
Chapter 2

Measurability

Central to the discussion of measurability is the notion of a measurable space.

Definition 2.1. A measurable space is a set X together with a σ-algebra S
of subsets of X.

Thus, strictly speaking, a measurable space is a pair (X,S). Nevertheless,
we frequently denote this space by the single symbol X and refer to X as
measurable with respect to the σ-algebra S. The elements of S are called
the measurable subsets of X. (The requirement that the σ-ring S be com-
plemented is equivalent to requiring the entire space X to be a measurable
set.) Thus, as mentioned in Remark 1.3, in some texts a measurable space
is defined to be a pair (X,S) where S is a σ-ring of subsets of X.) In the
event that any possibility of confusion exists, for instance, if X is simultane-
ously measurable with respect to some other σ-algebra in addition to S, the
elements of S will be said to be measurable [S].

Example 2.2. If X is a metric space or, more generally, a topological space
then X is a measurable space with respect to the σ-algebra BX of Borel
sets in X. In the absence of any stipulation to the contrary, whenever, in the
sequel, a metric space is regarded as a measurable space, it is the algebra BX

that is understood to be the σ-algebra of measurable sets.

Example 2.3. In the extended real number system R
� ([I, Chapter 2]) the

closed rays [a,+∞] = {t ∈ R
� : t ≥ a}, a ∈ R

�, generate a σ-ring B�

containing the whole space R
�, so (R�,B�) is a measurable space. Whenever,

in this book, we have occasion to regard R
� as a measurable space, it is this

algebra B� of “extended” Borel sets that we have in mind. (Since B� contains
the half-open interval [a, b) for all finite real numbers a and b, it is clear that
the trace of B� on R coincides with the algebra BR of ordinary real Borel sets.
Thus B� is obtained from BR by adjoining the ideal numbers ±∞—either,
neither or both—to the various Borel subsets of R.)
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20 2 Measurability

Example 2.4. If S is a σ-ring of subsets of a set X, and if S is not comple-
mented, then there are various methods of turning X into a measurable space
in such a way that the sets in S become measurable. The most economical
of these procedures is, of course, the one set forth in Example 1.13; see also
Problem 1T.

Example 2.5. If (X,S) is a measurable space in which all of the singletons
in X are measurable sets, then S must contain the collection S0 comprising
all the countable subsets of X and their complements. But S0 is itself a
σ-algebra. Thus the singletons in X are all measurable [S] if and only if S
refines S0.

Example 2.6. If {Xγ}γ∈Γ is an indexed partition of a set X, and if Sγ is
a σ-algebra in Xγ for each index γ, then the full direct sum

⊕
γ Sγ of the

family {Sγ} (Example 1.16) is also complemented in X, and therefore turns
X into a measurable space, called the full direct sum of the family {(Xγ ,Sγ)}
and denoted by

⊕

γ∈Γ

(Xγ ,Sγ).

In particular, if (X1,S1) and (X2,S2) are measurable spaces with X1 and X2

disjoint, then the measurable space (X1 ∪ X2,S1 ⊕ S2) can also be written
as (X1,S1)⊕ (X2,S2); see Example 1.15.

Let X be a measurable space with respect to a σ-algebra S, and let A be an
arbitrary subset of X. Then the trace SA = {E ∩ A : E ∈ S} of S on A
is a σ-algebra in A (Problem 1Q), and (A,SA) is again a measurable space.
Observe that in the event that A is itself measurable, the σ-algebra SA simply
consists of the measurable subsets of A : SA = {E ∈ S : E ⊂ A}. In this
case, and in this case only, we refer to (A,SA) as a subspace of (X,S).

Definition 2.7. If X is a measurable space with respect to a σ-algebra S,
then a subspace of X is a measurable set E (with respect to S) equipped with
the σ-algebra SE .

Example 2.8. If X is a metric space and A an arbitrary subset of X, then A
itself becomes a metric subspace of X when equipped with its relative metric
([I, Chapter 6]), and the collection of all those subsets of A that are open with
respect to this relative metric is precisely GA, the trace on A of the collection
G of open sets in X ([I, Proposition 6.15]). The trace of the σ-algebra BX of
Borel sets in X is precisely the σ-algebra BA. Thus there is an unambiguous
sense in which A is to be regarded as a measurable space in its own right.
Nevertheless, according to the foregoing definition, (A,BA) is not a subspace
of the measurable space (X,BX) unless A is a Borel set in X. Thus, for
example, the measurable space (R,BR) of real numbers is a subspace of the
measurable space (R�,B�) of extended real numbers.

Given measurable spaces X and Y , there is a natural way of distinguishing
a special class of mappings of X into Y , called the measurable mappings.
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Definition 2.9. Let (X,S) and (Y,T) be measurable spaces. A mapping
ϕ : X → Y is measurable (when necessary, measurable [S,T]) if the inverse
image under ϕ of every set E in T is measurable [S], that is, if ϕ−1(E) ∈ S for
every set E in T. More generally, if ϕ is defined only on some subset of X that
contains the set A, then ϕ is said to be measurable on A if ϕ|A is measurable
on the measurable space (A,SA). In the special case that Y is a metric
space, in keeping with the general convention enunciated in Example 2.2, a
mapping ϕ of X into Y is said simply to be measurable (or measurable [S])
if it is measurable [S,BY ]. Moreover, if both X and Y are metric spaces, the
mapping ϕ is said to be Borel measurable if it is measurable [BX ,BY ].

Example 2.10. Any constant mapping of a measurable space (X,S) into a
measurable space (Y,T) is measurable, since S always contains the whole
space X. On the other hand, if S = {∅, X}, then it may happen that only
the constant mappings of X into Y are measurable. Dually, if S = 2X , then
every mapping of X into Y is measurable [S].

Example 2.11. Let X and Y be measurable spaces, let ϕ : X → Y be
measurable, and suppose Y has the property that the singletons {y0} in Y
are all measurable sets (see Example 2.5). Then all the level sets

{x ∈ X : ϕ(x) = y0} = ϕ−1({y0})

of ϕ are measurable sets in X. In particular, this is the case if Y is a metric
space or, more generally, a Hausdorff topological space.

Example 2.12. Let (X,S) and (Y,T) be measurable spaces, let A and B be
subsets of X such that A ⊂ B, and suppose ϕ : X → Y is measurable on B.
Then for each set F in T there is a set E in S such that (ϕ|B)−1(F ) = E∩B.
But then

(ϕ|A)−1(F ) = {x ∈ A : ϕ(x) ∈ F} = E ∩A.

Thus ϕ is automatically measurable on A as well, so the collection A of all
those subsets of X on which ϕ is measurable is closed with respect to the
formation of subsets. But A is not closed with respect to unions in general.
Indeed, if A is any nonmeasurable subset of X, then the characteristic func-
tion χA is measurable on both A and X \A—being constant on each set—but
the real-valued function χA is not measurable on X.

On the other hand, the collection M of all those measurable subsets of X
on which ϕ is measurable is clearly a σ-ring contained in S. In particular, a
mapping of X into Y that is measurable on each of a countable collection of
measurable sets that covers X is itself measurable.

Proposition 2.13. Let (X,S) and (Y,T) be measurable spaces, and let ϕ :
X → Y be a map. Suppose given a collection C of subsets of Y such that
T = S(C). Then ϕ is measurable [S,T] if (and only if ) ϕ−1(C) ∈ S for
every C in C.
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Proof. The collection {A ⊂ Y : ϕ−1(A) ∈ S} is a σ-ring in Y and contains C,
so it must contain T. 
�
Corollary 2.14. Let X be a measurable space and let Y be a metric space.
Then a mapping ϕ : X → Y is measurable if (and only if ) the inverse image
under ϕ of every open [closed ] set in Y is measurable.

