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Abstract Increasing system complexity, time to market and development costs

reduction place higher demands on engineering processes. Formal models play an

important role here because they enable the use of various model-based analyses and

early integration techniques and tools. Engineering processes based on formal mod-

els are able to cope with complexity. They also support time to market and develop-

ment costs reduction. Moreover, application of supervisory control synthesis in the

development of control systems can speed up the process considerably. This paper

discusses the integration of recently developed supervisor synthesis techniques and

tools in engineering processes. To illustrate this approach, examples of industrial

cases are presented, where supervisors synthesized have successfully been imple-

mented and integrated in existing resource control platforms.

2.1 Introduction

In current industrial practice, it is very difficult to deal with high-tech multidiscipli-

nary system development due to system complexity, market pressure, and resource

limitations. To overcome the difficulties, various kinds of models are used increas-

ingly often in the development process. Specifically, formal and executable models

built and employed in the design phase can be used to assess functional correctness

and performance of component designs and overall system design. Formal verifica-

tion, in particular model checking [3], is employed when a high degree of confidence

in functional correctness of a design is required. To assess design performance, one
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can use simulation directly on the model, or analyze an associated Markov chain or

queueing model.

Successful use of models is, however, not limited to the design phase. Models

are nowadays also used in the test and integration phases. The effort required to inte-

grate components and to test the resulting high-tech multidisciplinary system against

the initial requirements increases significantly with the increase in complexity. The

integration and test phases have a large and growing influence on time to market

and product quality, being the main business drivers for system developers. High-

tech multidisciplinary systems are systems in which cutting edge technologies from

multiple engineering disciplines are integrated to meet strict quality requirements

set by the customer. A characteristic of such systems is that they are integration

intensive, which means that integrating components and testing the resulting sys-

tem against its requirements consumes a large portion of total system development

effort. In some cases, the integration and test effort may even exceed the already

considerable amount of development effort required to deal with the complexity of

components. Examples of high-tech multidisciplinary systems are commercial sys-

tems such as wafer scanners, electron microscopes, and high-speed printers; medical

systems such as magnetic resonance imaging (MRI) scanners; as well as aerospace

systems such as satellites, airplanes, and spacecraft.

To wit, it is shown in [6, 7] that models can successfully be used for early inte-

gration of wafer scanners, where the idea is to start integrating and testing as soon as

possible, using models as replacements of components as long as actual component

realizations are not yet available. Using an appropriate integration infrastructure that

implements the designed and modeled interaction behavior, realized components can

be integrated with models of not yet realized components. The resulting model-based

integrated system can then be tested on system level before complete system realiza-

tion is available. Another application is in model-based testing [8], where a model is

used to automatically derive and execute tests on an implementation, as shown for

wafer scanners in [24].

The use of models enables application of model-based techniques and tools for

thorough system analysis and systematic testing, helping to improve system overview

for engineers. Additionally, models of components and requirements enable synthe-

sis of supervisory controllers essential for correct functioning of systems. Supervisor

synthesis procedures are based on supervisory control theory originating in [26].

Figure 2.1 schematically illustrates a high-tech system with the focus on control.

At the bottom, the main structure is depicted, containing the physical hardware com-

ponents. Sensors and actuators are mounted on these hardware components to moni-

tor their position or state and to actuate them. The resource control layer assures that

actuators reach a desired position in a desired way (feedback control). The super-

visory control layer coordinates individual components and gives the desired func-

tionality to the system.

The high-tech industry is also confronted with problems related to systematic

upgrades of complex control software, necessary either for new systems or machines

or for extending functionality of the existing ones. Also, in this context, system com-

ponent and requirement models can be used to speed up the supervisory control
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Fig. 2.1 Positioning
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design process. To embed supervisor synthesis in model-based engineering, distrib-

uted synthesis techniques are needed to handle the complexity frequently encoun-

tered in high-tech systems and to support the evolvability in the development process.

High-tech companies are often challenged to increase the functionality and quality of

a product, while simultaneously time to market and product costs should be reduced.

Current practice shows that this is not straightforward. As a result, there is a need for

new engineering processes. The purpose of this paper is to show how supervisory

control theory introduced by Ramadge and Wonham [26] can contribute to system

development and how it can be integrated in an engineering process. To this end,

the applicability of recently developed supervisor synthesis techniques to industrial

cases is discussed.

