FlexMash — Flexible Data Mashups Based
on Pattern-Based Model Transformation

Pascal Hirmer®™ and Bernhard Mitschang

Institute of Parallel and Distributed Systems, University of Stuttgart,
Universitatsstr. 38, 70569 Stuttgart, Germany
pascal.hirmer@ipvs.uni-stuttgart.de
http://www.ipvs.uni-stuttgart.de

Abstract. Today, the ad-hoc processing and integration of data is an
important issue due to fast growing I'T systems and an increased connec-
tivity of the corresponding data sources. The overall goal is deriving high-
level information based on a huge amount of low-level data. However, an
increasing amount of data leads to high complexity and many technical
challenges. Especially non-I'T expert users are overburdened with highly
complex solutions such as Extract-Transform-Load processes. To tackle
these issues, we need a means to abstract from technical details and pro-
vide a flexible execution of data processing and integration scenarios.
In this paper, we present an approach for modeling and pattern-based
execution of data mashups based on Mashup Plans, a domain-specific
mashup model that has been introduced in previous work. This non-
executable model can be mapped onto different executable ones depend-
ing on the use case scenario. The concepts introduced in this paper were
presented during the Rapid Mashup Challenge at the International Con-
ference on Web Engineering 2015. This paper presents our approach, the
scenario that was implemented for this challenge, as well as the encoun-
tered issues during its preparation.

Keywords: ICWE rapid mashup challenge 2015 - Data mashups -
Transformation patterns - TOSCA - Cloud computing

1 Context and Goals

Nowadays, the complexity and size of the IT systems used in enterprises con-
stantly increase. Especially in the area of data processing and integration, this
leads to high costs as well as communication effort between domain-specific
users, e.g., business persons, and IT experts that implement the data process-
ing. This oftentimes results in hand-made, monolithic, non-flexible solutions that
are exclusively suitable for a few number of use cases. For example, Extract-
Transform-Load (ETL) process models and their execution can usually only be
used for specific scenarios, i.e., they offer nearly no flexibility. Furthermore, exist-
ing data mashup or data streaming solutions mostly offer a single possibility how
data is processed, fulfilling only a limited number of user requirements.

© Springer International Publishing Switzerland 2016
F. Daniel and C. Pautasso (Eds.): RMC 2015, CCIS 591, pp. 12-30, 2016.
DOI: 10.1007/978-3-319-28727-0_-2

FlexMash — Flexible Data Mashups 13

To tackle these issues, we need a data mashup solution that offers domain-
specific modeling as well as a corresponding technical execution of data process-
ing and integration depending on the use case scenario. That is, its execution
has to flexibly suite a scenario’s special requirements, e.g., robustness, scala-
bility, security, efficiency. Using a non-technical, domain-specific model enables
users to define data processing and integration scenarios they are interested in
without any need of implementation and execution details. Aside the domain-
specific model, the user should have the possibility to define requirements that
are fulfilled by the mashup execution. In previous work, we introduced Mashup
Plans [11], a graph-based model that enables domain-specific modeling of data
mashups. Mashup Plans enable modeling data sources as so called business
objects [6,14] that represent domain-specific objects, e.g., an enterprise infor-
mation system or a production machine, and abstract from low-level data struc-
tures such as databases, ontologies, sensors or unstructured text. In the context
of this paper as well as of previous work, these business objects are called Data
Source Descriptions (DSD). Furthermore, Mashup Plans contain Data Process-
ing Descriptions (DPD) that abstract from fine-grained data operations and
offer generic, easy-to-use, domain-specific data processing operations (e.g., fil-
ter or combine) that can be mapped onto a multitude of implementations that
depend on the context the DPD is used in. Mashup Plans are modeled as shown
in Fig. 1. In this paper, we introduce a new approach to transform Mashup Plans
into alternative, executable formats depending on the requirements set by the
use case scenario. Note that due to the implementation focus of this paper, we
are not looking into conceptual details.

The remainder of this paper is structured as follows: in Sect. 2, we describe
basic concepts that are necessary to explain our approach. Section 3 describes
related work. In Sect. 4, the main contribution of our paper is presented: we
introduce an approach for pattern-based Mashup Plan transformation and exe-
cution. Section 5 describes the maturity of our tool and Sect. 6 its features. After
that, in Sect. 7, the prototypical implementation of our approach is presented,
in Sect. 8, the presented demo flow is shown, in Sect.9 we describe the chal-
lenge preparation and the results are subsequently evaluated in Sect. 10. Finally,
Sect. 11 summarizes the results and gives an outlook to future work.

2 Basic Concepts

In this section, we describe basic concepts that are necessary to comprehend the
approach presented in this paper. These concepts are (i) Mashup Plans, as intro-
duced in previous work, and (ii) the Topology and Orchestration Specification
for Cloud Applications (TOSCA) that is used for provisioning of the mashup’s
execution components in a cloud computing environment.