In connection with these ideas, and in other contexts as well, the following
notation is frequently useful.

Notation

For every real-valued function f on a set X and every real number a we
write E(f < a) and E(f ≤ a) for the sets {x ∈ X : f(x) < a} and {x ∈ X :
f(x) ≤ a}, respectively. Similarly, E(f > a) and E(f ≥ a) denote the sets
{x ∈ X : f(x) > a} and {x ∈ X : f(x) ≥ a}, respectively. In the same vein,
if a and b are two real numbers, we write E(a < f < b) for the set

{x ∈ X : a < f(x) < b} = E(f > a) ∩ E(f < b),

and similarly for symbols such as

E(a < f ≤ b), E(a ≤ f ≤ b) and E(f = a).

Example 2.15. All the sets mentioned above, associated with a measurable
real-valued function f on a measurable space X, are clearly measurable.
Conversely, if all of the sets E(f < t), t ∈ R, are measurable, then f is
measurable. Similar statements hold for the families {E(f ≤ t), t ∈ R},
{E(f > t) : t ∈ R}, and {E(f ≥ t) : t ∈ R}. Exactly the same criteria ensure
measurability when f is extended real-valued. See Problems 2A and 2B.

Example 2.16. Every semicontinuous extended real-valued function on a
metric space is Borel measurable; see [I, Proposition 7.17].

Example 2.17. If X and Y are metric spaces, then every continuous map-
ping of X into Y is Borel measurable ([I, Theorem7.4]). If, in particular, X
is a discrete metric space (so every mapping of X into Y is continuous), then
the continuous mappings of X into Y exhaust the Borel measurable map-
pings of X into Y . This case is exceptional; ordinarily one expects to find
many Borel measurable mappings that are not continuous.

Example 2.18. A complex-valued function u on a measurable space X is
measurable if and only if the real-valued functions 
u and �u are both mea-
surable. Indeed, if a, b, c, and d are any four real numbers such that a ≤ b
and c ≤ d, and if we write S1 and S2 for the closed strips

S1 = {λ ∈ C : a ≤ 
λ ≤ b} , S2 = {λ ∈ C : c ≤ �λ ≤ d} ,
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then
u−1(S1) = (
u)−1([a, b]) and u−1(S2) = (�u)−1([c, d]).

This shows that if u is measurable, then 
u and �u are also measurable. On
the other hand, the rectangle R = [a, b]× [c, d] coincides with S1 ∩ S2. If 
u
and �u are both measurable, then u−1(R) is a measurable set, and since the
closed rectangles R generate the Borel sets in C as a σ-ring (Problem 1M),
this shows that the complex-valued function u is measurable as well. (Note
that this implies that u is measurable if and only if its complex conjugate ū
is measurable.) More generally, a mapping x �→ (f1(x), . . . , fd(x)) of X into
R

d is measurable if and only if the coordinate functions fi, i = 1, . . . , n, are
all measurable, and similarly for Cd in place of Rd. (See also Problem 2G.)

Example 2.19. Every monotone real-valued function f on R is Borel mea-
surable. Indeed, if I is an interval of any type in R, then f−1(I) is likewise
an interval of some type. Similarly, every monotone extended real-valued
function on R is Borel measurable. More generally, every monotone extended
real-valued function defined on an arbitrary subset A of R is Borel measurable
on A.

We turn next to the consideration of various ways of combining measurable
mappings. Our first result is very simple but also very useful.

Proposition 2.20. Let (X,S), (Y,T) and (Z,U) be measurable spaces, and
let ϕ : X → Y and ψ : Y → Z be measurable mappings. Then the composition
ψ ◦ ϕ is measurable. In particular, if Y and Z are both metric spaces, and if
ψ is Borel measurable, then ψ ◦ ϕ is measurable [S] whenever ϕ is.

Proof. If E belongs to U, then ψ−1(E) belongs to T, and thus ϕ−1(ψ−1(E))
belongs to S. But ϕ−1(ψ−1(E)) = (ψ ◦ ϕ)−1(E). 
�
Example 2.21. If f is a measurable complex-valued function on a measur-
able space X, then the powers fn of f, n ∈ N, are all measurable as well.
Similarly, the functions |f |r, r > 0, are also all measurable. Moreover, the
same is true of the functions f−n and |f |−r on the (measurable) subspace
{x ∈ X : f(x) �= 0}.
Proposition 2.22. If f1, . . . , fn are arbitrary measurable scalar-valued func-
tions on a measurable space X, then f1 + f2 + · · ·+ fn is also measurable.

Proof. It suffices (by mathematical induction) to prove that the sum f +g of
two measurable functions is measurable. To this end, consider the mapping
T of X into C

2 defined by T (x) = (f(x), g(x)). If U and V are open sets in
C, then

T−1(U × V ) = f−1(U) ∩ g−1(V )

is a measurable set. But every open set in C
2 is a countable union of sets of the

form U ×V , since C is separable. Hence T is measurable by Proposition 2.13.
Moreover, addition is continuous regarded as a mapping s : C × C → C,
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whence it follows by Proposition 2.20 that s ◦ T is also measurable. Since
(s ◦ T )(x) = f(x) + g(x), the proof is complete. 
�

The modification in the proof of Proposition 2.22 required to establish the
following result is obvious (see [I, Problem 7H]).

Proposition 2.23. If f1, . . . , fn are measurable real-valued functions on a
measurable space X, then the functions f1∨ · · ·∨fn and f1∧ · · ·∧fn are also
measurable.

Example 2.24. A real-valued function f on a measurable spaceX is measur-
able if and only if the positive and negative parts f+ = f∨0 and f− = −(f∧0)
are both measurable on X.

Proposition 2.25. If f1, . . . , fn are measurable scalar-valued functions on a
measurable space X, and if α1, . . . , αn are scalars, then the linear combination

α1f1 + · · ·+ αnfn (2.1)

and the product
f1 . . . fn (2.2)

are also measurable.

Proof. The measurability of (2.1) is an immediate consequence of Proposi-
tion 2.22 and the second half of this result, in view of the fact that con-
stant functions are measurable. As for the measurability of (2.2), it suffices
as before to verify the measurability of the product fg of two measurable
functions, and this may either be settled directly via another obvious modifi-
cation of the proof of Proposition 2.22, or it may be derived from the identity
2fg = (f + g)2 − (f2 + g2). 
�
Corollary 2.26. If f and g are measurable scalar-valued functions on a mea-
surable space X, then {x ∈ X : f(x) = g(x)} is a measurable set.

Proof. This is the zero level set of the measurable function f − g. 
�
Example 2.27. If p(t) is a real polynomial and f is a measurable real-valued
function on a measurable space X, then p(f(x)) is also measurable on X.
Similarly, if p(λ) is a complex polynomial and f is a measurable complex-
valued function on X, then p(f(x)) is measurable. These facts may be viewed
as consequences of Proposition 2.25, or may be derived directly from Proposi-
tion 2.20, since p(f(x)) coincides with the composition p◦f , and the function
p(λ) is continuous.

A significant advantage that measurability enjoys over continuity is that it
is readily preserved in passage to a limit. We begin our discussion of these
matters with a detailed treatment of the important special case of a sequence
of real-valued functions.
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Proposition 2.28. Let {fn} be a sequence of measurable, extended real-
valued functions on a measurable space X. Then the functions

sup
n

fn and inf
n

fn

are also measurable. In particular, the set on which {fn} is pointwise bounded
above [below ] in R is measurable.

Proof. It suffices to treat upper bounds because

inf
n

fn = − sup
n
(−fn).

Let A denote the set of points x ∈ X for which the sequence {fn(x)} is
bounded above in R. Then supn fn is constant (= +∞) on X \ A, so it is
enough to verify that A is measurable and that supn fn is measurable on A
(see Problem 2B).

