
Chapter 5
Nonlocal Minimal Surfaces

In this chapter, we introduce nonlocal minimal surfaces and focus on two main
results, a Bernstein type result in any dimension and the non-existence of nontrivial
s-minimal cones in dimension 2. Moreover, some boundary properties will be
discussed at the end of this chapter. For a preliminary introduction to some
properties of the nonlocal minimal surfaces, see [135].

Let ˝ � R
n be an open bounded domain, and E � R

n be a measurable set, fixed
outside ˝ . We will consider for s 2 .0; 1=2/ minimizers of the Hs norm

jj�Ejj2Hs D
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Notice that only the interactions between E and EC contribute to the norm.
In order to define the fractional perimeter of E in ˝ , we need to clarify the

contribution of ˝ to the Hs norm here introduced. Namely, as E is fixed outside
˝ , we aim at minimizing the “˝-contribution” to the norm among all measurable
sets that “vary” inside ˝ . We consider thus interactions between E \ ˝ and EC

and between E n ˝ and ˝ n E, neglecting the data that is fixed outside ˝ and that
does not contribute to the minimization of the norm (see Fig. 5.1). We define the
interaction I.A; B/ of two disjoint subsets of Rn as

I.A; B/ WD
Z

A

Z
B

dx dy

jx � yjnC2s

D
Z
Rn

Z
Rn

�A.x/�B.x/

jx � yjnC2s
dx dy:

(5.1)
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98 5 Nonlocal Minimal Surfaces

Fig. 5.1 Fractional perimeter

Then (see [28]), one defines the nonlocal s-perimeter functional of E in ˝ as

Pers.E; ˝/ WD I.E \ ˝; EC / C I.E n ˝; ˝ n E/: (5.2)

Equivalently, one may write

Pers.E; ˝/ D I.E \ ˝; ˝ n E/ C I.E \ ˝; EC n ˝/ C I.E n ˝; ˝ n E/:

Definition 5.1 Let ˝ be an open domain of Rn. A measurable set E � R
n is s-

minimal in ˝ if Pers.E; ˝/ is finite and if, for any measurable set F such that E n
˝ D F n ˝ , we have that

Pers.E; ˝/ � Pers.F; ˝/:

A measurable set is s-minimal in R
n if it is s-minimal in any ball Br, where r > 0.

When s ! 1
2
, the fractional perimeter Pers approaches the classical perimeter,

see [21]. See also [45] for the precise limit in the class of functions with bounded
variations, [34, 35] for a geometric approach towards regularity and [6, 117] for
an approach based on � -convergence. See also [136] for a different proof and
Theorem 2.22 in [103] and the references therein for related discussions. A simple,
formal statement, up to renormalizing constants, is the following:

Theorem 5.2 Let R > 0 and E be a set with finite perimeter in BR. Then

lim
s! 1

2

�1

2
� s

�
Pers.E; Br/ D Per .E; Br/

for almost any r 2 .0; R/.
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The behavior of Pers as s ! 0 is slightly more involved. In principle, the limit
as s ! 0 of Pers is, at least locally, related to the Lebesgue measure (see e.g. [106]).
Nevertheless, the situation is complicated by the terms coming from infinity, which,
as s ! 0, become of greater and greater importance. More precisely, it is proved
in [58] that, if Perso.E; ˝/ is finite for some so 2 .0; 1=2/, and the limit

ˇE WD lim
s!0

2s
Z

EnB1

dy

jyjnC2s
(5.3)

exists, then

lim
s!0

2s Pers.E; ˝/ D .j@B1j � ˇE/ jE \ ˝j C ˇE j˝ n Ej: (5.4)

We remark that, using polar coordinates,

0 � ˇE � lim
s!0

2s
Z
RnnB1

dy

jyjnC2s
D lim

s!0
2s j@B1j

Z C1

1

��1�2s d� D j@B1j;

therefore ˇE 2 Œ0; j@B1j� plays the role of a convex interpolation parameter in the
right hand-side of (5.4) (up to normalization constants).

In this sense, formula (5.4) may be interpreted by saying that, as s ! 0, the s-
perimeter concentrates itself on two terms that are “localized” in the domain ˝ ,
namely jE \ ˝j and j˝ n Ej. Nevertheless, the proportion in which these two
terms count is given by a “strongly nonlocal” interpolation parameter, namely the
quantity ˇE in (5.3) which “keeps track” of the behavior of E at infinity.

As a matter of fact, to see how ˇE is influenced by the behavior of E at infinity,
one can compute ˇE for the particular case of a cone. For instance, if ˙ � @B1,
with j˙ j

j@B1j DW b 2 Œ0; 1�, and E is the cone over ˙ (that is E WD ftp; p 2 ˙; t � 0g),
we have that

ˇE D lim
s!0

2s j˙ j
Z C1

1

��1�2s d� D j˙ j D b j@B1j;

that is ˇE gives in this case exactly the opening of the cone.
We also remark that, in general, the limit in (5.3) may not exist, even for smooth

sets: indeed, it is possible that the set E “oscillates” wildly at infinity, say from one
cone to another one, leading to the non-existence of the limit in (5.3).

Moreover, we point out that the existence of the limit in (5.3) is equivalent to the
existence of the limit in (5.4), except in the very special case jE \ ˝j D j˝ n Ej, in
which the limit in (5.4) always exists. That is, the following alternative holds true:

• if jE \ ˝j ¤ j˝ n Ej, then the limit in (5.3) exists if and only if the limit in (5.4)
exists,
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• if jE \ ˝j D j˝ n Ej, then the limit in (5.4) always exists (even when the one
in (5.3) does not exist), and

lim
s!0

2s Pers.E; ˝/ D j@B1j jE \ ˝j D j@B1j j˝ n Ej:

The boundaries of s-minimal sets are referred to as nonlocal minimal surfaces.
In [28] it is proved that s-minimizers satisfy a suitable integral equation (see in

particular Theorem 5.1 in [28]), that is the Euler-Lagrange equation corresponding
to the s-perimeter functional Pers. If E is s-minimal in ˝ and @E is smooth enough,
this Euler-Lagrange equation can be written as

Z
Rn

�E.x0 C y/ � �RnnE.x0 C y/

jyjnC2s
dy D 0; (5.5)

for any x0 2 ˝ \ @E.
Therefore, in analogy with the case of the classical minimal surfaces, which have

zero mean curvature, one defines the nonlocal mean curvature of E at x0 2 @E as

Hs
E.x0/ WD

Z
Rn

�E.y/ � �EC .y/

jy � x0jnC2s
dy: (5.6)

In this way, Eq. (5.5) can be written as Hs
E D 0 along @E.

