programming problems are solved
by ILOG CPLEX Callable Library 12.2.

So far we have only experimented with risk-related parameters, namely λ and
α. Values of λ closer to 1 and values of α closer to 0 make the 6-stage problems
more risk-averse. In Fig. 1, for α = 1% (on the left) the lower bounds on the 6-
stage costs for λ = 0.4 and λ = 0.5 stabilize at almost the same value. For α = 5%
(on the right), however, the lower bound for the more risk-averse case (λ = 0.5)
stabilizes at a value which is much lower than the lower bound of the less risk-averse
case (λ = 0.4); this is due to the fact that for the λ = 0.5 case, facilities store more
emergency commodities, and hence the shortage amounts and the penalty costs are
much lower compared to the λ = 0.4 case.
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Fig. 1 Changes in the lower bound on the 6-stage costs for α = 1% on the left and α = 5% on
the right

4 Conclusions

In this chapter, we formulate a short-term disaster management problem through a
multistage stochastic programming model. The model takes the risk of exceeding
the budget level at that stage into account through a chance constraint, which is then
converted into a CV@R-type constraint. Because the CV@R-type constraint can
make the problem infeasible, that constraint is further added to the objective function.
Under some assumptions, the resulting problem is solved through the Stochastic
Dual Dynamic Programming (SDDP) algorithm. The numerical results are very
preliminary, but nevertheless encouraging; the model responds to the risk factors,
namely λ and α, as it should. Furthermore, the solution time of a risk-adjusted
problem is not worse than a risk-neutral one.

Future research should include the derivation of a stopping rule for the risk-
adjusted SDDP. Moreover, more numerical experiments should be done concerning
the risk factors and testing the model sensitivities to various cost parameters.
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