The paper is structured as follows. Section 2.2 gives a short overview of engineer-

ing processes that are based on models. In Sect. 2.3, we informally explain the basic

supervisor synthesis procedure. Section 2.4 focusses on the role of model transfor-

mations in support of model-based engineering processes, especially for industrial

applications. An overview of a few industrial cases in which a synthesis-based engi-

neering method is applied is presented in Sect. 2.5. Section 2.6 concludes the paper

by showing what impact supervisory control synthesis has on the system develop-

ment process.

2.2 Overview

To support structured system development, several engineering processes are intro-

duced originating from systems architecting [27] and systems engineering [19]. More

recently, [20] proposed a conceptual model specifically supporting embedded sys-

tems architecting. In general, a system engineering process starts with a global defin-

ition of the requirements that the system should fulfill. Based on these requirements,

the global system design is defined, usually partitioned into subsystems or modules.

For each module, the requirements are derived from the global design, and a design

is defined and then built. Every module is tested separately to assure that its require-

ments are satisfied. Subsequently, modules are integrated and the complete system
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Fig. 2.2 Traditional engineering process

is also tested to assure that it complies to its requirements. For a system consisting

of two modules, component P and its controller S, this is schematically depicted in

Fig. 2.2.

Thanks to the introduction of microprocessors, it became possible to develop

systems with substantially extended functionality. The extended functionality often

implies a multidisciplinary character because mechanical and control engineers

needed to cooperate with electrical, electronic, and computer science engineers.

Especially for this kind of systems, traditional engineering processes are often not

optimal in terms of system quality, time to market, and costs.

In the last decades, engineers started to use executable software models to test

the designs before they are actually built. An advantage of such models is that they

can be used not only to analyze designed system behavior but also to investigate how

components or modules that are already built interact with the rest of the system that

is not yet built. One can think of, for instance, checking if the system is nonblocking

or estimating system performance. In [6], evidence is provided that executable mod-

els help in improving system quality and in decreasing time to market. Models also

support evolvability, as they can easily be reused for similar systems. Integration of

executable models in engineering processes is rendered in the scheme of Fig. 2.3.
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Fig. 2.3 Model-based engineering process
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Certainly for complex systems, model-based systems engineering (MBSE) meth-

ods are state-of-the-art. However, all current MBSE approaches still carry a signifi-

cant contribution to the overall system cost. The industry faces increasing complexity

and is challenged to reduce development time and cost. To meet these challenges,

a next-generation MBSE approach is required that reduces human errors and short-

ens the development cycle. An overview of the state-of-the-art commercially avail-

able MBSE methodologies, such as IBM Telelogic Harmony-SE, INCOSE Object-

Oriented Systems Engineering Method (OOSEM), IBM Rational Unified Process for

Systems Engineering (RUP SE) for Model-Driven Systems Development (MDSD),

and Vitech MBSE Methodology, can be found in [10]. They include processes,

methods, and tools supporting manual development of systems, therefore helping

in achieving a paradigm shift from traditional document-based approach to model-

based approach. However, in the context of control software design, they focus on

design model formulation. To cope with industrial challenges, more powerful tech-

niques and tools are required. The MBSE process proposed in [7] enables the use

of various analysis techniques and tools based on formal models to support system

development. Significant development cost and cycle time reduction can be gained

by the incorporation of methods and tools for supervisor synthesis. To this end, as

opposed to traditional engineering, an explicit separation of concerns related to the

plant and the supervisor is necessary. This also means that requirements for supervi-

sory control must be separated from requirements for regulative control. Supervisor

synthesis techniques replace manual design of control logic by automatical deriva-
tion from component and requirement specifications. The synthesized control logic

is nonblocking and by construction correct with respect to safety properties. In gen-

eral, liveness properties still need to be verified. The position of supervisor synthesis

in the development process is shown in Fig. 2.4 [28].

This setting partly corresponds to Fig. 2.3. As previously, requirements R of the

system under supervision are defined first. Based on these requirements, design D
of the system and a decomposition into the uncontrolled plant and the supervisor

are defined. After decomposition, requirements RS for the supervisor and RP for the

uncontrolled plant are specified. From the plant requirements, design DP and one

or more plant models P can be defined. However, instead of making a design and a

model of the supervisor, the requirements for the supervisor are formally modeled.
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Fig. 2.4 Engineering process with supervisory control synthesis
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A discrete-event model of the plant and the formal model of RS can be used to syn-
thesize a supervisor in the framework of supervisory control theory. Plant models

can also be used to analyze the behavior of the uncontrolled plant under supervision

of the supervisor. Formal and executable models built and employed in the design

phase can be used to assess functional correctness and performance of the design

of components and the overall system. One example of commercially available tool

used for correctness checking is the Communicating Sequential Processes (CSP)-

based tool of Verum (http://www.verum.com). To assess performance of the design,

one can use simulation directly on the model, or use analytical or numerical methods

to analyze an associated stochastic model.