2.1 Mashup Plans

A Mashup Plan is a non-executable, domain-specific model to define data
mashup (i.e., ad-hoc data processing and integration) scenarios and was

14 P. Hirmer and B. Mitschang

Domain Expert

models

accesses Data Processing
Data Source Descriptions
Descriptions

&n’ Expert Mashup Plan

8 Data Source Description (DSD)

creates

C] Data Processing Description (DPD)

Fig. 1. Overview of Mashup Plans (based on [11])

introduced in our previous work [11]. The modeler of Mashup Plans is usually
a domain-expert such as a business person, without any knowledge of techni-
cal details. As depicted in Fig.1, a Mashup Plan is a cohesive, directed flow
graph based on the Pipes and Filter pattern [15] containing two types of nodes
and a single edge type representing the data and control flow between these
nodes. The node types are subdivided into Data Source Descriptions (DSD) and
Data Processing Descriptions (DPDs) as well as a single start and end node.
Data Source Descriptions offer a non-technical way to model data sources, with-
out having to know about low-level details such as data base ports, URLs, etc.
These DSDs are based on so called business objects as described by [6,14]. The
second type of nodes, the DPDs, describe how the data is processed, i.e., how it
is filtered, aggregated, analyzed, or otherwise modified. That is, a DPD describes
an operation, i.e., a piece of code, that processes the data. The actual implemen-
tation of the DPD depends on its context. As a consequence, different imple-
mentations exist for a single DPD, depending on the data types, data structures,
etc. The mapping from DSDs and DPDs to their corresponding implementation
can be realized by a rule-based approach as described by Reimann et al. [19].
When modeling Mashup Plans, the following restrictions have to be considered:
(i) a Mashup Plan contains a single start node to indicate the entry point of
the flow, (ii) a completely modeled Mashup Plan contains at least one Data
Source Description and at least one Data Processing Description, and (iii) a
Mashup Plan contains a single output represented by an end node (depicted
in Fig. 1). The technical properties of DSDs and DPDs that are used to model
Mashup Plans are defined once by IT experts who store them in corresponding
repositories. This enables Mashup Plan modeling by domain-experts based on
the DSD and DPD repositories without them having to specify any technical
details. A concrete example of a modeled Mashup Plan using the FlexMash data
mashup tool is depicted in Fig. 5(a).

Note that we slightly modified the concept of Mashup Plans in this paper in
contrast to previous work by adding the start node. In previous work, the entry

FlexMash — Flexible Data Mashups 15

point of Mashup Plans was defined through the data source descriptions. As
a consequence, DSDs could not contain incoming connections and represented
the starting points of the flow. However, in some use cases it is necessary to
integrate data sources not only in the beginning but also within the flow (e.g.,
the Twitter data source in Fig. 5(a)). As a consequence, we added the start node
to the Mashup Plan.

2.2 TOSCA

In this section, basic concepts of the Topology and Orchestration Specification for
Cloud Applications (TOSCA) are introduced that are necessary to comprehend
the approach presented in this paper. The following section is based on [10].

TOSCA is a standard of OASIS to describe cloud applications in a portable
way. TOSCA-based descriptions define (i) the structure as well as (ii) the man-
agement functionalities of cloud-based applications. Although TOSCA is a rel-
atively new standard, several tools exist that ease modeling, provisioning, and
management of TOSCA-based applications. The open source ecosystem Open-
TOSCA, for example, includes a graphical modeling tool called Winery [13] and
a plan-based provisioning and management runtime environment [3], which can
be used to provision and manage TOSCA applications fully automatically. Fur-
ther details on the TOSCA standard can be found in the official OASIS TOSCA
specification [16], TOSCA Primer [17], or Binz et al. [2].

The core of the application description in TOSCA is the Topology Template,
a directed graph containing Node Templates (vertices) and Relationship Tem-
plates (edges). Node Templates may describe all components of an application,
including all software and hardware components. The relations between those
Node Templates are represented by Relationship Templates. Node and Relation-
ship Templates are typed by Node Types and Relationship Types, respectively.
Types define the semantics of the templates, as well as their properties, provided
management operations, and so on. Types can be refined or extended by an inher-
itance mechanism. TOSCA Policies are used to define non-functional require-
ments for the provisioning of an application. Using TOSCA Policies, it is possi-
ble to determine costs, security, availability, scalability or similar non-functional
requirements. TOSCA specifies an exchange format called Cloud Service Archive
(CSAR) to package Topology Templates, types, associated artifacts, plans, and
all required files into one self-contained package. This package is portable across
different standards-compliant TOSCA runtime environments [4].

3 Related Work

In the past, many data mashup solutions have been introduced in science and
industry that are built to enable an ad-hoc processing and integration of data.
Usually these solutions offer a graphical modeling tool that enables the users to
define data sources and data operations as well as the way data is processed.

16 P. Hirmer and B. Mitschang

Well-known examples are Yahoo! Pipes', Intel MashMaker? and the IBM Infos-
phere MashupHub3. These enterprise-ready solutions offer a lot of functionality
in regard to the data sources they are able to integrate as well as the data process-
ing operations they support. However, existing solutions only offer a single pos-
sibility for execution, i.e., they have a single, static implementation. Nowadays,
the user requirements may differ significantly, especially when it comes to data
processing and integration. In production environments, for example, it is very
important that data is processed in real-time, i.e., a very efficient execution has to
be supported. Furthermore, in businesses, for example, robustness and security
are very important aspects. In other scenarios, the coping with huge amounts of
data has to be supported, and so on. However, current mashup solutions cannot
cope with these heterogeneous requirements. In this paper, we tackle this issue
by introducing a flexible data mashup execution based on user requirements.

Furthermore, existing approaches define abstract, non-technical models to
describe data processing and integration scenarios similar to the introduced
Mashup Plans. However, oftentimes these approaches do not offer a sufficient
abstraction from technical details. For example, many modeling nodes in Yahoo!
Pipes require the knowledge of programming concepts such as string builders,
regular expressions, HTML scraping, for each-loops, and so on. This limits the
usage to software developers that have to know about technical details. Using
so called business objects [6,14], we can enable modeling data mashup scenarios
based on the user’s domain. This further enables a widely usable data mashup
solution, e.g., for business users and for technical experts as well.