For each real number M set

EM =

∞⋂

n=1

E(fn ≤ M).

Then EM is clearly measurable, and we also have EM = E(supn fn ≤ M).
Thus, on the one hand,

A =
∞⋃

N=1

EN

is measurable, while, on the other hand, supn fn is measurable on A. 
�
Corollary 2.29. If {fn} is a monotone sequence of measurable, extended
real-valued functions on a measurable space X, then the pointwise limit
limn fn is also measurable.

Proof. If {fn} is increasing [decreasing], limn fn = supn fn [= infn fn]. 
�
Corollary 2.30. For any sequence {fn} of measurable, extended real-valued
functions on a measurable space X, the functions lim supn fn and lim infn fn
are measurable.

Proof. It suffices to treat the upper limit. For each positive integer m set

gm = sup
n≥m

fn.

so that lim supn fn = infm gm. The conclusion follows by two applications of
Proposition 2.28. 
�
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Theorem 2.31. For an arbitrary sequence {fn} of measurable (finite) real-
valued functions on a measurable space X, the set E of those points x for
which the sequence {fn(x)} is convergent in R is measurable, and the point-
wise limit

lim
n

fn(x), x ∈ E,

is a measurable function on E.

Proof. This follows immediately from Corollary 2.30. 
�
The result of Theorem 2.31 is true for complex-valued functions as well.

(The proof of the following theorem can readily be reduced to the real case,
but the argument given extends to more general situations; see Problem 2I.)

Theorem 2.32. Let X be a measurable space, and let {fn} be a sequence of
measurable complex-valued functions on X. Denote by E the set of all those
points x of X for which the numerical sequence {fn(x)} is convergent in C.
Then E is a measurable set, and the function f(x) = lim

n
fn(x) is measurable

on the subspace E.

Proof. For each triple (k,m, n) of positive integers write

Ek,m,n = E(|fk − fm| < 1/n).

Since |fk−fm| is a measurable function, each of the sets Ek,m,n is measurable,
and so therefore is the set

Fn =

∞⋃

p=1

∞⋂

k=p

∞⋂

m=p

Ek,m,n.

Now Fn is precisely the set of points x in X such that |fk(x)− fm(x)| < 1/n
eventually. The measurability of E follows from the equality E =

⋂∞
n=1 Fn,

and this holds because a sequence of scalars converges if and only if it satisfies
the Cauchy criterion.

In order to see that the function f is measurable on E, let U be an open
set in the complex plane and for each n ∈ N set Gn = E ∩ f−1

n (U). Then Gn

is measurable, and so therefore is

HU =

∞⋃

m=1

∞⋂

n=m

Gn.

The set H consists precisely of those points x of E with the property that
{fn(x)} is eventually in U . Next let V be an open set in C different from
C itself, and let F denote the complement of V . For each positive integer j
let Uj denote the set of points in C whose distance from the closed set F is
greater than 1/j:

Uj = {λ ∈ C : d(λ, F ) > 1/j}.
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The set Uj is an open subset ([I, Problem 6J]) and we conclude that f−1(V ) =⋃∞
j=1 HUj

is measurable, thus concluding the proof. 
�
The following is a convenient summary of Propositions 2.23 and 2.25,

Theorems 2.31 and 2.32, and Example 2.27. A linear manifold of scalar-valued
functions that is closed with respect to multiplication is called a function
algebra.

Theorem 2.33. The collection MC of all measurable complex-valued func-
tions on a measurable space X is a complex function algebra that contains all
constant functions and is closed with respect to complex conjugation and the
formation of limits of pointwise convergent sequences. The collection MR of
all the real-valued functions in MC constitutes a real function algebra that is
also a function lattice ([I, Problem 2M ]).

It is an interesting and useful fact that Theorem 2.33 has a valid converse.
Before stating it, however, we introduce a concept that will play a major role
in all that follows.

Definition 2.34. A scalar-valued function on a set X is said to be simple if
it assumes only a finite number of distinct values.

The main facts about simple functions are summarized for convenience of
reference in the following proposition, for which no proof need to be given.

Proposition 2.35. A scalar-valued function on a set X is simple if and only
if it can be expressed as a linear combination of characteristic functions of
subsets of X. Among such representations of a given simple function s there
is precisely one,

s =

m∑

i=1

αiχEi
, (2.3)

in which the sets Ei are disjoint and nonempty and the coefficients αi are
distinct from one another and from zero. (If s = 0, the sum in (2.3) is empty.)
If X is a measurable space, then a simple function s on X is measurable if and
only if it can be expressed as a linear combination of characteristic functions
of measurable subsets of X. Alternatively, s is measurable if and only if it
assumes each of its values on a measurable set or, equivalently, if and only if
the sets Ei in (2.3) are all measurable.

Simple functions provide an important link between measurable sets and
measurable functions. Their usefulness stems largely from the following fact.

Proposition 2.36. Let X be a measurable space and consider a function
f : X → R. Then the following three conditions are equivalent.

(1) The function f is measurable.
(2) There exists a sequence {sn} of measurable simple real-valued functions

on X that converges pointwise to f .
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(3) There exists a sequence {sn} of measurable simple real-valued functions
on X converging pointwise to f and satisfying the following additional
conditions :

(a) at each point x of X either 0 ≤ s1(x) ≤ s2(x) ≤ · · · , or
0 ≥ s1(x) ≥ s2(x) ≥ · · · , and

(b) if M ∈ N and if |f(x)| ≤ M , then |f(x) − sn(x)| ≤ 1/2n for every
n ≥ M .

Before giving the proof, we note that property (3a) implies that |sn(x)| ≤
|f(x)| for all x and all n. In particular, if f(x) = 0, then sn(x) = 0 for all n.
Note also that (3b) implies that {sn} converges uniformly to f on any set on
which f is bounded.

Proof. It is obvious that (3) is a stronger condition than (2), while (2) implies
(1) by Theorem 2.31. Hence it suffices to show that (1) implies (3). For each
positive integer n consider the points

tn = k/2n, k = −n2n,−n2n + 1, . . . , n2n.

We define the simple function sn as follows:

(α) If f(x) ≥ n or f(x) < −n set sn(x) = 0,
(β) If −n ≤ f(x) < n, find k such that tk ≤ f(x) < tk+1, and set sn(x) = tk

if tk ≥ 0 and sn(x) = tk+1 if tk < 0.

A moment’s reflection shows that the set on which the function sn assumes
each nonzero value tk is the inverse image under f of a half-open interval,
and since all intervals are Borel sets in R, it follows that sn is measurable.
Moreover (3b) follows because |f(x) − sn(x)| ≤ 1/2n whenever |f(x)| ≤ n.
The verification of (3a) is left to the reader.


�
Remark 2.37. If {sn} is a sequence of measurable simple real-valued func-
tions tending pointwise to a limit f as in (3a) of Proposition 2.36, then all
three of the sequences {s+n }, {s−n }, {|sn|} are monotone increasing on X and
tend pointwise to the limits f+, f− and |f |, respectively.
The analog of Proposition 2.36 for complex-valued functions is proved in
a similar manner by partitioning the closed disk of radius n2n into parts of
diameter 1/2n and selecting for each part a point of minimum absolute value.
We record the statement below.

Proposition 2.38. Let X be a measurable space and consider a measur-
able function f : X → C. There exists a sequence {sn} of measurable sim-
ple complex-valued functions on X converging pointwise to f and satisfying
the following additional conditions :
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(a) 0 ≤ |s1(x)| ≤ |s2(x)| ≤ · · · ≤ |f(x)|, x ∈ X, and
(b) if M ∈ N and if |f(x)| ≤ M , then |f(x)−sn(x)| ≤ 1/2n for every n ≥ M .

We can now prove the converse of Theorem 2.33.

