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Abstract This paper deals with two methods for the full statistical description of
turbulent field, namely the Lundgren—-Monin—Novikov hierarchy (Lundgren, Phys
Fluids, 10:969-975 1967, [5]) for the multipoint probability density functions (PDFs)
of velocity and Hopf functional equation for turbulence (Hopf, J Ration Mech Anal,
1:87-122 1952, [2]). These equations are invariant under certain transformations
of dependent and independent variables, so called symmetry transformation. The
importance of these symmetries for the turbulence theory and modelling is discussed.

1 Introduction

Although the phenomenon of turbulence is described by deterministic Navier—Stokes
equations, due to its sensitivity to small variations in the initial and boundary condi-
tion the turbulent field may be treated as a stochastic field. For its full description, all
multipoint statistics of arbitrary order should be known. With respect to turbulence
research three complete descriptions of turbulence are known, namely the infinite
hierarchy of the multi-point correlation equations (so-called Friedmann—Keller (FK)
hierarchy, [3]), the infinite hierarchy of the multipoint PDF equations (Lundgren—
Monin—Novikov (LMN) equations, [5]) and finally the Hopf functional approach,
[2]. The two latter approaches will be discussed below.

The n-point velocity PDF f, = f,(vay, ..., Vo Xy, - - -, X(n)» t) carries infor-
mation about all statistics up to n-point statistics of infinite order which can be cal-
culated from the PDF by integration over the sample space variables vj), ..., V(»),
for example

<U,'(U(X(1), t)--- U,'(") (X(n), t)) = /Vim . V,'(”)f;ldV(l) Ce dV(n). (1)
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E. Hopf introduced another very general approach to the description of turbu-
lence. He considered the case where the number of points in PDF goes to infinity,
so that the probability density function becomes a probability density functional
F([v(x)]; t) where instead of the vector of sample space variables v(j), ..., V¢, at
points Xy, . . ., X(») one deals with a continuous set of sample space variables v(x).
It is more convenient to consider a functional Fourier transform of the probability
density functional, called the characteristic functional than F([v(x)]; ¢) itself

Oy()1: 1) = / Y F(v()T; DY) = (V) ®)

where the integration is performed with respect to the probability measure F ([v(x)];?)
Dv(x) and (y,v) = f ¢ Yividx is a scalar product of two vector fields. With this def-
inition moments of the velocity can be calculated as the functional derivatives of the
characteristic functional at the origin [2]

3"D([y(®)], 1)
8Yi, X1)) -+ - 8Yiyy Xn))

=i"(Ui, Xy, ) -+ - Ui,y Xy, 1)) 3)

y=0

Hence, @ may be treated as a functional analogue of the characteristic function @,
for n — oo, defined, in the probability theory, as the inverse Fourier transform of
fn- E. Hopf derived evolution equation for the characteristic functional, cf. [2]. It is
only one equation (not a hierarchy) which embodies the statistical properties of the
fluid flow in a very concise form.

The objectives of the present work is to discuss the classical and new statistical
Lie symmetries that were first found for the FK hierarchy [6] and are also present
in the LMN hierarchy [9] and find corresponding symmetries for the Hopf equation.
Lie one-point symmetry transformation is such transformation of the independent
and dependent variables, x and y, respectively, which does not change the functional
form of a considered equation [1]

F(X’y’y’y""’y)=0 < F(X*’y*’y*’y*’-‘~vy*)=0 (4)
12 )4 12 P

where the transformed variables x* = g(x, y; ¢) and y* = h(X, y; &) are functions of
x and y and depend on a group parameter ¢. The transformations can also be written in
infinitesimal forms after a Taylor series expansion aboute = 0: x* = x + £(x, y)e +
0(e?) and y* =y + n(x, y)e + O(&?). It follows from the Lie’s first theorem that
knowing the infinitesimal forms & and 5 uniquely determines the global form of
the group transformation g(x,y; ¢) and h(X,y; ¢). With the use of infinitesimals
invariant solutions of the considered Eq. (4) may be derived [1]. In fluid mechanics
these solutions often represent attractors of the instantaneous fluctuating solutions
of the Navier—Stokes equations, i.e. the characteristic turbulent scaling laws.
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From the Lie symmetry analysis of the LMN hierarchy it followed that, surpris-
ingly, the new symmetries are connected with intermittent laminar/turbulent flows
[9]. The outcome of the symmetry analysis are invariant solutions for turbulence
statistics and new possibilities to improve turbulence closures, such that invariance
under the whole set of symmetries is accounted for.