In previous work [11], we already introduced the modeling of Mashup Plans
as well as some basic ideas of their transformation. These Mashup Plans can be
modeled using a variety of different formats, e.g., also using established standards
such as BPMN, XML or JSON. All these abstract languages have to be further
transformed onto an executable level as described in Sect. 4.2. As a consequence,
Mashup Plans offer a generic means to define data mashup scenarios and are not
bound to a specific format. In this paper, we focus on the transformation of this
model to an executable representation based on patterns, and we describe how
these concepts were applied during the ICWE Mashup Challenge 2015.

4 Flexible Data Mashups Based on Pattern-Based Model
Transformation

This section describes our proposed mashup approach: flexible data mashups
based on pattern-based model transformation. We subdivide the approach into
five main steps as depicted in Fig. 2: (i) the modeling of Mashup Plans, (ii) the
selection of transformation patterns, (iii) the pattern-based transformation of
Mashup Plans into an executable format, (iv) the cloud-based data mashup
execution based on user requirements, and (v) the storage and/or visualization

! https://pipes.yahoo.com /pipes/.
2 http://intel.ly/IBW2crD.
3 http://ibm.co/1Ghxv2T.

https://pipes.yahoo.com/pipes/
http://intel.ly/1BW2crD
http://ibm.co/1Ghxv27

FlexMash — Flexible Data Mashups 17

“ p Mashup Execution
) JE Robust
I—
Mashup /) »
Modeling % =) 0# Time-Critical =) EE
Tool \ I
Mashup
Mashup Mashup Pattern / Result
Modeler Plan Selection & S
Combination
Step 2: Step 3/4: Pattern-based Step 5:

Step 1: Domain-specific

Modelin ern Transformation & Visualization &
9 Selection / Execution Storage

Fig. 2. Overall approach of flexible data mashups (based on [11])

of the derived result. These overall steps are based on previous work [11]. Note
that in the following, the terms pattern and transformation pattern are used
synonymously.

After modeling of the Mashup Plan that defines the data as well as how it
is processed and integrated, the user can select patterns that represent his/her
requirements for the mashup execution. That is, each pattern can fulfill certain
user requirements, such as efficiency or robustness. The transformation of the
domain-specific, non-executable model to an executable representation is done
based on the selected patterns. Finally, the mashup is executed in a suitable
engine. The result of the execution can be stored or visualized.

The modeling of Mashup Plans (Step 1) has already been described in pre-
vious work, as a consequence, the Mashup Plan modeling step depicted in Fig. 2
will not be described here. Its description can be found in [11]. Furthermore, the
use of the mashup result (Step 5) is mostly application-dependent and therefore
out of scope of this paper.

4.1 Step 2: Transformation Pattern Selection

In this section, we introduce the transformation patterns, how they are selected
and how they can be parameterized. Patterns are high-level descriptions of estab-
lished practices to solve reoccurring problems. Each pattern can be implemented
in a different fashion, i.e., patterns offer an abstract solution to specific problems
and can be mapped onto corresponding solution implementations [8]. Each of
the transformation patterns introduced in this paper fulfills certain user require-
ments for the data mashup execution.

During modeling of the Mashup Plan, the modeler has the possibility to select
the patterns him/herself based on his or her requirements. In case the Mashup
Plan modeler is a business person without any knowledge of the specific tech-
nical requirements, this decision can also be made by (IT) experts supporting
the modeler by analyzing the mashup scenario. To be able to select a pattern,

18 P. Hirmer and B. Mitschang

Ki’ & Transformation Pattern: Robust Mashup h

.

Problem: Robustness is an important factor for IT systems, especially in enterprise applications and
systems. It stands for many factors such as stability, error tolerance, logging etc. that have to
be fulfilled in a robust environment.

Solution: A robust execution engine that supports error handling, logging as well as data persistence is
used.
Example: An exemplary pattern implementation could, e.g., be realized using a workflow engine such

as Apache ODE, the Oracle workflow engine or the WSO2 engine using BPEL as execution
language. These engines provide all the necessary factors to ensure robustness.

Evaluation: The Robust Mashup pattern can be used in enterprise environments in which, e.g., workflows
are already established. By using this pattern, robustness can be guaranteed which is the
most important factor in enterprises. However, of course there are some setbacks regarding
runtime efficiency.

Combination: Secure Mashup Pattern; Big Data Mashup Pattern;

Fig. 3. Example of a pattern catalog entry — Robust Mashup

the modeler has to know about all existing patterns, know about their abilities
as well as their limitations. Furthermore, the modeler has to know how these
patterns can be combined in a reasonable manner. To enable this, we created an
extendable pattern catalog that describes widely used patterns regarding data
mashup processing. Each entry in this catalog describes a single transformation
pattern and has the following content: (i) a description containing the problem
that is solved by the pattern, (ii) the solution the pattern offers to solve this
problem, (iii) an example how the pattern can be applied, (iv) a short eval-
uation, and (v) information about if and how it can be combined with other
transformation patterns. When selecting a pattern, the user usually has to define
additional parameters that are necessary to find a corresponding implementa-
tion. For example, when selecting the time-critical mashup pattern, the user has
to specify the maximal time the execution may take. When selecting the robust
mashup pattern, the user e.g., has to specify whether error handling is needed,
logging has to be supported, etc. This parameterization is done during the pat-
tern’s selection. An exemplary entry of the pattern catalog is shown in Fig. 3.
As depicted, it contains a textual description of how the pattern can be applied.
The selected patterns influence the manner the mashup is executed, e.g., when
the depicted pattern Robust Mashup is selected from the pattern catalog, the
mashup is executed in a robust manner, e.g., using a workflow engine. That is,
the selected patterns give a directive for the executable format the mashup plan
is transformed into and, as a consequence, for the execution components.