It is also suggestive to think that the function Q�E WD �E � �EC averages out to
zero at the points on @E, if @E is smooth enough, since at these points the local
contribution of E compensates the one of EC . Using this notation, one may take the
liberty of writing

Hs
E.x0/ D 1

2

Z
Rn

Q�E.x0 C y/ C Q�E.x0 � y/

jyjnC2s
dy

D 1

2

Z
Rn

Q�E.x0 C y/ C Q�E.x0 � y/ � 2 Q�E.x0/

jyjnC2s
dy

D �.��/s Q�E.x0/

C.n; s/
;

using the notation of (1.1). Using this suggestive representation, the Euler-Lagrange
equation in (5.5) becomes

.��/s Q�E D 0 along @E.

We refer to [3] for further details on this argument.
It is also worth recalling that the nonlocal perimeter functionals find applications

in motions of fronts by nonlocal mean curvature (see e.g. [32, 40, 91]), problems in
which aggregating and disaggregating terms compete towards an equilibrium (see
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e.g. [78] and [56]) and nonlocal free boundary problems (see e.g. [29] and [61]).
See also [106] and [139] for results related to this type of problems.

In the classical case of the local perimeter functional, it is known that minimal
surfaces are smooth in dimension n � 7. Moreover, if n � 8 minimal surfaces are
smooth except on a small singular set of Hausdorff dimension n � 8. Furthermore,
minimal surfaces that are graphs are called minimal graphs, and they reduce to
hyperplanes if n � 8 (this is called the Bernstein property, which was also discussed
at the beginning of the Chap. 4). If n � 9, there exist global minimal graphs that are
not affine (see e.g. [86]).

Differently from the classical case, the regularity theory for s-minimizers is still
quite open. We present here some of the partial results obtained in this direction:

Theorem 5.3 In the plane, s-minimal sets are smooth. More precisely:

(a) If E is an s-minimal set in ˝ � R
2, then @E \ ˝ is a C1-curve.

(b) Let E be s-minimal in ˝ � R
n and let ˙E � @E \ ˝ denote its singular set.

Then H d.˙E/ D 0 for any d > n � 3.

See [124] for the proof of this results (as a matter of fact, in [124] only C1;˛

regularity is proved, but then [9] proved that s-minimal sets with C1;˛-boundary
are automatically C1). Further regularity results of the s-minimal surfaces can be

found in [35]. There, a regularity theory when s is near
1

2
is stated, as we see in the

following Theorem:

Theorem 5.4 There exists �0 2
�
0;

1

2

�
such that if s � 1

2
� �0, then

(a) if n � 7, any s-minimal set is of class C1,
(b) if n D 8 any s-minimal surface is of class C1 except, at most, at countably

many isolated points,
(c) any s-minimal surface is of class C1 outside a closed set ˙ of Hausdorff

dimension n � 8.

5.1 Graphs and s-Minimal Surfaces

We will focus the upcoming material on two interesting results related to graphs: a
Bernstein type result, namely the property that an s-minimal graph in R

nC1 is flat
(if no singular cones exist in dimension n); we will then prove that an s-minimal
surface whose prescribed data is a subgraph, is itself a subgraph.

The first result is the following theorem:

Theorem 5.1.1 Let E D f.x; t/ 2 R
n � R s.t. t < u.x/g be an s-minimal graph,

and assume there are no singular cones in dimension n (that is, if K � R
n is an

s-minimal cone, then K is a half-space). Then u is an affine function (thus E is a
half-space).
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To be able to prove Theorem 5.1.1, we recall some useful auxiliary results. In
the following lemma we state a dimensional reduction result (see Theorem 10.1 in
[28]).

Lemma 5.1 Let E D F � R. Then if E is s-minimal if and only if F is s-minimal.

We define then the blow-up and blow-down of the set E are, respectively

E0 WD lim
r!0

Er and E1 WD lim
r!C1 Er; where Er D E

r
:

A first property of the blow-up of E is the following (see Lemma 3.1 in [79]).

Lemma 5.2 If E1 is affine, then so is E.

We recall also a regularity result for the s-minimal surfaces (see [79] and [9] for
details and proof).

Lemma 5.3 Let E be s-minimal. Then:

(a) If E is Lipschitz, then E is C1;˛ .
(b) If E is C1;˛ , then E is C1.

We give here a sketch of the proof of Theorem 5.1.1 (see [79] for all the details).

Proof (Sketch of the proof of Theorem 5.1.1) If E � R
nC1 is an s-minimal graph,

then the blow-down E1 is an s-minimal cone (see Theorem 9.2 in [28] for the proof
of this statement). By applying the dimensional reduction argument in Lemma 5.1
we obtain an s-minimal cone in dimension n. According to the assumption that no
singular s-minimal cones exist in dimension n, it follows that necessarily E1 can be
singular only at the origin.

We consider a bump function w0 2 C1.R; Œ0; 1�/ such that

w0.t/ D 0 in

�
� 1;

1

4

�
[

�
3

4
; C1

�

w0.t/ D 1 in

�
2

5
;

3

5

�

w.t/ D w0.jtj/:

The blow-down of E is

E1 D ˚
.x0; xnC1/ s.t. xnC1 � u1.x0/

�
:

For a fixed � 2 @B1, let

Ft WD ˚
.x0; xnC1/ s.t. xnC1 � u1

�
x0 C t	w.x0/�

� � t
�
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be a family of sets, where t 2 .0; 1/ and 	 > 0. Then for 	 small, we have that

F1 is below E1. (5.7)

Indeed, suppose by contradiction that this is not true. Then, there exists 	k ! 0 such
that

u1
�
x0

k C 	kw.x0
k/�

� � 1 � u1.x0
k/: (5.8)

But x0
k 2 suppw, which is compact, therefore x01 WD lim

k!C1 x0
k belongs to the support

of w, and w.x01/ is defined. Then, by sending k ! C1 in (5.8) we have that

u1.x01/ � 1 � u1.x01/;

which is a contradiction. This establishes (5.7).
Now consider the smallest t0 2 .0; 1/ for which Ft is below E1. Since E1

is a graph, then Ft0 touches E1 from below in one point X0 D .x0
0; x0

nC1/, where
x0

0 2 suppw. Since E1 is s-minimal, we have that the nonlocal mean curvature
(defined in (5.6)) of the boundary is null. Also, since Ft0 is a C2 diffeomorphism of
E1 we have that

Hs
Ft0

.p/ ' 	 t0; (5.9)

and there is a region where E1 and Ft0 are well separated by t0, thus

ˇ̌�
E1 n Ft0

� \ �
B3 n B2

�ˇ̌ � ct0;

for some c > 0. Therefore, we see that

Hs
Ft0

.p/ D Hs
Ft0

.p/ � Hs
E.p/ � ct0:

This and (5.9) give that 	 t0 � ct0, for some c > 0 (up to renaming it). If 	 is small
enough, this implies that t0 D 0.