Theorem 2.39. Let X be a set and let M be a function algebra of real-
valued functions on X that contains the constant functions and is closed with
respect to the formation of limits of pointwise convergent sequences. Then
there exists a unique σ-algebra S in X such that M is precisely the collec-
tion of all real-valued functions measurable [S]. Similarly, a function algebra
M of complex-valued functions on X that contains the constant functions
and is closed with respect to complex conjugation and the formation of lim-
its of pointwise convergent sequences is the collection of all complex-valued
measurable functions with respect to a unique σ-algebra S in X.

We only prove the theorem in the real case, leaving the complex case as an
exercise (see Problem 2N). We need a lemma.

Lemma 2.40. Let U be an open subset of the real line R. Then there exists
a sequence {pn} of real polynomials that converges pointwise to the charac-
teristic function χU .

Proof. First, there exists a sequence {fn} of continuous functions on R that
converges pointwise to χU (see [I, Problem 7F]). By the Weierstrass approx-
imation theorem, there exists, for each index n, a real polynomial pn such
that |fn(t) − pn(t)| ≤ 1/n for all |t| ≤ n, and it is readily verified that the
sequence {pn} satisfies the conclusion of the lemma. 
�

The Weierstrass approximation theorem alluded to here, historically the
simplest version of the theorem, may be stated as follows.

Theorem 2.41. (Weierstrass) For any real-valued function f defined and
continuous on a closed interval [a, b] of real numbers, there exists a sequence
{pn} of real polynomials converging uniformly to f on [a, b].

It suffices to prove the theorem when [a, b] = [0, 1]. The proof below is due
to Bernstein and Korovkin.

Proof. Let f : [0, 1] → R be continuous, and define for each n ∈ N the
Bernstein polynomial

Bn(f, t) =
n∑

k=1

f

(
k

n

)(
n

k

)

tk(1− t)n−k,

where (
n

k

)

=
n!

k!(n− k)!

is the usual binomial coefficient. It suffices to show that Bn converges uni-
formly to f on [0, 1]. In order to do this, we need to calculate Bn explicitly
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when f is a polynomial of degree at most two. Setting pj(t) = tj for j = 0, 1, 2,
we use the equations

Bn(p0, t) = p0(t), Bn(p1, t) = p1(t), Bn(p2, t) = p2(t) +
t(1− t)

n

for n ∈ N and t ∈ [0, 1]. The relevant identities to be verified are

n∑

k=0

(
n

k

)

tk(1− t)n−k = 1, (2.4)

which is simply the binomial theorem, and

n∑

k=0

(k − nt)2
(
n

k

)

tk(1− t)n−k = nt(1− t) (2.5)

(see Problem 2K). The fact that f is bounded and uniformly continuous on
[0, 1] ([I, Theorem 8.34 and Corollary 8.36]) easily implies that, given ε > 0,
there exists a constant Mε > 0 such that

|f(t)− f(s)| ≤ ε+Mε(t− s)2, s, t ∈ [0, 1].

This can be written as

−ε−Mε(p2(t)− 2sp1(t) + s2) ≤ f(t)− f(s) ≤ ε+Mε(p2(t)− 2sp1(t) + s2).

Using the fact that Bn(g, t) is nonnegative when g is a nonnegative function,
we deduce that

− ε−Mε(Bn(p2, t)− 2sB(p1, t) + s2) ≤ Bn(f, t)− f(s)

≤ ε+Mε(Bn(p2, t)− 2sBn(p1, t) + s2)

for n ∈ N and t, s ∈ [0, 1]. Set t = s in this inequality and use the above
formulas for Bn(pj , t) to obtain

|Bn(f, s)− f(s)| ≤ ε+Mε
s(1− s)

n
≤ ε+

Mε

4n
, n ∈ N, s ∈ [0, 1].

Thus |Bn(f, s)−f(s)| < 2ε for all s ∈ [0, 1] provided that n > Mε/4ε, thereby
concluding the proof. 
�

We proceed now with the proof of Theorem 2.39 in the real case.

Proof. It is clear that on any measurable space the characteristic function
of a set E is measurable if and only if E is measurable. Hence, if the theo-
rem is to hold, the σ-algebra S must consist precisely of those subsets of X
whose characteristic functions belong to M. (Incidentally, this establishes the
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uniqueness of S.) Accordingly, we set S = {E ⊂ X : χE ∈ M}, and proceed
to verify:

(1) S is a σ-algebra.
(2) The functions in M are all measurable [S].
(3) Every real-valued function that is measurable [S] belongs to M.

These arguments go as follows.

(1) Since χE\F = χE−χEχF and χE∪F = χE+χF−χEχF , it is clear that S
is a ring of sets. To see that it is a σ-ring, let {En} be a sequence of sets
in S having union E. If Fn = E1 ∪ · · · ∪ En, then Fn belongs to S for
each n and the sequence {χFn

} tends pointwise to χE . It follows that E
also belongs to S. Moreover, it is obvious that S is complemented since
the function identically equal to one is in M.

(2) Consider a function f ∈ M and let U be an open subset of the real
line R. Since M is a function algebra containing the constants, it follows
that p(f(x)) belongs to M for every real polynomial p. In particular, if
{pn} is a sequence of real polynomials converging pointwise to χU as in
Lemma 2.40, then the sequence of functions hn(x) = pn(f(x)) belongs
to M. But hn(x) converges pointwise to the characteristic function of
f−1(U). Thus f−1(U) belongs to S, whence it follows that f is measurable
[S] (Corollary 2.14).

(3) The simple real-valued functions on X that are measurable [S] are clearly
in M (according to Proposition 2.35 they are linear combinations of the
characteristic functions in M), and every real-valued function on X that
is measurable [S] is the pointwise limit of a sequence of such simple
functions by Proposition 2.36.


�
The taking of limits of pointwise convergent sequences of functions is an

operation of great importance in the theory of measure and integration. We
pay special attention to pointwise limits of sequences of continuous scalar-
valued functions. (The concepts discussed below may also be found, in part,
in [I]; see, in particular, [I, Problem 8K].)

Definition 2.42. A scalar-valued function f on a metric space X is of Baire
class one on X if there exists a sequence of continuous scalar-valued functions
on X that converges pointwise to f .

Example 2.43. All semicontinuous real-valued functions on a metric space
X are of Baire class one ([I, Proposition 7.20]). In particular, the characteris-
tic functions of all open subsets and all closed subsets of X are of Baire class
one on X ([I, Problem 7F]).

Further Baire classes are defined in the same manner as the first. Thus one
says that a scalar-valued function f on a metric space X is of Baire class
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two if f is the limit of some pointwise convergent sequence of functions of
Baire class one, etc. We turn at once to the formal inductive definition toward
which these initial constructions clearly point.

Definition 2.44. Let X be a metric space. Set C0 equal to the collection
of all continuous scalar-valued functions on X, let α denote an arbitrary
countable ordinal number, and suppose that Cξ has already been defined
for all ordinal numbers ξ such that ξ < α. Then Cα is defined to be the
collection of all functions f with the property that there exists a sequence in⋃

ξ<α Cξ that converges pointwise to f . In this way we obtain by transfinite
definition (see [I, Theorem 5.12]) a family {Cα}α<Ω of collections of scalar-
valued functions on X indexed by the entire segment W (Ω) of countable
ordinal numbers. The functions belonging to Cα are said to be of Baire class α
on X, a terminology obviously consistent with the earlier definitions of Baire
classes one and two. (According to this terminology the continuous functions
are exactly the functions of Baire class zero.) The functions belonging to the
union

CΩ =
⋃

α<Ω

Cα

are known as the Baire functions on X.

Theorem 2.45. The class CΩ of Baire functions on a metric space X is the
smallest collection of scalar-valued functions on X that contains the class C0
of all continuous scalar-valued functions on X and that is closed with respect
to the formation of limits of pointwise convergent sequences.