4.2 Step 3: Pattern-Based Transformation

In this section, we describe how the non-executable Mashup Plan is transformed
into an executable representation based on patterns. The executable format the

FlexMash — Flexible Data Mashups 19

Mashup Plan is transformed into, depends on the patterns that were selected in
the previous step. The mapping of the Mashup Plan onto the executable model
as well as the selection of the execution engine that is being used to execute it, is
chosen using a rule-based transformation approach, similar to the one described
by [18,19]. To structure patterns and connect them to corresponding implemen-
tations, we use so called pattern graphs. A pattern graph is a tree-based, directed
graph containing nodes and edges. A node in the pattern graph represents either
a pattern or an implementation. An edge from one node to another represents a
specialization. There are two types of edges. The “consists of” edge is used to
connect patterns and indicates that a pattern consists of several sub-patterns.
As a consequence, the problem described by the pattern can only be solved, if
all of its sub-patterns are applied. The second edge type “implemented by” is
used to connect to the implementation nodes. If a pattern is connected to one
or more implementations, it means that it can be realized by either one of them.
In this case, one of them has to be selected either manually or automatically.
To summarize, a generic pattern at the root node of the tree is getting more
and more concrete by being subdivided into sub-patterns and finally into imple-
mentation fragments. As a consequence, patterns can be structured hierarchi-
cally through different abstraction levels. Furthermore, a single pattern can be
realized by different implementations. The root node of the pattern graph rep-
resents the most abstract pattern, which is the pattern described textually in
the pattern catalog. That is, a different pattern graph exists for each entry of the
pattern catalog. Which path in the pattern graph is chosen in order to reach the
implementation at the leaf nodes, depends on the pattern’s parameterization.
This decision is made based on rules that are evaluated during traversal of the

Robust parameters = Patterns
Mashup

P = ——— e il e L]
1 1 1
Error Handling Logging Data Persistence | — Sub-Patterns

I |
| l

BPEL & Apache BPEL & Oracle .
e BPEL & WSO2 WF Engine Implementations

—

_____ » consists of

————— implemented by

Fig. 4. Pattern graph example

20 P. Hirmer and B. Mitschang

pattern graph. These rules compare the parameters of the pattern with prede-
fined properties of the implementations to find the most suitable one. Note that
our approach will always find an implementation, however, it is not guaranteed
that it can fulfill all given user requirements. In this case, the user has to decide
whether to use the selected implementation or not. An exemplary pattern graph
for the Robust Mashup pattern is depicted in Fig. 4.

Note that for a single selected pattern, this rule-based transformation app-
roach can be applied in a straight-forward manner. However, if several patterns
are combined, the determination of a suitable pattern implementation is much
more complex and is currently part of our ongoing work.

Once a suitable implementation is found, the transformation of the Mashup
Plan to a suitable executable representation can be processed. We use predefined,
modularized implementation fragments that are scripted together to create the
executable model. For example, if the execution is done using a workflow engine,
we can create the executable workflow automatically using, e.g., invoke nodes
of the Business Process Execution Language (BPEL) to execute the operations
defined in the Mashup Plan. The programming logic of the DSDs and DPDs is
stored in code fragments, e.g. Java Web Services that are executed by the work-
flow. In other examples, e.g., when using the Node-RED* execution engine, the
transformation works in a similar fashion by connecting predefined, JavaScript
code fragments. The implemented pattern transformations for the ICWE Rapid
Mashup Challenge are described in Sect. 9.

4.3 Step 4: TOSCA-Based Deployment and Execution

To execute our data mashups, several software components are necessary that
process the data flow, provide the programming logic of DSDs and DPDs and
visualize or store the result, e.g., in a database or data warehouse (Step 5). Our
goal is provisioning these components on-demand, i.e., only if a data mashup is
initiated. The provisioning of these components is done once on the first execu-
tion of the mashup flow. If the mashup is not needed anymore, the components
can be shut down to save costs. To enable this, we use approved cloud com-
puting technologies, the OASIS standard TOSCA [16], as well as the results of
our previous work [10]. In the first step, the components to be provisioned are
received by traversing the pattern graph. Based on this information, a TOSCA
topology can be created automatically containing the necessary components as
well as information about how they are connected. This can be achieved by the
concept of Node Templates and Relationship Templates provided by the TOSCA
standard. In our previous work [10], we introduced an approach for automated
completion of topologies for TOSCA-based cloud applications, which enables
completing topologies that are only containing application-specific components
and are missing platform as well as infrastructure components. Using these con-
cepts, we can automatically complete the topology and create a TOSCA cloud
service archive (CSAR), a self-contained package, containing all the information

4 http://nodered.org/.

http://nodered.org/

FlexMash — Flexible Data Mashups 21

and software components necessary to provision applications in a cloud envi-
ronment. For example, if the implementation contains a workflow engine to be
provisioned, the necessary components to run it, such as a web server, an oper-
ating system and an instance of a cloud provider are added automatically to
the topology and, as a consequence, to the CSAR. Using the plan generator
extension of our TOSCA runtime OpenTOSCA [4], this cloud service archive
can be used for an automated deployment of the components in the cloud. The
automated deployment and execution of the mashup can be initiated using man-
agement plans, as described by [5]. The interested reader is referred to [2,3,10]
and [16] for more information about TOSCA and the OpenTOSCA ecosystem.
The implementation of these concepts is part of our ongoing work.