In particular, we have proved that there exists 	 > 0 small enough such that, for
any t 2 .0; 1/ and any � 2 @B1, we have that

u1
�
x0 C t	w.x0/�

� � t � u1.x0/:

This implies that

u1
�
x0 C t	w.x0/�

� � u1.x0/
t	

� 1

	
;
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hence, letting t ! 0, we have that

ru1.x0/w.x0/� � 1

	
; for any x 2 R

n n f0g; and � 2 B1:

We recall now that w D 1 in B3=5 n B2=5 and � is arbitrary in @B1. Hence, it follows
that

jru1.x/j � 1

	
; for any x 2 B3=5 n B2=5:

Therefore u1 is globally Lipschitz. By the regularity statement in Lemma 5.3, we
have that u1 is C1. This says that u is smooth also at the origin, hence (being
a cone) it follows that E1 is necessarily a half-space. Then by Lemma 5.2, we
conclude that E is a half-space as well.

We introduce in the following theorem another interesting property related to s-
minimal surfaces, in the case in which the fixed given data outside a domain is a
subgraph. In that case, the s-minimal surface itself is a subgraph. Indeed:

Theorem 5.1.2 Let ˝0 be an open and bounded subset of Rn�1 with boundary of
class C1;1 and let ˝ WD ˝0 � R. Let E be an s-minimal set in ˝ . Assume that

E n ˝ D fxn < u.x0/; x0 2 R
n�1 n ˝0g (5.10)

for some continuous function uWRn�1 ! R. Then

E \ ˝ D fxn < v.x0/; x0 2 ˝0g

for some function vWRn�1 ! R.

The reader can see [64], where this theorem and the related results are proved;
here, we only state the preliminary results needed for our purposes and focus on the
proof of Theorem 5.1.2. The proof relies on a sliding method, more precisely, we
take a translation of E in the nth direction, and move it until it touches E from above.
If the set E \ ˝ is a subgraph, then, up to a set of measure 0, the contact between
the translated E and E, will be E itself.

However, since we have no information on the regularity of the minimal surface,
we need at first to “regularize” the set by introducing the notions of supconvolution
and subconvolution. With the aid of a useful result related to the sub/supconvolution
of an s-minimal surface, we proceed then with the proof of the Theorem 5.1.2.

The supconvolution of a set E � R
n (Fig. 5.2) is given by

E]

ı WD
[
x2E

Bı.x/:
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Fig. 5.2 The supconvolution of a set

In an equivalent way, the supconvolution can be written as

E]

ı D
[
v2Rn
jvj�ı

.E C v/:

Indeed, we consider ı > 0 and an arbitrary x 2 E. Let y 2 Bı.x/ and we define
v WD y � x. Then

jvj � jy � xj � ı and y D x C v 2 E C v:

Therefore Bı.x/ � E C v for jvj � ı. In order to prove the inclusion in the opposite
direction, one notices that taking y 2 E C v with jvj � ı and defining x WD y � v, it
follows that

jx � yj D jvj � ı:

Moreover, x 2 .E C v/ � v D E and the inclusion E C v 2 Bı.x/ is proved.
On the other hand, the subconvolution is defined as

E[
ı WD R

n n
�
.Rn n E/

]

ı

�
:

Now, the idea is that the supconvolution of E is a regularized version of E whose
nonlocal minimal curvature is smaller than the one of E, i.e.:

Z
Rn

�
RnnE

]

ı

.y/ � �
E

]

ı

.y/

jx � yjnC2s
dy �

Z
Rn

�RnnE.y/ � �E.y/

jQx � yjnC2s
dy � 0; (5.11)
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for any x 2 @E]

ı , where Qx WD x � v 2 @E for some v 2 R
n with jvj D ı. Then, by

construction, the set E C v lies in E]

ı, and this implies (5.11).
Similarly, one has that the opposite inequality holds for the subconvolution of E,

for any x 2 @E[
ı

Z
Rn

�
RnnE[

ı
.y/ � �E[

ı
.y/

jx � yjnC2s
dy � 0; (5.12)

By (5.11) and (5.12), we obtain:

Proposition 5.1.3 Let E be an s-minimal set in ˝ . Let p 2 @E]

ı and assume that

Bı.p/ � ˝ . Assume also that E]

ı is touched from above by a translation of E[
ı,

namely there exists ! 2 R
n such that

E]

ı � E[
ı C !

and

p 2 .@E]

ı/ \ .@E[
ı C !/:

Then

E]

ı D E[
ı C !:

Proof (Proof of Theorem 5.1.2) One first remark is that the s-minimal set does not
have spikes which go to infinity: more precisely, one shows that

˝0 � .�1; �M/ � E \ ˝ � ˝0 � .�1; M/ (5.13)

for some M � 0. The proof of (5.13) can be performed by sliding horizontally a
large ball, see [64] for details.

After proving (5.13), one can deal with the core of the proof of Theorem 5.1.2.
The idea is to slide E from above until it touches itself and analyze what happens
at the contact points. For simplicity, we will assume here that the function u is uni-
formly continuous (if u is only continuous, the proof needs to be slightly modified
since the subconvolution and supconvolution that we will perform may create new
touching points at infinity). At this purpose, we consider Et D E C ten for t � 0.
Notice that, by (5.13), if t � 2M, then E � Et. Let then t be the smallest for which
the inclusion E � Et holds. We claim that t D 0. If this happens, one may consider

v D inff
 s.t. .x; 
/ 2 EC g

and, up to sets of measure 0, E \ ˝0 is the subgraph of v.
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Fig. 5.3 Sliding E until it touches itself at an interior point

The proof is by contradiction, so let us assume that t > 0. According to (5.10),
the set E n ˝ is a subgraph, hence the contact points between @E and @Et must lie in
˝0 � R. Namely, only two possibilities may occur: the contact point is interior (it
belongs to ˝0 � R/, or it is at the boundary (on @˝0 � R). So, calling p the contact
point, one may have1 that

either p 2 ˝0 � R or (5.14)

p 2 @˝0 � R: (5.15)

We deal with the first case in (5.14) (an example of this behavior is depicted in
Fig. 5.3). We consider E]

ı and E[
ı to be the supconvolution, respectively the subcon-

volution of E. We then slide the subconvolution until it touches the supconvolution.
More precisely, let 
 > 0 and we take a translation of the subconvolution, E[

ı C 
en.

For 
 large, we have that E]

ı � E[
ı C 
en and we consider 
ı to be the smallest for

1As a matter of fact, the number of contact points may be higher than one, and even infinitely many
contact points may arise. So, to be rigorous, one should distinguish the case in which all the contact
points are interior and the case in which at least one contact point lies on the boundary.

Moreover, since the surface may have vertical portions along the boundary of the domain,
one needs to carefully define the notion of contact points (roughly speaking, one needs to take a
definition for which the vertical portions which do not prevent the sliding are not in the contact
set).

Finally, in case the contact points are all interior, it is also useful to perform the sliding method
in a slightly reduced domain, in order to avoid that the supconvolution method produces new
contact points at the boundary (which may arise from vertical portions of the surfaces).