2 Symmetries of the LMN Hierarchy

The LMN hierarchy, derived in Ref. [5] is an infinite set of equations for the multipoint
PDFs where in the nth equation the n + 1-point PDF is present

n

fn afn
B T2 gy

k=1 i)
2
1 i d / / 3 1 d Frnd d
- Vimeh n+14V(n41)dX (1)

4 = g, Ixigy [Xoy = Xers)| 0,
n 2

d . d

*z ET lim UW/W("H).andV(rzH) . (5)

o1 Miw [ [Karn—%Xa [0 0% g1 0Xjgi

Symmetries of the LMN hierarchy were investigated in Ref. [9]. Therein, it was
shown that the hierarchy is invariant under the classical symmetries of the Navier—
Stokes, equations, in particular, time and space translations, Galilean invariance and,
for v = 0 two scaling groups

5. -3

Ty: " =1,x =e"xq), Vo) = vy, [ =", (6)

- - 3

Ts : t* = e%t, X1 = Xy, V>(kl) =e a3V(l), fn* =e"® Ja- @)
withl =1, ..., n, which for v # 0 reduce to one scaling group. Moreover, it was

shown that the LMN hierarchy is invariant under new statistical symmetry groups
observed in the Friedrich—Keller hierarchy as the scaling and translations of multi-
point velocity correlations cf. Ref. [6]. In the LMN approach the symmetries have
the following forms

Ll =38(vay) - 8(vay) +€“ (fo — (V) - - 8 (Vi) (®)
for the scaling and
fr =T U va)Svay = v) - 8(Vay = Vy)- )

for the translation symmetry, where v is a function such that [ ¢ (v)dv = 0 and § is
the Dirac delta function.
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In Ref. [9] the particular case of a plane Poiseuille channel flow was considered.
Both the scaling (8) and the translation symmetry (9) were taken into account. For the
channel flow the symmetries have slightly different form. First, the scaling symmetry
(8) transforms a PDF f, of a turbulent signal into the PDF with delta function at
v = 0. Next, the translation symmetry with the function ¢ defined as ¢ = (1 —
e®)[8(vay — Ur(X1y)) — 8(vqy)] where Up (X)) = [Up(1 — x%(k)/Hz), 0,0], Uy is
the velocity at the centerline and H is the channel half-width, transforms PDF into

fr=e*fu+ A —e")8vay —Urxy))...8(Vm —ULXw)). (10)

To sum up, both symmetries, scaling and translation transform a PDF of a turbulent
signal into the PDF of an intermittent laminar-turbulent flow. This would correspond
to a situation where the flow in a channel is induced by a certain pressure difference
AP, such that the resulting Reynolds number Re = U, H /v where U, is the bulk
velocity, is close to the critical value Re,,. For certain range of Re both, laminar or
turbulent solutions are possible with certain probability, leading to the PDF of the
form given in Eq. (10). As discussed in Ref. [9] such interpretation of the symme-
tries has important consequences. First, it leads to certain conditions on the group
parameter e®. As this parameter is present in invariant solutions for turbulent sta-
tistics derived in [6] it may provide restrictions on the scaling parameters in these
laws, such as e.g. the von Karman constant. Second, to properly describe physics,
turbulence models should be invariant under the same set of symmetries as the exact
equations for statistics (e.g. the FK hierarchy), hence, new symmetries should be
included in these models. It may be expected that this is especially important in the
case of models describing laminar-turbulent transition.