5 FlexMash — Level of Maturity

This section describes the current maturity of the implementation of our previ-
ously described approach. We implemented a prototype of FlexMash and used it
in two different use case scenarios besides the one for the ICWE Rapid Mashup
Challenge described in Sect.7. In the first scenario, sensor data is integrated
and processed to determine high-level situations in smart environments. For
this implementation, we developed our prototype to support the stream-based
processing of sensor data. The detailed results are described in [9]. The second
use case implements a data mashup for exception escalation in advanced manu-
facturing environments, which is described in [12]. In this use case, exceptions in
manufacturing environments are recognized and analyzed based on different data
sources. The executed data mashup provides a result to find and solve occurred
problems in an efficient manner by processing and integrating the corresponding
data of the sources.

The current version of our prototype is tailored to these use cases. However,
it offers a high degree of extensibility, which enables an easy adding of different
data sources, data operations, patterns, execution formats and engines.

6 FlexMash — Feature Checklist

In this section, the features of the current state of FlexMash’s implementation are
described based on the ICWE Rapid Mashup Challenge checklist, which contains
information about important properties and design choices of mashup tools to
enable their categorization. The feature checklist is based on related work and
is subdivided into two parts: (i) an overall mashup feature checklist as described
in [7] (Chap.6), and (ii) a mashup tool feature checklist as described in [1]. The
detailed information about the single entries are provided in these references.

— Mashup Feature Checklist
e Mashup Type: Data mashups
e Component Type: Data components
e Runtime Location: Both client and server

22 P. Hirmer and B. Mitschang

e Integration Logic: Orchestrated integration
e Instantiation Lifecycle: Stateless
— Mashup Tool Feature Checklist
e Targeted End-User: Non programmers
e Automation Degree: Semi-automation
e Liveness Level: Level 3 — Automatic compilation and deployment,
requires re-initialization
e Interaction Technique: Visual language (Iconic)
e Online User Community: None (yet)

7 ICWE Rapid Mashup Challenge — Mashup Scenario

In this section, we introduce the scenario that was implemented and presented
during the ICWE Rapid Mashup Challenge 2015. For this challenge, we intro-
duced a specific mashup scenario according to the requirements. The goal of the
challenge was integrating specific data sources in an “elegant” manner using new
mashup tools and approaches. The choices of the data sources were as follows:
(i) the New York Times API®, which can be used to receive articles and other
news items, (ii) the YouTube API® to integrate video data, as well as (iii) the
Google Maps API” to display geo locations in the Google Maps user interface.
At least one of these APIs had to be chosen and at least two data sources had
to be processed and integrated in total. As a consequence, it was allowed to
add other web APIs arbitrarily. Due to our tool — respectively our prototypical
implementation — being a pure data mashup tool that cannot yet handle video
data and does not focus on the user interface, we used the New York Times web
API and the Twitter API® as second data source for the challenge.

Based on these data sources, our scenario finds out the sentiment of people on
articles of the New York Times website. To retrieve these sentiment information,
we use corresponding Tweets that address the article’s topic. To achieve this,
simple integration techniques are not sufficient. It is necessary to use sophis-
ticated data analytics techniques, which can be achieved by using the concept
of the previously introduced DPDs. Firstly, a named entity recognition DPD is
required to search the articles for keywords that can be used to find correspond-
ing Tweets. Furthermore, a sentiment analysis has to be conducted based on the
found Tweets to receive the overall sentiment of an article. To model such a com-
plicated data mashup scenario, the user can make use of the introduced Mashup
Plans and create a graphical description using DSDs and DPDs. This descrip-
tion can then be used to create different executable representations as described
in Sect.4. The graphical model for this scenario is displayed in Fig.5(a). This
scenario has also been used for the runtime measurements described in Sect. 10.
The execution semantics of the demo flow is described in the following Sect. 8.

5 http://www.nytimes.com /services/xml/rss/index.html.
5 http://www.youtube.com/yt/dev/api-resources.html.

" https://developers.google.com/maps//.

8 https://dev.twitter.com/.

http://www.nytimes.com/services/xml/rss/index.html
http://www.youtube.com/yt/dev/api-resources.html
https://developers.google.com/maps/
https://dev.twitter.com/

FlexMash — Flexible Data Mashups

FlexMash Builder

Add node Settings

O ©) y
Start End
& NYT Filter

Merge Analytics

Y u Start

Filter Twitter (4 I‘I
NamedEntity
NYT
u l
>
Twitter Sentiment

Pattern Selection:

Time-Critical v

Execute Data Mashup

(a) Screenshot of the demo flow used for the challenge

Article Keywords Overall Example Tweets
Sentiment
Blue Jays 4, Baseball, Toronto Sentiment] ressoors oo B portsConter
. @wsspors — == @sponscenter s
Yankees 0: Blue Jays,New s Neutrall i aemae uverse, e vakees might nave wen See ya Russel Marin s 3un homerinhe btto of he
. anwscom1PUETa 70 an the Rogers Gente eupts!
Russell Martin ~ York Yankees

Blue Jays lead Yankees 4-0.
034124 Sep 2015

[vl strost Journal

Crushes Pitch,
and Yankees
Hopes (link)

« B k7%

(Sentiment Score: 0)

ke o oftree games and make a legiimate
chal erican League East e over he.
«

(Sentiment Score: 0)
(b) Visualized result of the challenge mashup

Fig. 5. Screenshots of FlexMash’s Mashup Plan modeling and result view

8 Demo Flow

23

Figure5(a) depicts the flow we modeled during the ICWE Rapid Mashup Chal-
lenge. This flow is representing the scenario that was described in Sect. 7. First,
a start node is added to the model. This is necessary to define the entry point of
the flow-based model during execution. This start node is connected to a data