In synthesis-based engineering, required system properties are used as input for

generation of a design of a supervisor that is correct by construction. As a conse-

quence, in the analysis phase verification can be eliminated to a large extent. This

changes the development process from implementing and debugging the design and

the implementation, to defining the requirements.

2.3 Synthesis-Based Supervisory Control Engineering

Supervisory control theory (SCT) of [26] allows to synthesize a model of the super-

visor from formal models of the uncontrolled system and of the requirements. First,

the uncontrolled system (plant P) is formally specified in terms of automata. A plant

automaton describes the physically possible behavior of the system to be controlled.

Then, the requirement specifications (RS) for the system under control are formally

defined in terms of automata. A model of the supervisor (S) is generated from these

formal models.

The resulting supervisor can be used to supervise an uncontrolled plant, which

is schematically illustrated in Fig. 2.5. The supervisor can only react to observable

events that are generated by the uncontrolled plant. The supervisor influences the

behavior of the plant by disabling certain controllable events. The method guarantees

that the system consisting of the derived supervisor and the uncontrolled plant fulfills

the requirements. If the supervised model does not contain the desired functionality,

the models of the uncontrolled plant or the requirements are inadequate.

Supervisory control problem is formulated as follows. For plant P and require-

ment R, a supervisor S is required such that:

Fig. 2.5 The feedback loop

of supervisory control

plant P

supervisor S

events generated
by the plant

events enabled
by the supervisor

http://www.verum.com
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1. P under control of S, denoted by S/P, satisfies requirement R.

2. S does not disable uncontrollable events.

3. Output of S only depends on observable outputs of P.

4. S/P is nonblocking.

5. S is optimal, that is, maximally permissive.

Supervisory control theory provides means to synthesize S. It is a conceptually

simple framework based on discrete-event system models. Different methods have

been developed that allow for an automatic synthesis of a supervisor. As computa-

tional complexity is high for systems of industrial size, several advanced techniques

have been introduced to reduce synthesis complexity, such as modular [25], hier-

archical [35], interface-based hierarchical [14], aggregative [11, 17], distributed [9,

13, 32], coordinated distributed [29], and aggregated distributed [30]. They allow for

splitting a system in a number of modules for which local supervisors can be syn-

thesized. If needed, also a coordinator can be synthesized on top of them. The local

supervisors together with the coordinator compose a nonblocking supervisor for the

total system. A different approach is the state-based supervisory control framework

of [16]. In this framework, discrete-event systems are represented by state tree struc-

tures (STS), a representation that allows for computationally efficient monolithic

supervisor synthesis. Unlike the event-based framework, the state-based framework

allows to formulate requirements as conditions over states. In [2], a first step is

reported in the direction of defining supervisor synthesis techniques for a process-

theoretic setting. Additionally, [31] describes how to compute a nonblocking super-

visor that not only complies with the prescribed requirements but also achieves a

time optimal performance such as throughput.

In the context of supervisory control, system component models are defined by

automata. Often, each component and its resource controller are modeled together by

one automaton. Automata consist of relevant states of each resource and transitions

labeled by controllable and uncontrollable events. Controllable events represent rel-

evant discrete commands to the resource control that can be enabled or disabled by

the supervisor. Uncontrollable events represent messages from the resource control

to the supervisor that cannot be disabled by the supervisor. The conditions the super-

visor must satisfy are formally defined by expressions on languages generated by the

automata.

To illustrate the basic supervisor synthesis procedure, a simple example from

[36] is worked out below. A workcell consists of two machines M1 and M2, and an

automated guided vehicle (AGV). The AGV can load a workpiece at M1 or M2 and

unload it at M2 or at the infinite buffer B, respectively. This is schematically shown

in Fig. 2.6.

In this paper, we use italic event labels (e.g., c) and bold state labels (e.g., Busy).

In the graphical automaton representation, initial states are denoted by an uncon-

nected incoming arrow and marker states are denoted by an unconnected outgoing

arrow. Controllable and uncontrollable events are denoted by solid and dashed edges,

respectively.