Proof. Assume first that {fn} is a sequence of Baire functions on X that
converges pointwise to a limit f . Then each fn is of Baire class α for some
countable ordinal number α—say fn is of Baire class αn. According to
[I, Example 5L] there exists a countable ordinal number η such that αn < η
for every n, and it follows that f is of Baire class η. Thus CΩ is indeed closed
with respect to the formation of pointwise limits.

Assume next that C is a collection of scalar-valued functions on X that
contains C0 and is closed with respect to the formation of pointwise limits.
If all of the Baire classes Cξ are contained in C for ξ < α, where α denotes
some countable ordinal number, then Cα ⊂ C as well. Indeed, every function
f in Cα is, by definition, the limit of some pointwise convergent sequence of
functions belonging to C. Thus every Baire class Cα, α < Ω, is contained in
C, and therefore CΩ ⊂ C. 
�

The preceding result reveals a shorter route to the notion of a Baire
function.

Proposition 2.46. For any collection F of scalar-valued functions on a set
X there is a smallest collection B = B(F) of functions on X that contains F
and is closed with respect to the formation of limits of pointwise convergent
sequences. This collection will be called the Baire class generated by F .
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Proof. The collection of all scalar-valued functions onX is closed with respect
to the formation of limits of pointwise convergent sequences. If D denotes the
intersection of any nonempty family of collections each of which is closed with
respect to pointwise limits, then D is also closed with respect to pointwise
limits. Thus B(F) is simply the intersection of the family of all collections of
scalar-valued functions on X that contain F and are closed with respect to
the formation of pointwise limits. 
�

Using this latter concept, we may paraphrase Theorem 2.45 by saying that
the class CΩ of Baire functions on a metric spaceX is the Baire class generated
by the class C0 of continuous functions on X. This simple characterization of
the class of Baire functions stands to its initial transfinite definition exactly
as the definition of Borel sets in Chapter 1 (as the σ-algebra BX generated
by the lattice of open sets) stands to the transfinite construction of BX in
Problem 1O. One definition has the advantage of brevity and avoids the use of
transfinite numbers, but also, by that very token, fails to give any information
about the grading of Baire functions into numbered classes. Interestingly
enough, either definition can be used to prove theorems, as the following
propositions demonstrate.

Proposition 2.47. If f and g are Baire functions on a metric space X, then
f + g is also a Baire function on X.

Proof. Consider first the collection G0 of all those scalar-valued functions g
on X with the property that if f is an arbitrary continuous scalar-valued
function on X, then f +g is a Baire function. If {gn} is a sequence in G0 that
converges pointwise to a limit h, and if f is some continuous scalar-valued
function on X, then {f + gn} is a sequence of Baire functions converging
pointwise to f + h so that f + h is also a Baire function. This shows that
G0 is closed with respect to the formation of limits of pointwise convergent
sequences. Since G0 obviously contains C0, it follows that G0 contains all Baire
functions. Thus we have shown that if f is a continuous scalar-valued function
on X, and g is an arbitrary Baire function on X, then f + g is also a Baire
function. To complete the proof, consider next the collection G of all those
scalar-valued functions g on X with the property that if f is a Baire function
on X, then f + g is too. A repetition of the same argument shows that G is
closed with respect to the formation of pointwise limits. On the other hand,
we have just proved that G contains C0, and the proposition follows. 
�

Other results along the same line can be similarly obtained.

Proposition 2.48. The class of complex-valued Baire functions on a metric
space X is closed with respect to complex conjugation. Hence a complex-valued
function f on X is a Baire function if and only if 
f and �f are both Baire
functions.

Proof. Consider the collection CΩ of all complex conjugates of complex-
valued Baire functions on X. This class contains the continuous complex-
valued functions on X (the complex conjugate of a continuous function is
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itself continuous) and is closed with respect to the formation of pointwise
limits (if {f̄n} converges pointwise to a limit f , then {fn} converges point-
wise to f̄ , so f ∈ CΩ). Hence CΩ ⊂ CΩ , and by symmetry CΩ = CΩ . 
�

Continuing in this same vein, one easily establishes the following result,
whose proof is omitted.

Theorem 2.49. The real-valued Baire functions on a metric space X form
a function algebra that contains the constant functions and is also a function
lattice. The complex-valued Baire functions on X form a function algebra
that contains the constant functions and is closed with respect to complex
conjugation.

To obtain these and other results concerning Baire functions directly from
the original transfinite definition is rather more laborious, requiring as it does
the machinery of transfinite induction, but then the end result is more infor-
mative. We begin with a pair of observations that clarify the later arguments
to some degree.

Proposition 2.50. On a metric space X the transfinite sequence {Cα}α<Ω

of Baire classes is monotone increasing. For any countable ordinal number
α, a function f is of Baire class α + 1 on X if and only if it is the limit of
a pointwise convergent sequence of functions of Baire class α on X. On the
other hand, if λ is a countable limit number, then f is of Baire class λ on
X if and only if it is the limit of a pointwise convergent sequence {fn} where
each fn is of Baire class ηn on X, and η1 < η2 < . . . < ηn < . . . is a strictly
increasing sequence in W (λ).

Proof. The stated conditions are obviously sufficient, and the asserted mono-
tonicity follows from the simple fact that a constant sequence is convergent.
Moreover, from monotonicity it is clear that

⋃
ξ<α+1 Cξ = Cα, and hence that

the functions in Cα+1 are limits of sequences in Cα. Finally, if f ∈ Cλ where
λ is a limit number, then there is a sequence {fn} of functions in

⋃
ξ<λ Cξ

converging pointwise to f . Thus each fn belongs to some Cξn , ξn < λ, and we
have but to define the strictly increasing sequence {ηn} inductively, setting
η1 = ξ1 and ηn+1 = (ηn + 1) ∨ ξn+1, for n > 0. 
�
Proposition 2.51. Let X be a metric space, and let g be a continuous map-
ping of the scalar field into itself. Then for any countable ordinal number α
and any function f of Baire class α on X, the composition g ◦ f is also of
Baire class α.

Proof. The result is obvious when α = 0 because the composition of continu-
ous mappings is continuous. Assume it holds for all ξ < α, and f ∈ Cα. There
is a sequence {fn} of functions converging pointwise to f with the property
that each fn is of some Baire class ξn < α, and the sequence {g ◦ fn} shares
this property by the inductive hypothesis. In addition {g ◦ fn} converges
pointwise to g ◦ f because g is continuous, and therefore g ◦ f ∈ Cα. 
�
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The following result clearly contains Theorem 2.49 as a corollary.

Theorem 2.52. Let X be a metric space, let α be a countable ordinal number,
and let us write Cα,R and Cα,C for the collections of real and complex Baire
functions of class α on X, respectively. Then Cα,C is a complex function
algebra on X that contains the constant functions and is closed with respect
to complex conjugation. Similarly, Cα,R is a real function algebra that is also
a function lattice on X.

We only sketch the proof.

Proof. The parts of the theorem that are not immediate consequences of
Proposition 2.51 are all derived in the same way, by transfinite induction. As
a typical example of such an argument, let us show that Cα,C is closed with
respect to addition.

The result clearly holds for α = 0. Suppose it is valid for all ξ < α, and
f, g ∈ Cα,C. Choose sequences {fn} and {gn} of complex-valued functions on
X converging pointwise to f and g, respectively, such that, for each index n,
fn ∈ Cξn,C and gn ∈ Cηn,C for some ξn < α and ηn < α. Then the functions
fn, gn belong to Cζn,C, where ζn = ξn ∨ ηn < α. The inductive hypothesis
implies that fn + gn ∈ Cζn,C, and therefore f + g = limn(fn + gn) ∈ Cα,C. 
�

According to Theorem 2.52 (or Theorem 2.49), the class CΩ of complex-
valued Baire functions on a metric space X consists of all measurable func-
tions with respect to some σ-algebra of subsets of X (Theorem 2.39). The
following identifies the σ-algebra.