24 P. Hirmer and B. Mitschang

source description NYT that receives all current articles of a corresponding cate-
gory (e.g., sports, politics, etc.) from the New York Times web API. Note that all
the received articles are processed within a single flow execution. The category
of the articles to be received can be configured in the node settings. Next, we
connect the node to a filter that selects articles that contain certain keywords,
which can also be defined in the node settings of the filter node. The filtered
set of articles is sent to the merge node as well as to the NamedEntity node
that executes a named entity recognition for each article based on the article’s
content to gain knowledge about its main aspects. For each article, these gained
entities are then used as input for the Twitter search node, which is returning
relating Tweets for the articles. The Twitter credentials, i.e., user name and
password as well as the amount of Tweets being used have to be configured in
the node settings. To do so, the credentials of an arbitrary Twitter account can
be used. This configuration has to be done because Twitter demands a valid user
account to access the Twitter API. For each article, the corresponding Tweets
are then used for a sentiment analysis, which computes the average sentiment of
all corresponding Tweets. Finally, the sentiments of the articles are merged with
the article information using the merge DPD. After modeling and configuration

@
= nja\'n
@] receivelnput
= Assign
& NYT_Adapter

= Assign1

& Filter O niest ——0 nyt_adspter | O—0) Fiter O,
= Assign2
‘ merge fe
Q
& NamedEntitryRec
£ - X
Named Entity Analysis ()
R
= Assign3 ,— T
L J |
F 4 Twitter_Adapter e
Q twitter_adapter T"
= Assign4
2) sentiment O
Invoke C T

= Assign5

/ result j

& JoinData
& replyOutput
@
(a) Executable (b) Executable Mashup Plan as Node-RED flow

Mashup Plan as
BPEL workflow

Fig. 6. Different implementations of the challenge’s executable Mashup Plan

FlexMash — Flexible Data Mashups 25

of the nodes, the user selects Ezxecute Data Mashup to run the flow. The out-
put of the flow is the generated HTML web site depicted in Fig. 5(b) containing
a list of all processed articles, including their topics, the result of the named
entity analysis, the computed average sentiment of an article and some exam-
ple Tweets that were used for sentiment analysis. As described in Sect.4, the
Mashup Plan is transformed into executable representations based on patterns.
In the demo, we implemented the robust pattern using BPEL workflows exe-
cuted in the ApacheODE? workflow engine as well as the time-critical pattern
using JSON-based Node-RED flows executed in the Node-RED runtime. The
transformed models are depicted in Fig. 6.

9 Challenge Preparations

This section describes the preparations for the challenge and gives an insight
into implementation details. An overview of FlexMash’s architecture specific
to the implementation for the challenge is depicted in Fig. 7. Similar to other
mashup tools, FlexMash is hosted online and can be accessed through a web
browser. By providing FlexMash as a service on a cloud computing infrastruc-
ture (IBM Bluemix!?), it can be accessed, deployed and scaled easily. The archi-
tecture contains four main components. First, the Mashup Plan Modeler (also
depicted in Fig.5(a)) that enables the user to define how the data is step-
wise processed. Furthermore, in this component patterns can be viewed and

FlexMash Data Mashup Tool

Mashup Plan Modeler Result Visualizer
Cloud-Provider
£Ee
25) Y
£
BPEL Workflow
Engine Service
I L ~
)
Pattern-based Model Transformation (PbMT)
Node-RED

Pattern-Impl. Mashup Flow 1 Engine Service
Selector Deployer J \)
[Mashup Plan- Utils]
Mapper

Fig. 7. FlexMash architecture specific to the implemented scenario

9 http://ode.apache.org/.
19 www.bluemix.net.

http://ode.apache.org/
www.bluemix.net

26 P. Hirmer and B. Mitschang

selected. Second, the Pattern-based Model Transformation component (PbMT)
contains the pattern-implementation selector that automatically chooses a suit-
able implementation for parameterized patterns using a pattern graph-based and
rule-based approach as described in Sect. 4.2. For the challenge implementation,
the pattern-implementation mapping is kept simple due to the fact that only a
single implementation exists for each pattern. The PbMT furthermore contains
the logic of the mapping of the Mashup Plan to the executable representation
depending on the pattern implementation as well as the logic of the deployment
of this model onto a suitable engine. The Utils component contains methods sup-
porting this functionality. The execution engines to execute the resulting model
are not part of FlexMash, but cloud-based external services. Finally, the fourth
component is used for visualization of the engine’s output, i.e., the execution
result.

To prepare for this challenge, many implementation tasks had to be dealt
with. Firstly, the existing user interface of our tool — which is based on the
JavaScript framework AlloyUI'! — had to be adjusted to the newly added data
source descriptions and data processing descriptions used for the challenge. This
task could be completed in a short time due to the framework’s high extensibility.

As described in Sect. 4, the non-executable Mashup Plan is transformed into
different execution models depending on patterns that are selected after model-
ing. For this challenge, we implemented two mappings onto different executable
models. Each of these mappings fulfills the requirements of a single pattern. The
two patterns we implemented were the “Robust Mashup” and the “Time-critical
Mashup” pattern. The mapping for the Robust pattern creates a workflow using
the Business Process Execution Language as well as Java Web Services to exe-
cute DSDs and DPDs. The second mapping for the Time-critical pattern creates
a JSON-based execution model that can be processed by the data flow engine
Node-RED, which offers a very efficient flow execution. In the following, these
mappings are described in a generic manner covering both execution models due
to many similarities regarding the technologies being used.