Since we do not aim to give a complete proof of Theorem 5.1.2 here, but just to give the main
ideas and underline the additional difficulty, we refer to [64] for the full details of these arguments.
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which such inclusion holds. We have (since t is positive by assumption) that


ı � t

2
> 0:

Moreover, for ı small, the sets @E]

ı and @.E[
ı C 
ıen/ have a contact point which,

according to (5.14), lies in ˝0 � R. Let pı be such a point, so we may write

pı 2 .@E]

ı/ \ @.E[
ı C 
ıen/ and pı 2 ˝0 � R:

Then, for ı small (notice that Bı.p/ � ˝), Proposition 5.1.3 yields that

E]

ı D E[
ı C 
ıen:

Considering ı arbitrarily small, one obtains that

E D E C 
0en; with 
0 > 0:

But E is a subgraph outside of ˝ , and this provides a contradiction. Hence, the
claim that t D 0 is proved.

Let us see that we also obtain a contradiction when supposing that t > 0 and that
the second case (5.15) holds. Let

p D .p0; pn/ and p 2 .@E/ \ .@Et/:

Now, if one takes sequences ak 2 @E and bk 2 @Et, both that tend to p as k goes to
infinity, since E n ˝ is a subgraph and t > 0, necessarily ak; bk belong to ˝ . Hence

p 2 .@E/ \ ˝ \ .@Et/ \ ˝: (5.16)

Thanks to Definition 2.3 in [28], one obtains that E is a variational subsolution in a
neighborhood of p. In other words, if A � E \ ˝ and p 2 A, then

0 � Pers.E; ˝/ � Pers.E n A; ˝/ D I.A; EC / � I.A; E n A/

(we recall the definition of I in (5.1) and of the fractional perimeter Pers in (5.2)).
According to Theorem 5.1 in [28], this implies in a viscosity sense (i.e. if E is
touched at p from outside by a ball), that

Z
Rn

�E.y/ � �RnnE.y/

jp � yjnC2s
dy � 0: (5.17)
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Fig. 5.4 Sliding E until it touches itself at a boundary point

In order to obtain an estimate on the fractional mean curvature in the strong sense,
we consider the translation of the point p as follows:

pt D p � ten D .p0; pn � t/ D .p0; pn;t/:

Since t > 0, one may have that either pn ¤ u.p0/, or pn;t ¤ u.p0/.
These two possibilities can be dealt with in a similar way, so we just continue

with the proof in the case pn ¤ u.p0/ (as is also exemplified in Fig. 5.4). Taking
r > 0 small, the set Br.p/ n ˝ is contained entirely in E or in its complement.
Moreover, one has from [27] that @E \ Br.p/ is a C1; 1

2 Cs-graph in the direction of
the normal to ˝ at p. That is: in Fig. 5.4 the set E is C1; 1

2 Cs, hence in the vicinity
of p D .p0; pn/, it appears to be sufficiently smooth.

So, let �.p/ D .�0.p/; �n.p// be the normal in the interior direction, then up to
a rotation and since ˝ is a cylinder (hence �n.p/ D 0), we can write �.p/ D e1.
Therefore, there exists a function � of class C1; 1

2 Cs such that p1 D �.p2; : : : ; pn/

and, in the vicinity of p, we can write @E as the graph G D fx1 D �.x2; : : : ; xn/g.
Given (5.16), we deduce that there exists a sequence pk 2 G such that pk 2 ˝

and pk ! p as k ! 1. From this it follows that there exists a sequence of points
pk ! p such that

@E in the vicinity of pk is a graph of class C1; 1
2 Cs (5.18)

and
Z
Rn

�E.y/ � �EC .y/

jpk � yjnC2s
dy D 0: (5.19)
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From (5.18) and (5.19), and using a pointwise version of the Euler-Lagrange
equation (see [64] for details), we have that

Z
Rn

�E.y/ � �EC .y/

jp � yjnC2s
dy D 0:

Now, E � Et for t strictly positive, hence

Z
Rn

�Et .y/ � �EC
t

.y/

jp � yjnC2s
dy > 0: (5.20)

Moreover, we have that the set @Et \ B r
4
.p/ must remain on one side of the graph

G, namely one could have that

Et \ B r
4
.p/ � fx1 � �.x2; : : : ; xn/g or

Et \ B r
4
.p/ � fx1 � �.x2; : : : ; xn/g:

Given again (5.16), we deduce that there exists a sequence Qpk 2 @Et \ ˝ such that
Qpk ! p as k ! 1 and @Et \ ˝ in the vicinity of Qpk is touched by a surface lying
in Et, of class C1; 1

2 Cs. Then

Z
Rn

�Et .y/ � �EC
t

.y/

jQpk � yjnC2s
dy � 0:

Hence, making use of a pointwise version of the Euler-Lagrange equation (see [64]
for details), we obtain that

Z
Rn

�Et .y/ � �EC
t

.y/

jp � yjnC2s
dy � 0:

But this is a contradiction with (5.20), and this concludes the proof of
Theorem 5.1.2.

On the one hand, one may think that Theorem 5.1.2 has to be well-expected.
On the other hand, it is far from being obvious, not only because the proof
is not trivial, but also because the statement itself almost risks to be false,
especially at the boundary. Indeed we will see in Theorem 5.3.2 that the
graph property is close to fail at the boundary of the domain, where the s-
minimal surfaces may present vertical tangencies and stickiness phenomena (see
Fig. 5.11).
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5.2 Non-existence of Singular Cones in Dimension 2

We now prove the non-existence of singular s-minimal cones in dimension 2, as
stated in the next result (from this, the more general statement in Theorem 5.3
follows after a blow-up procedure):

Theorem 5.2.1 If E is an s-minimal cone in R
2, then E is a half-plane.

We remark that, as a combination of Theorems 5.1.1 and 5.2.1, we obtain the
following result of Bernstein type:

Corollary 5.2.2 Let E D f.x; t/ 2 R
n � R s.t. t < u.x/g be an s-minimal graph,

and assume that n 2 f1; 2g. Then u is an affine function.

Let us first consider a simple example, given by the cone in the plane

K WD
n
.x; y/ 2 R

2 s.t. y2 > x2
o
;

see Fig. 5.5.

Proposition 5.2.3 The cone K depicted in Fig. 5.5 is not s-minimal in R
2.

Notice that, by symmetry, one can prove that K satisfies (5.5) (possibly in the
viscosity sense). On the other hand, Proposition 5.2.3 gives that K is not s-minimal.
This, in particular, provides an example of a set that satisfies the Euler-Lagrange
equation in (5.5), but is not s-minimal (i.e., the Euler-Lagrange equation in (5.5) is
implied by, but not necessarily equivalent to, the s-minimality property).

Proof (Proof of Proposition 5.2.3) The proof of the non-minimality of K is due to
an original idea by Luis Caffarelli.