Theorem 2.53. On any metric space X the class of scalar-valued Baire func-
tions coincides with the class of Borel measurable scalar-valued functions.

Proof. As seen earlier, CΩ consists of the scalar-valued functions which are
measurable relative to the σ-field S = {E ⊂ X : χE ∈ CΩ}. We must show
that S coincides with the σ-algebra BX , and both parts of the proof are
easy. On the one hand, S contains all open sets in X, so S ⊃ BX . On the
other hand, the collection of all Borel measurable real-valued functions on X
contains the continuous real-valued functions and is closed with respect to
the formation of pointwise limits, so every real-valued Baire function on X is
Borel measurable. If E ∈ S, so that χE is a Baire function, then χE is Borel
measurable, and E is a Borel set. 
�

Problems

2A. Fix a set M dense in R, for example, the set of all rational numbers, or the set of
all dyadic fractions. If f is a real-valued function on a measurable space X, then f
is measurable if and only if E(f ≤ t) is measurable for every t in M . Similarly, f is
measurable if and only if E(f < t)[E(f ≥ t), E(f > t)] is measurable for every t ∈ M .
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2B. An extended real-valued function f on a measurable space X is measurable if and
only if the two sets E+∞ = E(f = +∞) and E−∞ = E(f = −∞) are measurable

and the restriction of f to the complement X \ (E+∞∪E−∞) is a measurable (finite)
real-valued function on that subspace.

2C. Let {tn}+∞
n=−∞ be a monotone increasing sequence of real numbers (indexed by the

set Z of all integers), and set a = infn tn, b = supn tn (the cases a = −∞ and/or
b = +∞ are not excluded). Let f be a real-valued function defined on the interval
(a, b), and suppose that f is monotone on each subinterval (tn, tn+1), n ∈ Z. Show
that f is a Borel measurable function.

2D. Let mid{a, b, c} denote that one of the three real numbers a, b, c that is bracketed by
the other two. Show that if f, g and h are any three measurable real-valued functions
on a measurable space X, then

mid{f(x), g(x), h(x)}

is likewise a measurable function on X.

2E. (i) Let S0 be a σ-ring of subsets of a set X that is not complemented (so that
X �∈ S0), and let S1 denote the complemented σ-ring obtained by adjoining to
S0 the complements of the sets in S0 (see Example 1.13). Describe the algebra
of measurable scalar-valued functions on the measurable space (X,S1). (Hint:
Consider a countable partition of X into sets measurable [S1].)

(ii) Let X = X1 ∪ X2 be a partition of a set X, let S = S1 ⊕ S2, where Si is a
σ-algebra of subsets of Xi, i = 1, 2, and let A denote the algebra of measurable
scalar-valued functions on (X,S). If J1 denotes the set of those functions in A that
vanish on X2, then J1 is an ideal in A that is, in an obvious fashion, isomorphic
as an algebra to the algebra A1 of measurable scalar-valued functions on (X1,S1).
Similarly, the ideal J2 of those functions in A that vanish on X1 is isomorphic to
the algebra A2 of measurable scalar-valued functions on (X2,S2). The ideals J1

and J2 are complements as subspaces of (the vector space)A; that is, J1∩J2 = (0)
while J1 + J2 = A. Moreover, if functions f and g in A are written in the form
f = f1 + f2, g = g1 + g2, where fi, gi ∈ Ji, i = 1, 2, then fg = f1g1 + f2g2.
(This situation is sometimes expressed by saying that A splits internally into the
direct sum A1 ⊕ A2.) Is the like true for more general notions of the direct sum
of measurable spaces (Example 1.16)?

(iii) Let P be a countable partition of a set X, and let S be the σ-ring in X corre-
sponding to P as in Example 1.7. Describe the measurable mappings of (X,S)
into (Y,T), where Y is a set and T is some σ-algebra of subsets of Y containing
all singletons (Example 2.5).

2F. (i) Let Y be a metric space, let C be a collection of subsets of a set X, and sup-
pose given a sequence {ϕn}∞n=1 of mappings of X into Y with the property that
ϕ−1
n (U) ∈ C for all n and all open sets U in Y . Show that if {ϕn} converges point-

wise on X to a limit ψ, then ψ−1(U) ∈ Cδσ for every open set U in Y (see Problem
1J). In particular, if (X,S) is a measurable space, then the limit of any pointwise
convergent sequence of measurable mappings of X into Y is itself measurable.

(ii) Let X be an infinite measurable space, let Y be a metric space, and suppose given
a mapping ψ of X into Y . Let D be the directed set of all finite subsets of X
(directed by set inclusion ⊂), let y0 be a fixed point of Y , and for each Δ in D set
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ϕΔ(x) =

{
ψ(x), x ∈ Δ

y0, x ∈ X \Δ.

Then {ϕΔ}Δ∈D is a net of mappings of X into Y . Show that this net converges
pointwise on X to the given mapping ψ. Show also that the mappings ϕΔ are all
measurable under the hypothesis that all singletons in X are measurable sets (see
Example 2.5).

(iii) In the foregoing construction take for Y the real line R, for ψ the characteristic
function of some subset A of X, and set y0 = 0. Show that in this case the net
{ϕΔ} converges (pointwise) monotonically upward to χA no matter what A is.

Remark 2.54. These constructions clearly show that preservation of measurability under
passage to a limit is essentially restricted to sequential convergence, and does not extend,
in general, to convergent nets, not even monotone nets. This should come as no surprise;
the very concept of measurability is rooted in the notion of a countable set.

2G. (Product metrics; see [I, Problem 6H]) Let (X,S) be a measurable space, and let
Y1, . . . , YN be metric spaces.

(i) If the product Y = Y1 × . . . × YN is equipped with a product metric, and if
ϕ : X → Y is measurable, then the coordinate mappings πi ◦ϕ, i = 1, . . . , N , are
all measurable as well. (Here πi denotes, as always, the projection of the product
Y onto the ith factor Yi.)

(ii) Conversely, if the spaces Yi are all separable, and if ϕ : X → Y has the property
that the coordinate mappings πi◦ϕ are all measurable, then ϕ is itself measurable.
(Hint: See [I, Example 6W].)

(iii) Generalize this discussion to the case of a (countably) infinite product
∏∞

n=1 Yn

of metric spaces equipped with a product metric.

2H. Let X be a measurable space, and let ϕ and ψ be measurable mappings of X into a
separable metric space (Y, ρ). Show that the real-valued function x → ρ(ϕ(x), ψ(x))
is measurable on X and that {x ∈ X : ϕ(x) = ψ(x)} is a measurable set (see
Corollary 2.26). In particular, if ϕ is a Borel measurable mapping of Y into itself,
then the set {y ∈ Y : ϕ(y) = y} of fixed points of ϕ is a Borel set.

2I. Let X be a measurable space and let {ϕn} be a sequence of measurable mappings of
X into a complete separable metric space Y . Show that the subset E of X consisting
of those points x at which the sequence {ϕn(x)} is convergent in Y is measurable and
that ϕ(x) = limn ϕn(x) defines a measurable mapping ϕ : E → Y .

2J. The complex version of (the essential part of) Proposition 2.36 goes as follows. For
every measurable complex-valued function f on a measurable space X there exists a
sequence {sn} of measurable simple complex-valued functions converging pointwise
to f and satisfying the following additional conditions:

(i) at each point x ∈ X either 0 ≤ 
s1(x) ≤ 
s2(x) ≤ · · · , or 0 ≥ 
s1(x) ≥ 
s2(x) ≥
· · · , and likewise, either 0 ≤ �s1(x) ≤ �s2(x) ≤ · · · , or 0 ≥ �s1(x) ≥ �s2(x) ≥
· · · , and

(ii) if M ∈ N and if |f(x)| ≤ M , then |f(x)− sn(x)| ≤
√
2/2n for every n ≥ M .