To realize the mappings, first, the PbMT for the DSDs and DPDs had to be
implemented. The tool’s business logic is implemented in Java and JavaScript,
respectively. The data structure we use throughout the tool is JSON. The DSDs
and DPDs are implemented as Java Web Services for the “Robust” pattern and
as Node-RED JavaScript nodes for the “Time-critical” pattern. We implemented
the NYT DSD through a HTTP request to the New York Times API to receive
the RSS!? feed as XML string. This string is parsed to a DOM!? tree that
is traversed to extract information such as the article’s title, URL, category,
etc. These extracted information are stored in a JSON model for each article
that is received. The Twitter DSD is implemented using the Twitter API. The
DSD’s inputs are a number of keywords that are used to search corresponding
Tweets. However, during the implementation, we found out that it makes sense

' http://alloyui.com/.
12 Really Simple Syndication.
13 Document Object Model.

http://alloyui.com/

FlexMash — Flexible Data Mashups 27

to limit the keywords to a maximum of five. Otherwise, the search for suitable
Tweets takes too much time. The received Tweets are also stored in a JSON
data structure. After implementing the DSDs, we implemented the DPDs that
are able to filter, merge and analyze the data.

The filter DPD used to extract articles containing specific keywords was
implemented in a straight-forward manner. The article’s text as well as the title is
checked for containment of the given keywords using the means of the respective
programming language. If it contains one or more of the keywords, it is added
to the list of filter results. Next, we implemented the two analytics DPDs, i.e.,
the named entity recognition and the sentiment analysis. For the named entity
recognition, we used libraries provided by the Apache UIMA framework'4. After
a tokenization of the text, the named entities can be extracted automatically.
The output of the named entity recognition is also stored in the JSON model.
The sentiment analysis is conducted using the library LingPipe'®. Finally, the
merge node was implemented by traversing and integrating the JSON model.
For the execution, we currently use execution engine services by the platform-
as-a-service provider IBM Bluemix.

The result of the Mashup is visualized in a web user interface, which is based
on HTML and JavaScript.

10 Discussion and Findings

During the implementation of our tool for the ICWE Rapid Mashup Challenge,
we encountered several issues that are described and discussed in this section. We
had some complications with the web APIs we used for this challenge. Firstly, we
encountered the issue that the Twitter API is limited to a fixed amount of 180
Tweets every 15 min. As a consequence, we had to severely reduce the number
of Tweets to be analyzed per article. However, this led to non-optimal results
because usually a large amount of Tweets is necessary to compute the sentiment
reliably. Furthermore, we identified weaknesses and limitations of the Twitter
search and the sentiment analysis. The Twitter search seems to return advertise-
ment, sometimes not even related to the topic we searched for. The sentiment
analysis only uses single words to compute a Tweet’s sentiment without involv-
ing its context. As a consequence, the results of the Mashup we presented varied
in their quality. We got some good results, however, some of the results were
obviously wrong or imprecise. Due to the fact that the cause of these issues can
be found in external components, the overall mashup approach could convince
in regard to functionality, flexibility and powerfulness.

Table 1 displays the runtime measurements we conducted on the demo imple-
mentation presented at the ICWE Rapid Mashup Challenge. As depicted,
the deployment and transformation time (which also contains the pattern-
implementation selection) is nearly the same for the two execution formats being
used. This can be explained by the fact that the transformation logic is very

' https://uima.apache.org/.
5 http://alias-i.com/lingpipe/.

https://uima.apache.org/
http://alias-i.com/lingpipe/

28 P. Hirmer and B. Mitschang

Table 1. Runtime Measurements

Transf. Pattern | Transformation Time ¢ | Deployment Time @ | Execution Time @
Robust 283,4ms 193,8 ms 2382 ms
Time-Critical | 222,8 ms 140,6 ms 23,4 ms

similar in both cases. The deployment of the executable model in the engine
is also similar for these pattern implementations, however, it strongly depends
on the location and efficiency of the engine being used. The main aspect, the
execution time, differs greatly when comparing the two implementations. The
robust execution has a high runtime due to the heavy-weight workflow engine
that is being used. Additional features such as orchestration, web service calls
and exception handling lead to a significant overhead. In contrast, the execution
of the time-critical Mashup enables a very low runtime. This can be explained
by the light-weight, JavaScript and NodeJS'6-based implementation, executed in
the Node-RED runtime engine, which enables efficient processing of data flows.

We are aware that the benefits of our pattern-based transformation approach
do not out-stand in this use case, because there were no requirements such
as robustness or efficiency defined in this challenge. However, even though the
challenge use case was not completely suitable for our approach, FlexMash could
convince us as well as the jurors of the challenge.

11 Summary and Outlook

In this paper, we presented FlexMash, an approach and tool implementation for
flexible data mashups based on pattern-based model transformation. By subdi-
viding the data mashup into four abstraction levels, namely, the modeling, trans-
formation, execution and presentation level, we enabled an abstraction from the
non-technical, domain-specific modeling of data integration and processing sce-
narios to the technical execution and finally the visualization and storage of the
derived result. By doing so, we enabled a flexible approach through the use of
transformation patterns, which leads to a data mashup execution specific to user
requirements. As a consequence, we were able to create a generically applicable
data mashup solution, suitable for different data sources and data processing
operations usable in various use case scenarios. The evaluation of our approach
was done by a prototypical implementation that was presented during the ICWE
Rapid Mashup Challenge 2015 and by corresponding runtime measurements.
In the future, we are extending our pattern catalog as well as the correspond-
ing pattern implementations. Furthermore, we will introduce modeling patterns to
make the modeling of Mashup Plans even more domain-specific and easy-to-use.

Acknowledgment. This work is supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) within the project SitOPT (Grant 610872).

16 https://nodejs.org)/.

https://nodejs.org/

FlexMash — Flexible Data Mashups 29

References

10.