Suppose by contradiction that the cone K is minimal in R
2. We add to K a

small square adjacent to the origin (see Fig. 5.6), and call K 0 the set obtained. Then
K and K 0 have the same s-perimeter. This is due to the interactions considered in

Fig. 5.5 The cone K
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Fig. 5.6 Interaction of M with A; B; C; D; A0; B0; C0; D0

the s-perimeter functional and the unboundedness of the regions. We remark that in
Fig. 5.6 we represent bounded regions, of course, sets A; B; C; D; A0; B0; C0 and D0
are actually unbounded.

Indeed, we notice that in the first image, the white square M interacts with the
dark regions A; B; C; D, while in the second the now dark square M interacts with
the regions A0; B0; C0; D0, and all the other interactions are unmodified. Therefore,
the difference between the s-perimeter of K and that of K 0 consists only of the
interactions I.A; M/CI.B; M/CI.C; M/CI.D; M/�I.A0; M/�I.B0; M/�I.C0; M/�
I.D0; M/. But A [ B D A0 [ B0 and C [ D D C0 [ D0 (since these sets are all
unbounded), therefore the difference is null, and the s-perimeter of K is equal to
that of K 0. Consequently, K 0 is also s-minimal, and therefore it satisfies the Euler-
Lagrange equation in (5.5) at the origin. But this leads to a contradiction, since the
dark region now contributes more than the white one, namely

Z
R2

�K 0.y/ � �R2nK 0.y/

jyj2Cs
dy > 0:

Thus K cannot be s-minimal, and this concludes our proof.

This geometric argument cannot be extended to a more general case (even, for
instance, to a cone in R

2 made of many sectors, see Fig. 5.7). As a matter of fact, the
proof of Theorem 5.2.1 will be completely different than the one of Proposition 5.2.3
and it will rely on an appropriate domain perturbation argument.

The proof of Theorem 5.2.1 that we present here is actually different than
the original one in [124]. Indeed, in [124], the result was proved by using the
harmonic extension for the fractional Laplacian. Here, the extension will not be
used; furthermore, the proof follows the steps of Theorem 4.2.1 and we will recall
here just the main ingredients.
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Fig. 5.7 Cone in R
2

Proof (Proof of Theorem 5.2.1)
The idea of the proof is the following: if E � R

2 is an s-minimal cone, then let
QE be a perturbation of the set E which coincides with a translation of E in BR=2 and
with E itself outside BR. Then the difference between the energies of QE and E tends
to 0 as R ! C1. This implies that also the energy of E\ QE is arbitrarily close to the
energy of E. On the other hand if E is not a half-plane, the set QE \E can be modified
locally to decrease its energy by a fixed small amount and we reach a contradiction.

The details of the proof go as follows. Let

u WD �E � �R2nE:

From definition (4.35) we have that

u.BR; BR/ D 2I.E \ BR; BR n E/

and

u.BR; BC
R / D I.BR \ E; EC n BR/ C I.BR n E; E n BR/;

thus

Pers.E; BR/ D KR.u/; (5.21)

where KR.u/ is given in (4.33) and Pers.E; BR/ is the s-perimeter functional defined
in (5.2). Then E is s-minimal if u is a minimizer of the energy KR in any ball BR,
with R > 0.

Now, we argue by contradiction, and suppose that E is an s-minimal cone
different from the half-space. Up to rotations, we may suppose that a sector of E
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has an angle smaller than 
 and is bisected by e2. Thus there exists M � 1 and
p 2 E \ BM on the e2-axis such that p ˙ e1 2 R

2 n E (see Fig. 5.7).
We take ' 2 C1

0 .B1/, such that '.x/ D 1 in B1=2. For R large (say R > 8M), we
define

�R;C.y/ WD y C '
� y

R

�
e1:

We point out that, for R large, �R;C is a diffeomorphism on R
2.

Furthermore, we define uC
R .x/ WD u.� �1

R;C.x//. Then

uC
R .y/ D u.y � e1/ for p 2 B2M

and uC
R .y/ D u.y/ for p 2 R

2 n BR:

We recall the estimate obtained in (4.37), that, combined with the minimality of u,
gives

KR.uC
R / � KR.u/ � C

R2
KR.u/:

But u is a minimizer in any ball, and by the energy estimate in Theorem 4.1.2 we
have that

KR.uC
R / � KR.u/ � CR�2s:

This implies that

lim
R!C1KR.uC

R / � KR.u/ D 0: (5.22)

Let now

vR.x/ WD minfu.x/; uC
R .x/g and wR.x/ WD maxfu.x/; uC

R .x/g:

We claim that vR is not identically u nor uC
R . Indeed

uC
R .p/ D u.p � e1/ D .�E � �R2nE/.p � e1/ D �1 and

u.p/ D .�E � �R2nE/.p/ D 1:

On the other hand,

uC
R .p C e1/ D u.p/ D 1 and

u.p C e1/ D .�E � �R2nE/.p C e1/ D �1:
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By the continuity of u and uC
R , we obtain that

vR D uC
R < u in a neighborhood of p (5.23)

and

vR D u < uC
R in a neighborhood of p C e1: (5.24)

Now, by the minimality property of u,

KR.u/ � KR.vR/:

Moreover (see e.g. formula (38) in [114]),

KR.vR/ C KR.wR/ � KR.u/ C KR.uC
R /:

The latter two formulas give that

KR.vR/ � KR.uC
R /: (5.25)

We claim that

vR is not minimal for K2M (5.26)

with respect to compact perturbations in B2M . Indeed, assume by contradiction
that vR is minimal, then in B2M both vR and u would satisfy the same equation.
Recalling (5.24) and applying the Strong Maximum Principle, it follows that u D vR

in B2M , which contradicts (5.23). This establishes (5.26).
Now, we consider a minimizer u�

R of K2M among the competitors that agree
with vR outside B2M . Therefore, we can define

ıR WD K2M.vR/ � K2M.u�
R/:

In light of (5.26), we have that ıR > 0.
The reader can now compare Step 3 in the proof of Theorem 4.2.1. There we

proved that

ıR remains bounded away from zero as R ! C1. (5.27)

Furthermore, since u�
R and vR agree outside B2M we obtain that

KR.u�
R/ C ıR D KR.vR/:
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Using this, (5.25) and the minimality of u, we obtain that

ıR D KR.vR/ � KR.u�
R/ � KR.uC

R / � KR.u/:

Now we send R to infinity, recall (5.22) and (5.27), and we reach a contradiction.
Thus, E is a half-space, and this concludes the proof of Theorem 5.2.1.

As already mentioned, the regularity theory for s-minimal sets is still widely
open. Little is known beyond Theorems 5.3 and 5.4, so it would be very interesting
to further investigate the regularity of s-minimal surfaces in higher dimension and
for small s.