46 J.C.M. Baeten et al.
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Components M1, M2, and AGV are modeled by automata shown in Fig. 2.7. The

behavior of the uncontrolled system P is represented by the synchronous product of

M1, M2, and AGV drawn in Fig. 2.8.

We informally explain the conditions that must be satisfied by the supervisor for

this uncontrolled system. For simplicity, we assume the requirement does not impose

any restrictions on admissible system behavior and all events are observable. This

implies that conditions 1 and 3 are satisfied. Hence, we can focus on the remain-

ing conditions. In the basic supervisor synthesis approach, the supervisor is derived

from the intersection of the two languages: the uncontrolled plant behavior and the

admissible behavior defined by the requirement. Because of the assumption, in our

case it suffices to take the first one into account. Hence, we must check whether

the plant is nonblocking. As can be seen above, the absence of control results in a

blocking situation (deadlock in state 7). The supervisor we are constructing should

influence the plant under control to avoid the blocking situation. Only controllable

events may be disabled. To avoid blocking, controllable event a1 must be disabled in

state 4 and controllable event a2 must be disabled in state 3. This results in Fig. 2.9a,

where these supervisory control actions introduce a new blocking situation, state 3.

This situation can be avoided by disabling controllable event a1 in state 2 resulting
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Fig. 2.9 Derivation of the supervisor. a Step 1. b Step 2

in Fig. 2.9b. Finally, by construction this supervisor gives a proper optimal control

to the plant: conditions 1 through 5 are satisfied.

Supervisors can be synthesized according to the procedure sketched above. In

a similar way, a self-made supervisor can be verified by checking the enumerated

conditions.

In Sect. 2.5, a few synthesis techniques from the event-based and state-based

frameworks are applied in industrial case studies.

2.4 Model Transformations

The main difference between the traditional engineering and the model-based engi-

neering processes is the inclusion of models in the latter. System components are

modeled before being realized. This extra step in the development process has sev-

eral advantages, as mentioned in [7]:

∙ Abstract models give a systematic approach to specify component and system

behavior with more consistency and less ambiguity than documents.

∙ Models make it easier to analyze dynamic behavior as well as the performance of

a component of a system.

∙ Using various model-based analysis techniques indicated in Fig. 2.10, errors can

be encountered in an early stage of the system development process when no com-

ponent is realized, which decreases risk.

By simulating and validating models, the actual behavior can be analyzed in an

early stage of the development process. However, simulation can only show that

models might have correct behavior. It cannot guarantee model correctness. If mod-

els are validated and simulated and the conclusion is drawn that the system has the

correct functionality, components can be realized. Formal verification techniques

can be used to prove model properties.

Available components can be tested with hardware-in-the-loop simulation and

testing. Composition of models and realizations can be tested as a whole to check for



48 J.C.M. Baeten et al.

R D

RS DS S S

RP DP P P

Interface I

define

define

define design

design

design

model

model

realize

realize

integrate

integrate

integrate

integrate

simulation and verification

early integration
validation and testing

Fig. 2.10 Model-based analysis techniques

the correct functionality, which is called early integration. Also in this step, design

errors can be encountered in an early stage, which decreases risk. If all components

are realized, all models can be replaced by their realizations. The final implementa-

tion can be tested to verify if the system as a whole fulfills its requirement R. In this

phase, model-based testing can be applied, where models are used to automatically

derive and execute tests on the implementation.

In spite of the numerous advantages, model-based analysis techniques can only

help the engineer with discovering errors in an early stage. There is no formal

link between models and implementations. In other words, model correctness does

not guarantee implementation correctness. Supervisory control theory explained in

Sect. 2.3 provides this formal link and eliminates the manual design of the supervi-

sor. This theory allows the generation of a supervisor that is mathematically correct

with respect to formal plant models and requirements. As a consequence, design and

implementation do not need to be tested against the requirements, the verification

can be eliminated to a large extent, and the engineer can focus on system validation.