With the use of new symmetries series of invariant solutions for turbulence statis-
tics can be derived [6]. In Ref. [9] three particular symmetries were taken into account:
classical scaling of the Navier—Stokes equations, cf. (5), y* = ek y, (U)* = e *(U)
where k; is an arbitrary constant, new scaling and translation symmetries of the mean
velocity (U)* = e (U) + C,(1 — y?>/H?), which follows from Eq. (10). Invariant
solution can be found from the solution of the characteristic equation [6]

d(U) dy

=— (11
(as —k)(U)y + C1(1 — y2/H?)  kay
which for a; = k, gives
Wy = Sy + S (4 YLy (12)
Tk YT o H?

where € is a constant. The formula above is, apparently, a sum of the turbulent and
laminar velocity in the plane channel flow.
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3 Symmetries of the Hopf Equation

Based on the Navier-Stokes equations, E. Hopf derived evolution equation for the
characteristic functional [2]. It is only one equation (not a hierarchy) and all turbu-
lence statistics can formally be calculated from the solution of the Hopf equation.
The Hopf equation for velocity in the physical space reads [2]

0P /d S )[_ G 8 V2 bYes ] 13)
—_—= X X | — V .
or S 0 sy @i | T aye(x)

where, in order to eliminate pressure functional IT from the equation, vector field
y such that y(x) = ¥(x) + V¢ was introduced. The scalar ¢ is chosen such that
¥ = 0 at the boundary B and the continuity equation is satisfied V -y = 0. In order
to check the invariance of the Hopf functional equation under the scaling groups
we first consider transformations of n + 1-point characteristic functions. From the
relation

Dy = / Vo Yo VYo £ dvly L dvE, (14)

we find that the scaling symmetries (6) and (7) will hold if yfi) = e‘kﬁym and
Yoy = eksy( for each i, as in such a case the exponent Vi " ¥ = V) - ) remain
unchanged and using (6) we obtain @ = @,. The same holds for the second scaling
group (7), i.e. the n-point characteristic function is not transformed @ = @,. We
expect that the same should hold for the limit # — oo and the characteristic func-
tional. In this case instead of the discrete kth variable y;,, we deal with y; (x)dx. The
sums are replaced by integrals in the continuum limit and hence y;dx should scale
as y;,, in the discrete case, i.e. y/dx* = e % y;dx. Because dx scales as dx* = xe**
it follows that y; = ey,

To sum up, it can be shown that the Hopf functional equation (13) for v = 0 is
invariant under the following transformation of variables

T,: &* =@, x*=ebx, =1, yidx* = e lydx, y*=e*y, (15

T;: @ =0, x*=x, t"=¢e%, yrdx*=ebydx, y*=eby. (16)
For v # 0 instead of two scaling groups we obtain one scaling.

The difficulty is connected with the Galilei invariance which is broken. The func-
tional @ transforms under the Galilean invariance as follows [4]

dF — (ei fU*(x,t)-y*(x)dx*) — <ei j'U(x,z)~y(x)dX)ei j'y(x)-Ugdx. (17)

Hence, the transformation of @ may be writtenas @* = C([y(x)])®@, where C ([y(x)])
is a functional |
C(ly(x)], 1) = e /Y Uodx "
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The nth derivative of the transformed functional @* aty = 0 gives

5’1¢* ‘
8Yiig) (X) + -+ 8yi,,, (X) ly=0

=i"(Uio, (X, 1) + Uoiy) - - - Ui, (X, 1) + Ui, _,,)
(19)

as expected for Galilean invariance. In the Galilean transformation, the space
derivatives in Eq.(13) transform as 9/0x/ = 0/0x; and the integral over infinite
space [ dx* = [ dx. As the variables y* =y, also the functional derivative remains
unchanged §/5(y; (x))* = §/8y; (x). The derivative d/d¢ can be presented as

9
22 7 i = 4 Uy—, 20
0~ a1 9 T a1 ox at Sy(x)* ot Ry 20)

1

a at* 9 ax; d /ay*dx* ) 0

The transformed functional equation (13) reads

9P ) FClyxhe 2 8C(yxDe oIl
et = [ |17 S T o

2n

The functional derivative of @* in (21) reads C§® /5y (x) + @S5C /5y (x) and
we note that Laplacian V)% of the second term is zero as this term is not a func-
tion of x. Hence, the last RHS term of equation (21) inside the integral reads
C ([y(x)])va(Sd)/ Sy (x). Further, the second functional derivative of @* reads

820 sd  §C so  §C 82C
C + + +@ .
Sy (X)8y;(x)  Syr(x) yi(x)  Syi(x) Syr(x) Syk (x)8y; (x)