Show that this assertion is, in fact, valid. (Hint: The proof given in the text can

be copied in the complex plane; alternatively, the complex case can be derived

from the real case.)
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2K. Use the definition of the combinatorial coefficient
(
n
k

)
to derive the equivalent relations

(n
k

)
=

n

k

(n− 1

k − 1

)
,

(n− 1

k − 1

)
=

k

n

(n
k

)
, (2.6)

for all k = 1, . . . , n (and all n ∈ N; recall that 0! = 1 by definition). Set n = m − 1
and k = j − 1 in the basic identity (2.4), and use (2.6) to show that

m∑
j=1

j

m

( m

j − 1

)
xj(1− x)m−j = 1,

and hence that
m∑

j=1

j
(m
j

)
xj(1− x)m−j = mx (2.7)

for m = 2, 3, . . .. Then use the same trick over again to verify (2.5). The case n = 1
needs to be verified separately.

Remark 2.55. It need scarcely be said that these are not simply fortuitous calculations.
In fact, in a Bernoulli process consisting of n independent repetitions of a simple trial
with probability of success p = x (and therefore with q = 1 − x)

(
n
k

)
xk(1 − x)n−k is

the probability of precisely k successes. Thus (2.4) says merely that the sum of these
probabilities is one, (2.7) states that the expected number of successes is np, and (2.5)
gives the standard deviation of this number about its mean as npq—well-known facts of
elementary probability theory.

2L. Prove the complex version of Theorem 2.39 by reducing it to the real case. (A direct
proof of Theorem 2.39 in the complex case can be based on Problem 2J, along with a
complex version of Lemma 2.40, but this would in turn necessitate the introduction
of a complex version of the Weierstrass approximation theorem.)

2M. Let us call a mapping ϕ of a set X into an arbitrary set Y simple if it assumes only
a finite number of distinct values in Y . (Thus the simple scalar-valued functions
defined above in connection with Proposition 2.34 are just the simple mappings of
X into the scalar field.)

(i) If (X,S) is a measurable space and Y is a metric space, then a simple mapping
ϕ of X into Y is measurable if and only if it assumes each of its values on a
measurable set.

(ii) A metric space Y is said to be σ-compact if it is the union of some countable
collection of compact sets. Show that if (X,S) is a measurable space and Y is a
σ-compact metric space, then every measurable mapping ϕ of X into Y is the
limit of a pointwise convergent sequence {ϕn} of measurable simple mappings of
X into Y . (Hint: There exists an increasing sequence {Kn} of compact subsets
of Y such that Y =

⋃
n Kn.)

2N. A mapping ϕ of a measurable space X into a set Y is said to be elementary if it
assumes only a countable number of distinct values. If Y is a metric space, then an
elementary mapping of X into Y is measurable if and only if it assumes each of its
values on a measurable set. If Y is a separable metric space, then a mapping of X
into Y is measurable if and only if it is the limit of a uniformly convergent sequence

of measurable elementary mappings of X into Y .
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2O. If (X,S) and (Y,T) are measurable spaces and ϕ : X → Y is measurable, then (as
we have noted, see Example 2.12) ϕ is automatically measurable on any subset A of

X (meaning that ϕ|A is measurable as a mapping of (A,SA) into Y ).

(i) Show, in the converse direction, that if A is measurable, then any measur-
able mapping ψ : A → Y is the restriction to A of some measurable mapping
ϕ : X → Y .

(ii) Show also that if Y is a complete σ-compact metric space (Problem 2K), then

the assumption in (i) that the set A is measurable can be dropped. In particular,
then, this is the case if Y is the scalar field R or C. (Hint: Consider first the case
of a simple measurable mapping ψ; use Problem 2I.)

(iii) Let X be a separable metric space, and suppose A is some subset of X that is not
a Borel set in X (see Problem 1I). Then the identity mapping ι : A → A is Borel
measurable on A, but does not extend to any Borel measurable mapping of X
into A. (Hint: A Borel measurable mapping of X into A is also Borel measurable
as a mapping of X into itself, and therefore admits a Borel set of fixed points;
recall Problem 2H.)

2P. Let A denote the algebra of all measurable scalar-valued functions on a measurable
space (Y,T), and suppose given a mapping ϕ : X → Y of some set X onto Y . Show
that Ã = {f ◦ ϕ : f ∈ A} is the algebra of measurable scalar-valued functions on
X with respect to a unique σ-algebra S in X, and find S. What becomes of this
proposition if we drop the assumption that the mapping ϕ is onto?

2Q. (i) A scalar-valued function on a metric space X that differs from a continuous func-
tion at only finitely many points is of Baire class one on X. Give an example
of a function on the real line differing from a continuous function at countably
infinitely many points that is of Baire class one, and of another that is not. (Hint:
See [I, Example 8Q].)

(ii) Every scalar-valued function on a metric space X differing from a continuous
function at only a countable set of points is of Baire class two on X.

2R. If a function f : X → R on a metric space X has the property that a ≤ f(x) ≤ b
on X, where a ≤ b are real numbers, and if f is of Baire class α on X, then f is the
limit of a pointwise convergent sequence {fn} of real-valued functions of Baire class
less than α on X such that a ≤ fn(x) ≤ b for all x and all n. In particular, if |f | ≤ M
on X, then f is the pointwise limit of a sequence of functions each of Baire class less
than α, each of which is similarly bounded. Show, in the same vein, that if f is a
complex-valued function of Baire class α on X such that |f | ≤ M on X, then f is
the pointwise limit of a sequence {fn} of complex-valued functions on X where each
fn is not only of Baire class less than α, but also satisfies the condition |fn| ≤ M
on X. (Hint: For the complex case construct a retraction of C onto the closed disc
DM = {λ ∈ C : |λ| ≤ M}; that is, a continuous mapping of C onto DM that agrees
with the identity mapping on DM .)

2S. Let g : Rd → C be a continuous function, and suppose f1, . . . , fn are real-valued
functions of Baire class α on a metric space X. Show that the function

h(x) = g(f1(x), . . . , fd(x))

is also of Baire class α on X. Show that this result remains valid if g is merely
defined and continuous on some closed cell containing the range of the mapping
x �→ (f1(x), . . . , fd(x)), and devise complex analogs of these results.
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2T. Let {Mn}∞n=1 be a sequence of positive real numbers with
∑

n Mn < +∞, and
suppose that {fn} is a sequence of scalar-valued functions on a metric space X such

that |fn| ≤ Mn on X,n ∈ N. Show that if each of the functions fn is of Baire class α
on X (for some countable ordinal number α), then the sum f =

∑
n fn is also of Baire

class α. (Hint: Each fn is the limit of a pointwise convergent sequence {p(n)
k }∞k=1 of

functions of Baire class less than α, where |p(n)
k | ≤ Mn on X for all k and all n. Set

qm = p
(m)
1 + · · ·+ p

(m)
m ,

and let m tend to infinity. For all m greater than or equal to a fixed positive integer
k we can write qm = q′m + q′′m, where {q′m} tends pointwise to f1 + · · · + fk, while
|q′′m| ≤ Mk+1 + · · ·+Mm. Hence {qm} converges pointwise to f .) Use the foregoing
fact to prove that each of the Baire classes Cα on X,α < Ω, is closed with respect to
the formation of limits of uniformly convergent sequences.