It is also interesting to recall that if the s-minimal surface E is a subgraph of some
function u W Rn�1 ! R (at least in the vicinity of some point x0 D .x0

0; u.x0
0// 2 @E)

then the Euler-Lagrange (5.5) can be written directly in terms of u. For instance (see
formulas (49) and (50) in [9]), under appropriate smoothness assumptions on u,
formula (5.5) reduces to

0 D
Z
Rn

�RnnE.x0 C y/ � �E.x0 C y/

jyjnC2s
dy

D
Z
Rn�1

F

�
u.x0

0 C y0/ � u.x0
0/

jy0j
�

�.y0/
jy0jn�1C2s

dy0 C �.x0
0/;

for suitable F and � , and a cut-off function � supported in a neighborhood of x0
0.

Regarding the regularity problems of the s-minimal surfaces, let us mention the
recent papers [47] and [48]. Among other very interesting results, it is proved there
that suitable singular cones of symmetric type are unstable up to dimension 6 but
become stable in dimension 7 for small s (these cones can be seen as the nonlocal
analogue of the Lawson cones in the classical minimal surface theory, and the
stability property is in principle weaker than minimality, since it deals with the
positivity of the second order derivative of the functional).

This phenomenon may suggest the conjecture that the s-minimal surfaces may
develop singularities in dimension 7 and higher when s is sufficiently small.

In [48], interesting examples of surfaces with vanishing nonlocal mean curvature
are provided for s sufficiently close to 1=2. Remarkably, the surfaces in [48] are
the nonlocal analogues of the catenoids, but, differently from the classical case (in
which catenoids grow logarithmically), they approach a singular cone at infinity, see
Fig. 5.8.

Also, these nonlocal catenoids are highly unstable from the variational point of
view, since they possess infinite Morse index (differently from the standard catenoid,
which has Morse index equal to one, i.e. it is, roughly speaking, a minimizer in any
functional direction with the exception of one).

Moreover, in [48], there are also examples of surfaces with vanishing nonlocal
mean curvature that can be seen as the nonlocal analogues of two parallel hyper-
planes. Namely, for s sufficiently close to 1=2, there exists a surface of revolution
made of two sheets which are the graph of a radial function f D ˙f .r/. When r



5.2 Non-existence of Singular Cones in Dimension 2 117

Fig. 5.8 A nonlocal catenoid

Fig. 5.9 A two-sheet surface with vanishing fractional mean curvature

is small, f is of the order of 1 C . 1
2

� s/r2, but for large r it becomes of the order

of
q

1
2

� s 	 r. That is, the two sheets “repel each other” and produce a linear growth

at infinity. When s approaches 1=2 the two sheets are locally closer and closer to
two parallel hyperplanes, see Fig. 5.9.

The construction above may be extended to build families of surfaces with
vanishing nonlocal mean curvature that can be seen as the nonlocal analogue
of k parallel hyperplanes, for any k 2 N. These k-sheet surfaces can be seen
as the bifurcation, as s is close to 1=2, of the parallel hyperplanes fxn D aig,
for i 2 f1; : : : ; kg, where the parameters ai satisfy the constraints

a1 > 	 	 	 > ak;

kX
iD1

ai D 0 (5.28)
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and the balancing relation

ai D 2
X

1�j�n
j¤i

.�1/iCjC1

ai � aj
: (5.29)

It is actually quite interesting to observe that solutions of (5.29) correspond to
(nondegenerate) critical points of the functional

E.a1; : : : ; ak/ WD 1

2

kX
iD1

a2
i C

X
1�j�n

j¤i

.�1/iCj log jai � ajj

among all the k-ples .a1; : : : ; ak/ that satisfy (5.28).
These bifurcation techniques rely on a careful expansion of the fractional

perimeter functional with respect to normal perturbations. That is, if E is a (smooth)
set with vanishing fractional mean curvature, and h is a smooth and compactly
supported perturbation, one can define, for any t 2 R,

Eh.t/ WD fx C th.x/�.x/; x 2 @Eg;
where �.x/ is the exterior normal of E at x. Then, the second variation of the
perimeter of Eh.t/ at t D 0 is (up to normalization constants)

Z
@E

h.y/ � h.x/

jx � yjnC2s
dH n�1.y/ C h.x/

Z
@E

�
�.x/ � �.y/

� 	 �.x/

jx � yjnC2s
dH n�1.y/

D
Z

@E

h.y/ � h.x/

jx � yjnC2s
dH n�1.y/ C h.x/

Z
@E

1 � �.x/ 	 �.y/

jx � yjnC2s
dH n�1.y/:

Notice that the latter integral is non-negative, since �.x/ 	 �.y/ � 1. The quantity
above, in dependence of the perturbation h, is called, in jargon, “Jacobi operator”. It
encodes an important geometric information, and indeed, as s ! 1=2, it approaches
the classical operator

�@Eh C jA@Ej2 h;

where �@E is the Laplace-Beltrami operator along the hypersurface @E and jA@Ej2 is
the sum of the squares of the principal curvatures.

Other interesting sets that possess constant nonlocal mean curvature with the
structure of onduloids have been recently constructed in [49] and [24]. This type of
sets are periodic in a given direction and their construction has perturbative nature
(indeed, the sets are close to a slab in the plane).

It is interesting to remark that the planar objects constructed in [24] have no
counterpart in the local framework, since hypersurfaces of constant classical mean
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curvature with an onduloidal structure only exist in R
n with n � 3: once again,

this is a typical nonlocal effect, in which the nonlocal mean curvature at a point is
influenced by the global shape of the set.

While unbounded sets with constant nonlocal mean curvature and interesting
geometric features have been constructed in [24, 48], the case of smooth and
bounded sets is always geometrically trivial. As a matter of fact, it has been recently
proved independently in [24] and [43] that bounded sets with smooth boundary and
constant mean curvature are necessarily balls (this is the analogue of a celebrated
result by Alexandrov for surfaces of constant classical mean curvature).

5.3 Boundary Regularity

The boundary regularity of the nonlocal minimal surfaces is also a very interesting,
and surprising, topic. Indeed, differently from the classical case, nonlocal minimal
surfaces do not always attain boundary data in a continuous way (not even in
low dimension). A possible boundary behavior is, on the contrary, a combination
of stickiness to the boundary and smooth separation from the adjacent portions.
Namely, the nonlocal minimal surfaces may have a portion that sticks at the
boundary and that separates from it in a C1; 1

2 Cs-way. As an example, we can
consider, for any ı > 0, the spherical cap

Kı WD �
B1Cı n B1

� \ fxn < 0g;

and obtain the following stickiness result:

Theorem 5.3.1 There exists ı0 > 0, depending on n and s, such that for any ı 2
.0; ı0�, we have that the s-minimal set in B1 that coincides with Kı outside B1 is Kı

itself.
That is, the s-minimal set with datum Kı outside B1 is empty inside B1.

The stickiness property of Theorem 5.3.1 is depicted in Fig. 5.10.