(22)

Again, the derivative d/dx; of the last term is zero, as it does not depend on x. In
addition we also have

a 5@ 8C 8C 9 @
|: i| =0, (23)

B Loy (X) 8yc®) | 8y (x) 9, 81 (x)

where the first equality follows from the fact that the derivative of C does not depend
explicitly on x and the second, from the continuity condition. It can be seen from
the definition of the Hopf functional (2) that its derivative with respect to y;(x) reads
(iU (x, t) expli f U(x, t) - y(x)dx]), hence differentiating once again with respect to
x; is zero as dU;/dx; = 0. Finally, the transformed Hopf equation reads

iy 2E = <x)1>/ (>[ K I L }dx
YOb 5, =cly P o Sy 08y x) L Sye(x)

/ [ ikl }dx 4)
5y( ) dx; Syi(x)
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As it is seen the last RHS term does not cancel. Hence, in the integral formulation
of the Hopf equation the Galilei invariance is broken.

We will next consider the transformation of the Hopf functional under the statis-
tical symmetries, formulated for the PDF’s in Egs. (8) and (9). E. Hopf proposed to
present the solution of the Hopf functional as the infinite series expansion [2]

P=1+C+Cr+---, (25)

where
C, = / Kiyioy X(tys «+ s X(uys ) Vi, X)) =+ + Vi X)) dX (1) - - - dX ) (26)

with functions

n

i
(Ui, Xy, 1) -+ - Ui,y Xy, 1)) 27

Kigyioy X(tys - s Xuy, 1) = ]

If we substitute the statistical symmetries of moments into the above equations we
find that the scaling symmetry of multipoint velocity correlations, cf. Ref. [6] and
Eq. (8), transforms the kernel functions as

Ky i = €Kiy iy (28)
hence the series expansion reads
P =1+ (@' +7+-), (29)
or
P =1+e(@—1). (30)

The translation symmetry of multipoint correlations, cf. Ref. [6] and Eq. (9),
translates the kernel functions by a constant which leads to the following translation
of the nth term in the Taylor series expansion

OF =D, + / Cigy.ign Yioy X)) =+ Vigy X)X (1) - - - dX . €2

Hence, the translation symmetry of the characteristic functional @ can be written in
the following form
Q"=+ ¥(ym)D, (32)
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where ¥ is a functional such that its nth functional derivative at the origin equals
n!Ci,..i,, and its functional derivatives does not depend explicitly on x or ¢ which
makes the Eq. (13) invariant under the transformation (32).

4 Conclusions

To sum up, it was argued that all methods for the full statistical description of turbu-
lence, namely FK hierarchy, LMN hierarchy for PDFs and the Hopf characteristic
functional equations are invariant under classical scaling symmetries of Navier—
Stokes equations and additionally under the set of statistical symmetries: translation
and scaling. Deriving transformations of the Hopf equation equivalent to the FK
symmetries is a new contribution of the present work. Through the analysis of PDF
equations the statistical translation and scaling were identified in Ref. [9] as con-
nected with the (external) intermittency. Hence, the statistical symmetries indicate
the fact that solutions of Navier—Stokes equations may have different character. Such
transformation could only be observed in the statistical approach, hence the statistical
symmetries were not found in the Lie group analysis of the Navier—Stokes equations.
With the use of statistical symmetries series of invariant solutions for turbulence sta-
tistics were obtained in Ref. [6]. It can be expected that similar, new results could be
obtained for PDFs based on the symmetries of LMN hierarchy. Moreover, the invari-
ance under new statistical symmetries could be introduced into turbulence models
to improve their predictions.

The Lie group analysis of infinite hierarchies of equations, such as LMN or FK
cannot be performed with the use of common computer algebra systems. Hence,
the symmetries of FK equations were rather guessed than calculated and their set
may not be complete. A possibility would be to apply the Lie group method to one,
Hopf functional equation in order to find possibly new statistical symmetries and
next derive corresponding transformations in the LMN and FK hierarchy. For this
purpose, the extended Lie group method, introduced in Refs. [7, 8] could be used.
This issue is the subject of the current study.
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