2U. A sequence {fn} of scalar-valued functions on a metric space X is said to be locally
uniformly bounded if for every point x0 of X there exist a neighborhood V of x and
a constant M > 0 such that |fn(x)| ≤ M for all x ∈ V and all indices n. (Each of
the functions fn is, then, in particular, locally bounded; see [I, Problem 7D].) Prove
that the class of locally bounded Baire functions on X is the smallest collection of
scalar-valued functions on X that contains the class C0 of continuous scalar-valued
functions and is closed with respect to the formation of limits of pointwise convergent
and uniformly locally bounded sequences.

Remark 2.56. In view of Theorem 2.52, it is natural to look for connections between
the classification of the Borel sets in a metric space X into numbered classes and the like
classification of the Baire functions on X. Such connections do indeed exist, but they are
not as tidy as one might hope. The following problem provides a small sampler of such
results.

2V. Let X be a metric space.

(i) For each countable ordinal number α let Eα denote the collection of subsets
E of X such that χE belongs to the Baire class Cα on X. Show that Eα is a
complemented lattice of subsets of X. Define inductively classes Gα for α < Ω

by setting G0 = G (the collection of open sets), and Gα =
(⋃

β<α G
)
δ
if α is

odd and Gα =
(⋃

β<α G
)
σ
if α > 0 is even. Show also that Gα ⊂ Eα+1 for every

α < Ω.
(ii) Suppose each function of the sequence {fn} of complex-valued functions on X

has the property that the inverse image f−1
n (U) belongs to the lattice Gα for

every open set U in C, and suppose {fn} converges pointwise to a limit f . Verify
that f−1(U) belongs to Gα+2 for every open set U ⊂ C. (Thus, for example, a
scalar-valued function f of Baire class one on X has the property that f−1(U)
is a Gδσ for every open set U of complex numbers; see Problem 2F.)

(iii) Use the foregoing observation to prove that if λ is a countable limit number,
and if f ∈ Cλ,C, then f−1(U) ∈ Gλ+2 for every open set U ⊂ C. Conclude by
transfinite induction that for each countable ordinal number α there is a positive
integer k (depending on α) such that if f ∈ Cα,C, then f−1(U) ∈ Gα+k for every
open set U ⊂ C.

Remark 2.57. The basic idea of the construction of various Baire classes of mappings on
a space X clearly makes sense in a broader context than that of scalar-valued functions.
The following two problems are concerned with the classification of mappings taking values
in arbitrary metric spaces.
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2W. Let (Y, σ) be a metric space.

(i) Show that for any subset F of Y X there is a smallest set B(F) ⊂ Y X that
contains F and is closed with the respect to the formation of pointwise limits.
The collection B(F) is the Baire class generated by F .

(ii) What is B(∅)? That is, what collection of mappings of X into Y is generated in
this way by the empty collection of mappings? Let A be a subset of Y , and let
FA denote the collection of constant mappings of X into A. Find B(FA).

(iii) Let F be a collection of mappings of X into Y . Set C0 = F , and supposing, for
a countable ordinal number α, that Cξ is already defined for all ξ < α, define
Cα to consist of all limits of pointwise convergent sequences {ϕn} of mappings
belonging to

⋃
ξ<α Cξ. Show that {Cα}α<Ω is a monotone increasing family of

subsets of Y X and that B(F) =
⋃

α<Ω Cα.

2X. Let (X, ρ) and (Y, σ) be metric spaces, and let C0 = C(X;Y ) denote the collection of
all continuous mappings of X into Y . The mappings in the Baire class B(C0) generated
by C0 are known simply as Baire mappings of X into Y . More particularly, for each
countable ordinal number α, the collection Cα defined in the transfinite procedure
indicated in part (iii) of the preceding problem (starting with F = C0) constitutes
the Baire class α of mappings of X into Y .

(i) For every countable ordinal number α, a mapping ψ : X → Y is of Baire class
α + 1 if and only if it is the limit of a pointwise convergent sequence {ϕn} of
mappings belonging to Cα. On the other hand, if λ is a countable limit number,
then ψ is of Baire class λ if and only if there exist a strictly increasing sequence
{ηn} in W (λ) and, for each index n, a mapping ϕn in Cηn such that the sequence
{ϕn} converges pointwise to ψ.

(ii) Let (Z, τ) be a third metric space. Show that if ϕ : X → Y and ψ : Y → Z are
both Baire mappings, then ψ ◦ ϕ : X → Z is also a Baire mapping. Show, more
particularly, that if ϕ is of Baire class α and ψ is of Baire class β, then ψ ◦ ϕ is
of Baire class α+ β.

(iii) Suppose Y is of the form Y = Y1× . . .×YN , where Y1, . . . , YN are metric spaces.
Let Y be equipped with a product metric, and let α be a countable ordinal
number. Show that a mapping ϕ : X → Y is of Baire class α if and only if
the coordinate mappings πi ◦ ϕ, i = 1, . . . , N , are all of Baire class α. (Thus, in
particular, ϕ is a Baire mapping if and only if the mappings πi ◦ ϕ are all Baire
mappings.)

(iv) Part (iii) goes through in the case of a countably infinite product

Y =

∞∏
n=1

Yn

as well (assuming, as always, that Y is equipped with a product metric). (Hint:
Assume, as one may, that Y �= ∅, and select a fixed point yn,0 in each factor Yn.)

(v) The Baire mappings of R into the Cantor set C are just the constant functions
f : R → C. Thus no counterpart of Theorem 2.39 holds in this generalized
context.

2Y. Let (X,S) be a measurable space and let (Y, σ) be a metric space. A mapping ϕ :
X → Y will be said to have property (MSR) if ϕ is measurable and its range ϕ(X)
is separable (as a subspace of Y ). If Y is separable, then every measurable mapping
of X into Y has property (MSR); if X is a separable metric space, then every Baire
mapping of X into Y has property (MSR).
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(i) Prove that if ϕ : X → Y has property (MSR) and ε is a positive number,
then there exists a measurable elementary mapping ϕε of X into Y such that

σ(ϕ(x), ϕε(x)) < ε for all x ∈ X (recall Problem 2N). Show, conversely, that
any mapping of X into Y that is thus approximable has property (MSR). (Hint:
A subset of Y is separable as a subspace if and only if it is contained in the
closure of a countable subset of Y .)

(ii) The collection of all mappings in Y X with property (MSR) is closed under the
formation of pointwise limits. (Hint: The separable subsets of Y form a σ-ideal
in 2Y .)

(iii) If ϕ : X → Y has property (MSR), and if ψ is a mapping of Y into some
third metric space Z such that ψ has property (MSR), or such that ψ is a Baire
mapping, then ψ ◦ ϕ has property (MSR).

(iv) Suppose Y is of the form Y = Y1 × . . . × YN , where (Yi, σi) is a metric space,
i = 1, . . . , N , and suppose Y is equipped with a product metric. Show that
a mapping ϕ of X into Y has property (MSR) if and only if the coordinate
mappings πi ◦ ϕ all have that property. Generalize this result to the case of an
infinite product Y =

∏∞
n=1 Yn.

(v) If two mappings ϕ and ψ of X into Y both have property (MSR), then the
function x �→ σ(ϕ(x), ψ(x)) is measurable.

2Z. Let f : R → R be an arbitrary function. Show that the set E of points of continuity
of f and the set F of differentiability points of f are Borel sets in R. Moreover, the
function f ′ : F → R is Borel measurable.

2AA. (Korovkin) Denote by CR([0, 1]) the linear space of continuous functions f : [0, 1] → R.
Let Tn : CR([0, 1]) → CR([0, 1]), n ∈ N, be a sequence of real-linear maps with the
following properties.

(i) If f ∈ CR([0, 1]) is a nonnegative function, then Tn(f) is nonnegative for all
n ∈ N.

(ii) The sequence {Tn(f)}∞n=1 converges uniformly to f when f(t) = tj for j = 0, 1, 2.

Show that {Tn(f)}∞n=1 converges uniformly to f for every f ∈ CR([0, 1]).
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