Fig. 5.10 Stickiness
properties of Theorem 5.3.1
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Fig. 5.11 Stickiness properties of Theorem 5.3.2

Other stickiness examples occur at the sides of slabs in the plane. For instance,
given M > 1, one can consider the s-minimal set EM in .�1; 1/ � R with datum
outside .�1; 1/ � R given by the “jump” set JM WD J�

M [ JC
M , where

J�
M WD .�1; �1� � .�1; �M/

and JC
M WD Œ1; C1/ � .�1; M/:

Then, if M is large enough, the minimal set EM sticks at the boundary of the slab:

Theorem 5.3.2 There exist Mo > 0, Co > 0, depending on s, such that if M � Mo

then

Œ�1; 1/ � ŒCoM
1C2s
2C2s ; M� � Ec

M (5.30)

and .�1; 1� � Œ�M; �CoM
1C2s
2C2s � � EM: (5.31)

The situation of Theorem 5.3.2 is described in Fig. 5.11. We mention that the
“strange” exponent 1C2s

2C2s in (5.30) and (5.31) is optimal.
For the detailed proof of Theorems 5.3.1 and 5.3.2, and other results on the

boundary behavior of nonlocal minimal surfaces, see [63]. Here, we limit ourselves
to give some heuristic motivation and a sketch of the proofs.

As a motivation for the (somehow unexpected) stickiness property at the bound-
ary, one may look at Fig. 5.10 and argue like this. In the classical case, corresponding
to s D 1=2, independently on the width ı, the set of minimal perimeter in B1 will
always be the half-ball B1 \ fxn < 0g.
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Now let us take s < 1=2. Then, the half-ball B1 \ fxn < 0g cannot be an s-
minimal set, since the nonlocal mean curvature, for instance, at the origin cannot
vanish. Indeed, the origin “sees” the complement of the set in a larger proportion
than the set itself. More precisely, in B1 (or even in B1Cı) the proportion of the set
is the same as the one of the complement, but outside B1Cı the complement of the
set is dominant. Therefore, to “compensate” this lack of balance, the s-minimal set
for s < 1=2 has to bend a bit. Likely, the s-minimal set in this case will have the
tendency to become slightly convex at the origin, so that, at least nearby, it sees
a proportion of the set which is larger than the proportion of the complement (we
recall that, in any case, the proportion of the complement will be larger at infinity,
so the set needs to compensate at least near the origin). But when ı is very small,
it turns out that this compensation is not sufficient to obtain the desired balance
between the set and its complement: therefore, the set has to “stick” to the half-
sphere, in order to drop its constrain to satisfy a vanishing nonlocal mean curvature
equation.

Of course some quantitative estimates are needed to make this argument work,
so we describe the sketch of the rigorous proof of Theorem 5.3.1 as follows.

Proof (Sketch of the proof of Theorem 5.3.1) First of all, one checks that for any
fixed � > 0, if ı > 0 is small enough, we have that the interaction between B1

and B1Cı n B1 is smaller than �. In particular, by comparing with a competitor that
is empty in B1, by minimality we obtain that

Pers.Eı; B1/ � �; (5.32)

where we have denoted by Eı the s-minimal set in B1 that coincides with Kı

outside B1.
Then, one checks that

the boundary of Eı can only lie in a small neighborhood of @B1 (5.33)

if ı is sufficiently small.
Indeed, if, by contradiction, there were points of @Eı at distance larger than �

from @B1, then one could find two balls of radius comparable to �, whose centers
lie at distance larger than �=2 from @B1 and at mutual distance smaller than �, and
such that one ball is entirely contained in B1 \ Eı and the other ball is entirely
contained in B1 nEı (this is due to a Clean Ball Condition, see Corollary 4.3 in [28]).
As a consequence, Pers.Eı; B1/ is bounded from below by the interaction of these
two balls, which is at least of the order of �n�2s. Then, we obtain a contradiction
with (5.32) (by choosing � much smaller than �n�2s, and taking ı sufficiently small).

This proves (5.33). From this, it follows that

the whole set Eı must lie in a small neighborhood of @B1. (5.34)
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Indeed, if this were not so, by (5.33) the set Eı must contain a ball of radius,
say 1=2. Hence, Pers.Eı; B1/ is bounded from below by the interaction of this ball
against fxn > 0g n B1, which would produce a contribution of order one, which is in
contradiction with (5.32).

Having proved (5.34), one can use it to complete the proof of Theorem 5.3.1
employing a geometric argument. Namely, one considers the ball B�, which is
outside Eı for small � > 0, in virtue of (5.34), and then enlarges � until it
touches @Eı . If this contact occurs at some point p 2 B1, then the nonlocal mean
curvature of Eı at p must be zero. But this cannot occur (indeed, we know by (5.34)
that the contribution of Eı to the nonlocal mean curvature can only come from a
small neighborhood of @B1, and one can check, by estimating integrals, that this
is not sufficient to compensate the outer terms in which the complement of Eı is
dominant).

As a consequence, no touching point between B� and @Eı can occur in B1, which
shows that Eı is void inside B1 and completes the proof of Theorem 5.3.1.

As for the proof of Theorem 5.3.2, the main arguments are based on sliding a
ball of suitably large radius till it touches the set, with careful quantitative estimates.
Some of the details are as follows (we refer to [63] for the complete arguments).

Proof (Sketch of the proof of Theorem 5.3.2) The first step is to prove a weaker form
of stickiness as the one claimed in Theorem 5.3.2. Namely, one shows that

Œ�1; 1/ � ŒcoM ; M� � Ec
M (5.35)

and .�1; 1� � Œ�M; �coM� � EM; (5.36)

for some co 2 .0; 1/. Of course, the statements in (5.30) and (5.31) are stronger than
the ones in (5.35) and (5.36) when M is large, since 1C2s

2C2s < 1, but we will then
obtain them later in a second step.

To prove (5.35), one takes balls of radius coM and centered at fx2 D tg, for
any t 2 ŒcoM; M�. One slides these balls from left to right, till one touches @EM .
When M is large enough (and co small enough) this contact point cannot lie
in fjx1j < 1g. This is due to the fact that at least the sliding ball lies outside EM ,
and the whole fx2 > Mg lies outside EM as well. As a consequence, these contact
points see a proportion of EM smaller than the proportion of the complement (it
is true that the whole of fx2 < �Mg lies inside EM , but this contribution comes
from further away than the ones just mentioned, provided that co is small enough).
Therefore, contact points cannot satisfy a vanishing mean curvature equation and
so they need to lie on the boundary of the domain (of course, careful quantitative
estimates are necessary here, see [63], but we hope to have given an intuitive sketch
of the computations needed).

In this way, one sees that all the portion Œ�1; 1/ � ŒcoM ; M� is clean from the
set EM and so (5.35) is established (and (5.36) can be proved similarly).