To support model-based systems engineering in a consistent way, model transfor-

mations are needed. The Chi language [4] has been developed to provide a process

algebraic generic modeling formalism for hybrid systems. The language supports

hierarchy and modularity to deal with large-scale systems, by providing operators

for model reuse, parallelism, and nesting. It is based on processes that interact by

shared variables, by communication via shared channels, and by synchronization by

means of shared actions. Furthermore, arbitrary differential and algebraic equations

are supported, for modeling of continuous time behavior. The Chi toolset provides

translations to various verification tools, discrete events, and hybrid simulators, and

supports hardware-in-the-loop simulation and control prototyping. Additionally, it

facilitates code generation for various platforms.
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Fig. 2.11 Toolchain for model-based systems engineering

In Fig. 2.11, the Chi toolchain is depicted that supports model-based systems

engineering with supervisor synthesis as described in [28]. In this figure, tools are

depicted in blue, models are circles, and realizations are rectangles. The uncontrolled

discrete-event behavior of the plant is formally modeled by automata represented by

PDE. Control requirements RS are formally modeled by automata or logical expres-

sions. From these models, a supervisor can be synthesized using a supervisor control

synthesis tool (SCST) and translated to the Chi language, resulting in a model of the

supervisor S. Three tools are used for supervisor synthesis and translations exist to

and from the associated file formats:

∙ Translation Communication Tool (TCT) of [36] (http://www.control.utoronto.ca/

cgi-bin/dldes.cgi) and Supervisor Synthesis Package (SSP) of Systems Engineer-

ing Group from Eindhoven University of Technology (http://se.wtb.tue.nl/sewiki/

supcon/start) for the event-based supervisory control framework.

∙ NBC tool for the state-based supervisory control framework of [16].

The Chi simulator can be used to simulate the model of the supervisor S together

with the discrete-event plant model P in order to analyze its behavior with respect

to the control requirements. Furthermore, the discrete-event plant model can be

replaced by the hybrid plant model PHY or by real hardware in order to test whether

it complies with the models. The supervisor model can also be used for code

generation (CODEGEN). It can be implemented on a Personal Computer (PC) or

Programmable-Logic-Controller (PLC) real-time control platform connected to the

actual plant hardware.

In the next section, the model-based systems engineering approach supported by

the toolchain described above is applied to three industrial cases in order to obtain a

model of the supervisor, perform model-based system analysis, derive a supervisor

implementation, and test it on the existing system.

http://www.control.utoronto.ca/cgi-bin/dldes.cgi
http://www.control.utoronto.ca/cgi-bin/dldes.cgi
http://se.wtb.tue.nl/sewiki/supcon/start
http://se.wtb.tue.nl/sewiki/supcon/start
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2.5 Industrial Cases

Supervisory control theory is well established and received substantial attention in

research papers. Although several applications reported in the literature, e.g., [15,

22, 23], include implementation of synthesized supervisors on a PC or a PLC, they

are usually put in practice in an academic setup. To our knowledge, the industrial

applications described in [12, 18, 34] are ones of the few that actually refer to an

existing industrial product. Recently, a project is started in the automotive application

area, where supervisor synthesis techniques are used in the design of the discrete part

of a cruise control system.

2.5.1 MRI Scanner

In [34], supervisor synthesis is applied to a support system used to position patients

in an MRI scanner of Philips Healthcare (http://www.medical.philips.com). MRI

stands for magnetic resonance imaging, which is a medical imaging technique used in

radiology to visualize detailed internal structures. An MRI scanner is used for nonin-

vasive medical diagnosis. It uses a powerful magnetic field to align the magnetization

of some atoms in the body, and nonionizing radio frequency fields to systematically

alter the alignment of this magnetization. This causes the nuclei to produce a rotating

magnetic field detectable by the scanner. This information is recorded to construct

an image of the scanned area of the body. In clinical practice, MRI is used to distin-

guish pathologic tissue (such as a brain tumor) from normal tissue. One advantage

of an MRI scan is that it is harmless to the patient, unlike Computed Tomography

(CT) scans and traditional X-rays, which both use ionizing radiation. The traditional

MRI scanner is a large cylinder-shaped tube surrounded by a circular magnet, called

the bore. The patient lies on a moveable examination table, called the patient support

system, which slides into the center of the magnet, see Fig. 2.12.

To properly control the patient support system, several actuators and sensors, as

well as the extended user interface, must be taken into account. The modeled part

Fig. 2.12 The MRI scanner

User interface Light sight

Bore

Patient support table

http://www.medical.philips.com
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of the system is divided into three modules: the vertical axis, the horizontal axis,

and the user interface. The vertical axis consists of the lift driven by the vertical

motor drive and associated end-position sensors. The horizontal axis contains the

tabletop that can be moved into and out of the bore, either manually or by applying

the horizontal motor drive depending on the state of the clutch. It also contains sen-

sors detecting the presence and the position of the tabletop. The tabletop can only

be placed or removed in the maximally out position. The clutch connects the motor

to the tabletop. When the clutch is applied, the motor controls the movement of the

tabletop. Otherwise, the tabletop can be moved freely by the operator. The tabletop

release (TTR) is a hardware safety system that releases the clutch independently of

the controller. If TTR is active, the table can be moved freely, even if the controller

enables the clutch. The user interface allows the operator to use the manual button

and the tumble switch. The manual button is used to switch between the manual and

automatic mode of the tabletop movements. The tumble switch determines whether

and how the patient support table should move. The patient support system model

does not include the hardware safety systems, the light visor for marking, and auto-

mated positioning of the scan plane in the bore.

