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Abstract. Self-* is widely considered as a foundation for autonomic
computing. The notion of autonomic systems (ASs) and self-* serves
as a basis on which to build our intuition about category of ASs in
general. In this paper we will specify ASs and self-* and then move on to
consider finite limits and colimits in ASs. All of this material is taken as
an investigation of our category, the category of ASs, which we call AS.
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1 Introduction

Autonomic computing (AC) imitates and simulates the natural intelligence pos-
sessed by the human autonomic nervous system using generic computers. This
indicates that the nature of software in AC is the simulation and embodiment
of human behaviors, and the extension of human capability, reachability, per-
sistency, memory, and information processing speed. AC was first proposed by
IBM in 2001 where it is defined as

“Autonomic computing is an approach to self-managed computing sys-
tems with a minimum of human interference. The term derives from the
body’s autonomic nervous system, which controls key functions without
conscious awareness or involvement” [1].

AC in our recent investigations [2–5,7] is generally described as self-*. For-
mally, let self-* be the set of self- ’s. Each self- to be an element in self-* is
called a self-* facet. That is,

self-* = {self- | self- is a self-* facet} (1)

We see that self-CHOP is composed of four self-* facets of self-configuration, self-
healing, self-optimization and self-protection. Hence, self-CHOP is a subset of
self-*. That is, self-CHOP = {self-configuration, self-healing, self-optimization,
self-protection} ⊂ self-*. Every self-* facet must satisfy some certain criteria,
so-called self-* properties.
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In its AC manifesto, IBM proposed eight facets setting forth an AS known
as self-awareness, self-configuration, self-optimization, self-maintenance, self-
protection (security and integrity), self-adaptation, self-resource- allocation and
open-standard-based [1]. In other words, consciousness (self-awareness) and non-
imperative (goal-driven) behaviors are the main features of autonomic systems
(ASs).

In this paper we will specify ASs and self-* and then move on to consider
finite limits and colimits in ASs. All of this material is taken as an investigation
of our category, the category of ASs, which we call AS.

2 Outline

In the paper, we attempt to make the presentation as self-contained as possible,
although familiarity with the notion of self-* in ASs is assumed. Acquaintance
with the associated notion of algebraic language is useful for recognizing the
results, but is almost everywhere not strictly necessary.

The rest of this paper is organized as follows: Sect. 3 presents some basic
concepts to support consideration of limits and colimits in autonomic systems
(ASs). In Sect. 4, we consider some finte limits such as pullbacks of ASs, spans
on ASs and equalizers of self-*. In Sect. 5, we consider some finte colimits such
as pushouts of ASs and coequalizers of self-*. Finally, a short summary is given
in Sect. 6.

3 Basic Concepts

We can think of an AS as a collection of states x ∈ AS, each of which is
recognizable as being in AS and such that for each pair of named states x, y ∈ AS
we can tell if x = y or not. The symbol � denotes the AS with no states.

If AS1 and AS2 are ASs, we say that AS1 is a sub-system of AS2, and write
AS1 ⊆ AS2, if every state of AS1 is a state of AS2. Checking the definition, we
see that for any system AS, we have sub-systems � ⊆ AS and AS ⊆ AS.

We can use system-builder notation to denote sub-systems. For example the
autonomic system can be written {x ∈ AS | x is a state of AS}.

The symbol ∃ means “there exists”. So we can write the autonomic system
as {x ∈ AS | ∃y is a final state such that self-*action(x) = y}

The symbol ∃! means “there exists a unique”. So the statement “∃!x ∈ AS
is an initial state” means that there is one and only one state to be a start one,
that is, the state of the autonomic system before any self-* action is processed.

Finally, the symbol ∀ means “for all”. So the statement “∀x ∈ AS ∃y ∈ AS
such that self-* action(x) = y” means that for every state of autonomic system
there is the next one.

In the paper, we use the
def
= notation “AS1

def
= AS2” to mean something like

“define AS1 to be AS2”. That is, a
def
= declaration is not denoting a fact of nature

(like 1 + 2 = 3), but our formal notation. It just so happens that the notation
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above, such as Self-CHOP
def
= {self-configuration, self-healing, self-optimization,

self-protection}, is a widely-held choice.
If AS and AS′ are sets of autonomic system states, then a self-* action

self-*action from AS to AS′, denoted self-*action: AS → AS′, is a mapping that
sends each state x ∈ AS to a state of AS′, denoted self-*action(x) ∈ AS′. We call
AS the domain of self-*action and we call AS′ the codomain of self-*action.

Note that the symbol AS′, read “AS-prime”, has nothing to do with calcu-
lus or derivatives. It is simply notation that we use to name a symbol that is
suggested as being somehow like AS. This suggestion of consanguinity between
AS and AS′ is meant only as an aid for human cognition, and not as part of
the mathematics. For every state x ∈ AS, there is exactly one arrow emanating
from x, but for a state y ∈ AS′, there can be several arrows pointing to y, or
there can be no arrows pointing to y.

Suppose that AS′ ⊆ AS is a sub-system. Then we can consider the self-*
action AS′ → AS given by sending every state of AS′ to “itself” as a state of
AS. For example if AS = {a, b, c, d, e, f} and AS′ = {b, d, e} then AS′ ⊆ AS
and we turn that into the self-* action AS′ → AS given by b 	→ b, d 	→ d, e 	→
e. This kind of arrow, 	→, is read aloud as “maps to”. A self-* action self-
*action: AS → AS′ means a rule for assigning to each state x ∈ AS a state
self-*action(x) ∈ AS′. We say that “x maps to self-*action(x)” and write x 	→
self-*action (x).