11.

12.

13.

14.

15.

16.

Aghaee, S., Nowak, M., Pautasso, C.: Reusable decision space for mashup tool
design. In: 4th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS 2012), Copenhagen, Denmark, pp. 211-220, June 2012

Binz, T., Breitenbiicher, U., Kopp, O., Leymann, F.: TOSCA: portable automated
deployment and management of cloud applications. In: Advanced Web Services,
pp- 527-549. Springer, New York, January 2014

Binz, T., Breitenbiicher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A.
Wagner, S.: OpenTOSCA — a runtime for TOSCA-based cloud applications. In:
Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274,
pp. 692-695. Springer, Heidelberg (2013)

Breitenbiicher, et al.: Combining declarative and imperative cloud application pro-
visioning based on TOSCA. In: IC2E, pp. 87-96. IEEE, March 2014
Breitenbiicher, U., Binz, T., Leymann, F.: A method to automate cloud applica-
tion management patterns. In: Proceedings of the Eighth International Conference
on Advanced Engineering Computing and Applications in Sciences (ADVCOMP
2014), pp. 140-145. Xpert Publishing Services, August 2014

Cohn, D., et al.: Business artifacts: a data-centric approach to modeling business
operations and processes. Bull. IEEE Comput. Soc. Techn. Committee Data Eng.
32(3), 3-9 (2009)

Daniel, F., Matera, M.: Mashups - Concepts, Models and Architectures. Data-
Centric Systems and Applications. Springer, Heidelberg (2014)

Falkenthal, M., et al.: From pattern languages to solution implementations. In: Pro-
ceedings of the Sixth International Conferences on Pervasive Patterns and Appli-
cations (PATTERNS 2014), Venice, Italy (2014)

Hirmer, P., Wieland, M., Schwarz, H., Mitschang, B., Breitenbiicher, U.,
Leymann, F.: SitRS - a situation recognition service based on modeling and exe-
cuting situation templates. In: Proceedings of the 9th Symposium and Summer
School on Service-Oriented Computing (SUMMERSOC 2015) (2015)

Hirmer, P., Breitenbiicher, U., Binz, T., Leymann, F.: Automatic topology com-
pletion of TOSCA-based cloud applications. In: Proceedings des CloudCyclel4
Workshops auf der 44. Jahrestagung der Gesellschaft fiir Informatik e.V. (GI).
LNI, vol. 232, pp. 247-258. Gesellschaft fiir Informatik e.V. (GI) (2014)

Hirmer, P., Reimann, P., Wieland, M., Mitschang, B.: Extended techniques for
flexible modeling and execution of data mashups. In: Proceedings of the 4th Inter-
national Conference on Data Management Technologies and Applications (DATA),
April 2015

Kassner, L.B., Mitschang, B.: MaXCept-decision support in exception handling
through unstructured data integration in the production context. An integral part
of the smart factory. In: Proceedings of the 48th Hawaii International Conference
on System Sciences (2015)

Kopp, O., Binz, T., Breitenbiicher, U., Leymann, F.: Winery — a modeling tool
for TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu, X.
(eds.) ICSOC 2013. LNCS, vol. 8274, pp. 700-704. Springer, Heidelberg (2013)
Kiinzle, V., et al.: PHILharmonicFlows: towards a framework for object-aware
process management. J. Softw. Mainten. Evol.: Res. Pract. 23(4), 205-244 (2011)
Meunier, R.: The pipes and filters architecture. In: Pattern Languages of Program
Design, pp. 427-440. ACM Press/Addison-Wesley Publishing Co. (1995)

OASIS: Topology and Orchestration Specification for Cloud Applications (2013)

30

17.

18.

19.

P. Hirmer and B. Mitschang

OASIS: TOSCA Primer, November 2013. http://docs.oasis-open.org/tosca/
tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.pdf

Reimann, P.; et al.: Data Patterns to Alleviate the Design of Scientific Work Flows
Exemplified by a Bone Simulation. In: Proceedings of the 26th International Con-
ference on Scientific and Statistical Database Management (2014)

Reimann, P., Schwarz, H., Mitschang, B.: A pattern approach to conquer the
data complexity in simulation workflow design. In: Meersman, R., Panetto, H.,
Dillon, T., Missikoff, M., Liu, L., Pastor, O., Cuzzocrea, A., Sellis, T. (eds.) OTM
2014. LNCS, vol. 8841, pp. 21-38. Springer, Heidelberg (2014)

http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.pdf
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.pdf

2 Springer
http://www.springer.com/978-3-319-28726-3

Rapid Mashup Development Tools

First International Rapid Mashup Challenge, RMC 2015,
Rotterdam, The Netherlands, June 23, 2015, Revised
Selected Papers

Daniel, F.; Pautasso, C. (Eds.)

2016, W, 123 p. 52 illus., Softcover

ISBEM: 978-3-319-28726-3

	FlexMash -- Flexible Data Mashups Based on Pattern-Based Model Transformation
	1 Context and Goals
	2 Basic Concepts
	2.1 Mashup Plans
	2.2 TOSCA

	3 Related Work
	4 Flexible Data Mashups Based on Pattern-Based Model Transformation
	4.1 Step 2: Transformation Pattern Selection
	4.2 Step 3: Pattern-Based Transformation
	4.3 Step 4: TOSCA-Based Deployment and Execution

	5 FlexMash -- Level of Maturity
	6 FlexMash -- Feature Checklist
	7 ICWE Rapid Mashup Challenge -- Mashup Scenario
	8 Demo Flow
	9 Challenge Preparations
	10 Discussion and Findings
	11 Summary and Outlook
	References