If no tabletop is present, horizontal movement is not allowed and the associated

motor should be stopped. The tabletop may only be moved by the horizontal motor

if the clutch is applied and the TTR is not active. If the clutch is not applied, the

motor may not move the table. While the motor is moving the table, the clutch may

not be released. The horizontal movement is only allowed to start when TTR is off.

It cannot be prevented that TTR is turned on while moving. Whenever TTR is turned

on, the table should be stopped. Only if TTR is turned off, the clutch may be turned

on or off.

Control requirements are related to tabletop handling. Four safety-related aspects

can be distinguished:

∙ Ensure that the tabletop does not move beyond its vertical and horizontal end

positions.

∙ Prevent collisions of the tabletop with the magnet.

∙ Define the conditions for manual and automatic movements of the tabletop.

∙ Enable the operator to control the system by means of the manual button and the

tumble switch.

The components and requirements described above are modeled by automata.

The plant model consists of 672 states and 14.384 transitions. The total requirement

model consists of 4.128 states and 34.884 transitions. Based on these models, the

centralized supervisor was synthesized using the TCT tool of [36]. The automaton

representing the supervisor consists of 2.976 states and 22.560 transitions. The plant

under control of the supervisor was validated using simulation and the supervisor

was tested on the real system. Subsequently, the experiment was extended to inves-

tigate system evolvability in case of changing functionality. In the original setup, if

the table is not maximally up and not maximally out it does not move when the user

switches the tumble switch up. As this behavior appeared counter-intuitive for the

user, a new specification was introduced stating that when the tumble switch is up, the
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table should first go maximally out and then move up if the tumble switch is still up.

This functional change introduced only a few small changes to formal requirements

and a new supervisor was successfully synthesized. Approximately, four-hour work

was needed to produce this new result. Implementing the same functional change in

the existing design process was estimated for a week, approximately.

In a related project, supervisor synthesis has also successfully been applied to the

patient communication system of the MRI scanner.

2.5.2 Océ printer

In the Océ printer case study, reported in [18], supervisory control synthesis is

applied to the scheduling of maintenance operations in a high-end printer of Océ-

Technologies (http://www.oce.com) schematically shown in Fig. 2.13. Such a printer

consists of three modules: module 1 takes care of paper input, module 2 performs

the printing, and module 3 provides stacking and stapling capabilities. The print-

ing process consists of several components as depicted in Fig. 2.13, part 2b. In this

process, the toner image is applied onto the toner transfuse belt and it is fused onto a

paper sheet. To maintain high printing quality, several maintenance operations need

to be carried out, such as

1. Toner transfuse belt jittering, which displaces the transfuse belt to prolong its

lifespan.

2. Black image operation, which prints completely black pages to remove paper dust

from the toner transfuse belt.

3. Coarse toner particles removal operation, which removes leftover particles from

the toner.

In general, a maintenance operation is scheduled after a given number of prints,

unless there is an active print job. There is also a hard threshold of the number of

prints after which the maintenance operation must be carried out even if an active

print job needs to be interrupted. To perform a maintenance operation, the printing

process has to change the power mode: from Run mode used for printing to Standby

mode required for maintenance. The change of the power mode can trigger pending

Fig. 2.13 High-end printer

http://www.oce.com
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maintenance operations, which might prolong the waiting time of the interrupted

print job.

The purpose of control requirements is to coordinate the maintenance procedures

with the rest of the printing process. Specifically,

∙ Maintenance operations may only be performed if the power mode of the printing

process is Standby.

∙ Maintenance operations should be scheduled if their soft deadline is reached and

no print jobs are in progress or if their hard deadline is reached.

∙ Only scheduled maintenance operations can be started.

∙ The power mode of the printing process should conform to the mode deter-

mined by the print job managers unless it is overridden by a pending maintenance

operation.