Once (5.35) and (5.36) are established, one uses them to obtain the strongest
form expressed in (5.30) and (5.31). For this, by (5.35) and (5.36), one has only to
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take care of points in fjx2j 2 ŒCoM
1C2s
2C2s ; coM�g. For these points, one can use again

a sliding method, but, instead of balls, one has to use suitable surfaces obtained by
appropriate portions of balls and adapt the calculations in order to evaluate all the
contributions arising in this way.

The computations are not completely obvious (and once again we refer to [63]
for full details), but the idea is, once again, that contact points that are in the set

fjx2j 2 ŒCoM
1C2s
2C2s ; coM�g cannot satisfy the balancing relation prescribed by the

vanishing nonlocal mean curvature equation.

The stickiness property discussed above also has an interesting consequence
in terms of the “geometric stability” of the flat s-minimal surfaces. For instance,
rather surprisingly, the flat lines in the plane are “geometrically unstable” nonlocal
minimal surfaces, in the sense that an arbitrarily small and compactly supported
perturbation can produce a stickiness phenomenon at the boundary of the domain.
Of course, the smaller the perturbation, the smaller the stickiness phenomenon, but
it is quite relevant that such a stickiness property can occur for arbitrarily small
(and “nice”) perturbations. This means that s-minimal flat objects, in presence of a
perturbation, may not only “bend” in the center of the domain, but rather “jump” at
boundary points as well.

To state this phenomenon in a mathematical framework, one can consider, for
fixed ı > 0 the planar sets

H WD R � .�1; 0/;

F� WD .�3; �2/ � Œ0; ı/

and FC WD .2; 3/ � Œ0; ı/:

One also fixes a set F which contains H[F�[FC and denotes by E be the s-minimal
set in .�1; 1/ �R among all the sets that coincide with F outside .�1; 1/ �R. Then,
this set E sticks at the boundary of the domain, according to the next result:

Theorem 5.3.3 Fix �0 > 0 arbitrarily small. Then, there exists ı0 > 0, possibly
depending on �0, such that, for any ı 2 .0; ı0�,

E � .�1; 1/ � .�1; ı
2C�0
1�2s �:

The stickiness/instability property in Theorem 5.3.3 is depicted in Fig. 5.12. We
remark that Theorem 5.3.3 gives a rather precise quantification of the size of the
stickiness in terms of the size of the perturbation: namely the size of the stickiness
in Theorem 5.3.3 is larger than the size of the perturbation to the power ˇ WD 2C�0

1�2s ,
for any �0 > 0 arbitrarily small. Notice that ˇ ! C1 as s ! 1=2, consistently
with the fact that classical minimal surfaces do not stick at the boundary.

The proof of Theorem 5.3.3 is based on the construction of suitable auxiliary
barriers (see Fig. 5.13). These barriers are used to detach a portion of the set in a
neighborhood of the origin and their construction relies on some compensations
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Fig. 5.12 The stickiness/instability property in Theorem 5.3.3, with ˇ WD 2C�0

1�2s

Fig. 5.13 Auxiliary barrier for the proof of Theorem 5.3.3

of nonlocal integral terms. In a sense, the building blocks of these barriers are
“self-sustaining solutions” that can be seen as the geometric counterparts of the
s-harmonic function xsC discussed in Sect. 2.4.

Indeed, roughly speaking, like the function xsC, these barriers “see” a proportion
of the set in fx1 < 0g larger than what is produced by their tangent plane, but a
proportion smaller than that at infinity, due to their sublinear behavior. Once again,
the computations needed to check such a balancing conditions are a bit involved,
and we refer to [63] for the complete details.
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To conclude this chapter, we make a remark on the connection between solutions
of the fractional Allen-Cahn equation and s-minimal surfaces. Namely, a suitably
scaled version of the functional in (4.9) � -converges to either the classical perimeter
or the nonlocal perimeter functional, depending on the fractional parameter s. The
� -convergence is a type of convergence of functionals that is compatible with the
minimization of the energy, and turns out to be very useful when dealing with
variational problems indexed by a parameter. This notion was introduced by De
Giorgi, see e.g. [50] for details.

In the nonlocal case, some care is needed to introduce the “right” scaling of the
functional, which comes from the dilation invariance of the space coordinates and
possesses a nontrivial energy in the limit. For this, one takes first the rescaled energy
functional

J".u; ˝/ WD "2sK .u; ˝/ C
Z

˝

W.u/ dx;

where K is the kinetic energy defined in (4.10). Then, one considers the functional

F".u; ˝/ WD

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

"�2sJ".u; ˝/ if s 2 .0; 1=2/,

j" log "j�1J".u; ˝/ if s D 1=2,

"�1J".u; ˝/ if s 2 .1=2; 1/.

The limit functional of F" as " ! 0 depends on s. Namely, when s 2 .0; 1=2/,
the limit functional is (up to dimensional constants that we neglect) the fractional
perimeter, i.e.

F.u; ˝/ WD
	

Pers.E; ˝/ if uj˝ D �E � �EC , for some set E � ˝

C1 otherwise.
(5.37)

On the other hand, when s 2 Œ1=2; 1/, the limit functional of F" is (again, up to
normalizing constants) the classical perimeter, namely

F.u; ˝/ WD
	

Per.E; ˝/ if uj˝ D �E � �EC , for some set E � ˝

C1 otherwise,
(5.38)

That is, the following limit statement holds true:

Theorem 5.3.4 Let s 2 .0; 1/. Then, F" � -converges to F, as defined in
either (5.37) or (5.38), depending on whether s 2 .0; 1=2/ or s 2 Œ1=2; 1/.

For precise statements and further details, see [123]. Additionally, we remark
that the level sets of the minimizers of the functional in (4.9), after a homogeneous
scaling in the space variables, converge locally uniformly to minimizers either of the
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fractional perimeter (if s 2 .0; 1=2/) or of the classical perimeter (if s 2 Œ1=2; 1/):
that is, the “functional” convergence stated in Theorem 5.3.4 has also a “geometric”
counterpart: for this, see Corollary 1.7 in [125].

One can also interpret Theorem 5.3.4 by saying that a nonlocal phase transition
possesses two parameters, " and s. When " ! 0, the limit interface approaches a
minimal surface either in the fractional case (when s 2 .0; 1=2/) or in the classical
case (when s 2 Œ1=2; 1/). This bifurcation at s D 1=2 somehow states that for
lower values of s the nonlocal phase transition possesses a nonlocal interface in
the limit, but for larger values of s the limit interface is characterized only by local
features (in a sense, when s 2 .0; 1=2/ the “surface tension effect” is nonlocal, but
for s 2 Œ1=2; 1/ this effect localizes).

It is also interesting to compare Theorems 5.2 and 5.3.4, since the bifurcation
at s D 1=2 detected by Theorem 5.3.4 is perfectly compatible with the limit behavior
of the fractional perimeter, which reduces to the classical perimeter exactly for this
value of s, as stated in Theorem 5.2.
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