The system components are modeled by automata placed in a state tree structure

as defined in [16]. To simplify the specification process, the requirements related to

coordination and scheduling of maintenance operations are modeled by generalized

state-based expressions. The plant model consists of 25 automata with 2–24 states.

The requirements are represented by 23 generalized state-based expressions, which

translate to more than 500 standard state-based expressions. Using the synthesis tool

of [16], the centralized supervisor is derived. To analyze the controlled behavior,

both the plant model and the supervisor are converted to an executable simulation

model. After simulation-based validation, the supervisor is converted to C++ for

execution on the existing control platform.

In another project, described in [5], supervisor synthesis has also successfully

been applied to exception handling in printers.

2.5.3 Theme Park Vehicle

In the theme park vehicle case study, reported in [12], supervisory control synthe-

sis is applied to the multimovers of ETF (http://www.etf.nl), as shown in Fig. 2.14a.

Multimovers are automated guided vehicles that can follow an electrical wire inte-

grated in the floor. This track wire produces a magnetic field that can be measured

by track sensors. Next to the track wire, floor codes are positioned that can be read

by a metal detector. These floor codes give additional information about the track,

such as the start of a certain scene program, a switch, a junction, or a dead end. The

scene program, which is read by the scene program handler, defines when the vehi-

cle should ride at what speed, when it should stop, rotate, play music and in which

direction the vehicle should move if it has arrived at a junction.

An operator is responsible for powering up the vehicle and deploying it into the

ride manually. The operator also controls the dispatching of the vehicles in the pas-

senger boarding and outboarding area. The vehicle can receive messages from Ride

Control. Ride Control coordinates all vehicles and sends start/stop commands to

these vehicles. This communication is either wireless or by means of the track wire.

http://www.etf.nl
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(a) (b)

Fig. 2.14 Theme park vehicle. a The multimover. b Interaction between components

Multimovers are not able to communicate with other vehicles. As safety is an impor-

tant aspect of this vehicle, several sensors are integrated in it to avoid collisions.

First, proximity sensors are integrated in the vehicle to avoid physical contact with

other objects. Two types of proximity sensors are used: long-range proximity sensors

to detect obstacles in the vicinity of six meters and short-range proximity sensors to

detect obstacles in the vicinity of one meter. Second, a bumper switch is mounted

on the vehicle that can detect physical contact with other objects. The interactions

between vehicle components are shown schematically in Fig. 2.14b.

The main requirement for supervisory control synthesis is safety. Three safety-

related aspects can be distinguished:

∙ Proximity handling The supervisor has to assure that the multimover does not

collide with other vehicles or obstacles. To this end, proximity sensors are inte-

grated at the front and back which can detect an obstacle in the vicinity of the

multimover. To avoid collisions, the multimover should drive at a safe speed and

stop if the obstacle is too close to it.

∙ Emergency handlingThe system should stop immediately and should be powered

off when a collision occurs. To detect collisions, a bumper switch is mounted on

the multimover. The same applies when the battery level is too low. The Light

Emitting Diode (LED) interface should give a signal when an emergency stop

has been performed. The multimover should be deployed back into the ride by an

operator manually.

∙ Error handling When a system failure occurs (e.g., a malfunction of a motor), the

system should stop immediately and should be powered off to prevent any further

problems. The LED interface should give a signal that an emergency stop has been

performed. The multimover should be deployed back into the ride by an operator

manually.

The multimover control problem cannot be solved in the centralized event-based

setting because of the large state-space size. To enable the application of distrib-

uted synthesis methods, it is divided into five smaller subproblems that are solved

separately.
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∙ LED actuationAn operator must be able to check in which state the multimover is

by looking at the interface LEDs. This means that the states of the LEDs represent

the current state of the multimover. It is a task of the supervisor to actuate the

LEDs according to the state of the multimover.

∙ Motor actuation The drive motor, steer motor, and scene program handler have to

be switched on and off according to the state of the multimover. If the multimover

is in the state Active, all motors can be switched on. If the multimover is in the

state Reset or Emergency, all motors have to be switched off.

∙ Button handling The user interface of the multimover contains three buttons. The

reset button is used to reset the vehicle if the multimover is active and deployed

into the ride or it is in the state Emergency. The forward and the backward buttons

are used to deploy the vehicle into the corresponding direction. The supervisor has

to assure that the corresponding state is reached after a button is pushed.

∙ Proximity andRide Control handlingOn each side of the multimover, two prox-

imity sensors are mounted: one long range and one short range. If a long-range

proximity sensor detects an object in the traveling direction, the multimover should

react by slowing down to a safe driving speed. If an obstacle is detected by a short-

range proximity sensor, the multimover should stop in order to prevent a collision.

When the short-range proximity sensor does not detect an object any more, the

vehicle should start moving automatically. If the multimover receives a stop com-

mand from Ride Control, it should stop as in the case of short-range proximity

handling. If Ride Control sends a start command, the multimover should automat-

ically start with the speed depending on the state of the proximity sensors related

to the current driving direction.

∙ Emergency and error handling In order to guarantee the safety of the passengers,

the multimover should be deactivated immediately when an emergency situation

occurs. It should not be possible to reset the multimover if the bumper switch is

still activated or the battery power is still too low. A control task of the supervisor

is to enter the Emergency state of the multimover when an emergency situation

occurs.

The plant model is defined by automata representing an event-based abstraction of

the actual behavior of the physical components and their resource control. Require-

ments described above are also defined by automata. Based on the plant and require-

ment models, an optimal supervisor is synthesized, validated, and implemented. The

plant model consists of 17 automata with 2–4 states. The requirements are repre-

sented by 30 automata with 2–7 states.

Both a centralized supervisor and a distributed supervisor are synthesized for

the supervisory control problem of the multimover. A centralized supervisor has

been synthesized with the state-based framework based on state tree structures of

[16]. The state-based synthesis produces binary decision diagrams (BDD) for each

controllable event. The maximum BDD size is 15 and the minimum BDD size is

1. Furthermore, a distributed supervisor has been synthesized with an aggregated

approach of [30]. The results of the aggregated synthesis are shown in Table 2.1.
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Table 2.1 Distributed supervisors

Module Order # States # Trans. Order # States # Trans.

LED actuation 1 25 77 5 41 125

Motor actuation 2 41 222 2 257 1428

Button handling 3 465 3477 4 177 765

Emergency handling 4 89 626 3 118 609

Proximity handling 5 225 1953 1 481 4513

Synthesized supervisors were evaluated to check whether the models of the con-

trolled system are consistent with the intended behavior. For this purpose, discrete-

event simulation was used persistently. Specifically, the state-space stepper was used

to check whether the supervisor disables the right transitions in the right states when

evaluating the closed-loop system behavior. The toolset described in [1] was used for

discrete-event simulation. Currently, a new version of the toolset supporting MBSE

and synthesis is being developed based on CIF [21, 33].

To deliver a proof of concept for synthesis-based engineering, a prototype of a

supervisory controller with the synthesized supervisors is implemented in the exist-

ing control software of the multimover. This implementation is first tested by means

of simulation and then on the existing implementation platform. Subsequently, the

number of proximity sensors is extended. The engineering process used presently

requires approximately 2 days for making necessary changes to the control system.

The synthesis-based engineering process described in this paper requires approxi-

mately four hours to cope with the same change.

2.6 Conclusions

Formal models and associated model transformations provide consistent support for

synthesis-based engineering. If consequently used from the beginning of the product

development process, they constitute a vehicle that:

∙ Helps in specifying component and system behavior in a structured, systematic,

and unambiguous way.

∙ Forces to clarify all relevant aspects of the system being developed.

∙ Shortens the time needed to deliver a good design and correctly functioning con-

trol software.

The synthesis phase requires modeling of the uncontrolled system by finite-state

machines and modeling of the requirements by finite-state machines and logical

expressions. This kind of modeling is intuitive and usually results in (relatively) sim-

ple and easy to maintain models as input to the synthesis procedure. Because the syn-

thesis is automatic, the focus in the control software development process changes
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from designing and debugging controller code to designing and analyzing require-

ments, if the input models are correct. The downside is, however, that there is not

sufficient tool support for validation of these models. This is especially problematic

for larger applications. In the industrial case studies described in this paper, simula-

tion was used extensively for this purpose, which consumes too much development

time. In a subsequent project, another analysis techniques, like model checking, are

investigated in this context.

The results of the case studies show another advantage of synthesis-based engi-

neering that manifests itself when the structure or the requirements of the system

under development change due to customer demands. In traditional engineering, all

changes have to be made in the software design manually, which is difficult to do

without introducing errors or inconsistencies. In the synthesis-based approach, only

component models or requirement models have to be adapted and a new supervisor

can again automatically be synthesized. Since the desired behavior is specified in

models instead of in the control software, it is easier to validate it with respect to the

original informal specifications. This also contributes to system evolvability.
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