As a matter of notation, we can sometimes say something like the following:
Let self-*action: AS′ ⊆ AS be a sub-system. Here we are making clear that AS′

is a sub-system of AS, but that self-*action is the name of the associated self-*
action.

Given a self-* action self-*action: AS → AS′, the states of AS′ that have at
least one arrow pointing to them are said to be in the image of self-*action; that
is we have

im(self-*action)
def
= {y ∈ AS′ | ∃x ∈ AS such that self-*action(x) = y} (2)

Given self-*action: AS → AS′ and self-*action ′ : AS′ → AS′′, where the
codomain of self-*action is the same set of autonomic system states as the
domain of self-*action ′ (namely AS′), we say that self-*action and self-*action ′

are composable

AS
self-*action ��AS′self-*action

′
��AS′′

The composition of self-*action and self-*action ′ is denoted by self-*action ′ ◦
self-*action: AS → AS′′.

We define the identity self-*action on AS, denoted idAS : AS → AS, to be
the self-* action such that for all x ∈ AS we have idAS(x) = x.

A self-*action: AS → AS′ is called an isomorphism, denoted self-*action:
AS

∼=→ AS′, if there exists a self-* action self-*action ′ : AS′ → AS such that
self-*action ′ ◦ self-*action= idAS and self-*action ◦ self-*action ′ = idAS′ . We
also say that self-*action is invertible and we say that self-*action ′ is the inverse
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of self-*action. If there exists an isomorphism AS
∼=→ AS′ we say that AS and

AS′ are isomorphic autonomic systems and may write AS ∼= AS′.
Consider the following diagram:

AS
self-*action ��

self-*action′′

���
��

��
��

��
��

��
��

��
AS′

self-*action′

��
AS′′

(3)

We say this is a diagram of autonomic systems if each of AS,AS′, AS′′ is
an autonomic system and each of self-*action, self-*action ′, self-*action ′′ is a
self-* action. We say this diagram commutes if self-*action′ ◦ self-*action =
self-*action′′. In this case we refer to it as a commutative triangle of auto-
nomic systems. Diagram (3) is considered to be the same diagram as each of the
following:

AS
self-*action ��

self-*action′′

��

AS′

self-*action′

����
��

��
��

��
��

��
��

�

AS′′

AS
self-*action ��

�� ��

self-*action′′

��AS′ self-*action′
��AS′′ AS′

self-*action′

����
��

��
��

AS′′

AS

self-*action

��

self-*action′′

����������

(4)

Consider the following picture:

AS
self-*action ��

self-*action′′

��

AS′

self-*action′

��
AS′′ self-*action

′′′
��AS′′′

(5)

We say this is a diagram of autonomic systems if each of AS,AS′, AS′′, AS′′′

is an autonomic system and each of self-*action, self-*action ′, self-*action ′′,
self-*action ′′′ is a self-* action. We say this diagram commutes if self-*action′ ◦
self-*action = self-*action′′′ ◦ self-*action′′. In this case we refer to it as a com-
mutative square of autonomic systems.

4 Finite Limits in Autonomic Systems

In this section, we consider what are called limits of variously-shaped diagrams
of ASs.
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4.1 Pullbacks of Autonomic Systems

Suppose given the diagram of ASs and self-*actions below.

AS′′

self-*action′′

��
AS′ self-*action′

��AS

(6)

Its fiber product is the AS

AS′ ×AS AS′′ def
= {(x,w, y)|self-*action′(x) = w = self-*action′′(y)}

There are obvious projections self-*action1 : AS′ ×AS AS′′ → AS′ and
self-*action2 : AS′ ×AS AS′′ → AS′′. Note that if AS′′′ = AS′ ×AS AS′′ then
the following diagram commutes

AS′′′

�

self-*action2 ��

self-*action1

��

AS′′

self-*action′′

��
AS′ self-*action′

��AS

(7)

Given the setup of diagram (7) we come to the pullback of AS′ and AS′′ over
AS to be any AS′′′ for which we have an isomorphism AS′′′ ∼=→ AS′ ×AS AS′′.
The corner symbol “�” in diagram (7) indicates that AS′′′ is the pullback.

Some may prefer to denote this fiber product by self-*action′×ASself-*action
′′

rather than AS′ ×AS AS′′. The former is mathematically better notation, but
human-readability is often enhanced by the latter, which is also more common
in the literature. We use whichever is more convenient.

Suppose given the diagram of ASs and self-actions as in (8).

AS′′

self-*action4

��
AS′ self-*action3 ��AS

(8)

For any AS′′′ and commutative solid arrow diagram as in (9). In other
words, self-*action1 : AS′′′ → AS′ and self-*action2 : AS′′′ → AS′′ such that
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self-*action3 ◦ self-*action1 = self-*action4 ◦ self-*action2 there exists a unique
arrow

< self-*action1, self-*action1 >AS : AS′′′ → AS′ ×AS AS′′

making everything commute. In other words,

self-*action1 = self-*action′◦ < self-*action1, self-*action1 >AS

and

self-*action2 = self-*action′′◦ < self-*action1, self-*action1 >AS

AS′ ×AS AS′′

self-*action′

		��
��
��
��
��
��
��
��
��
��
��
�

self-*action′′



�
��

��
��

��
��

��
��

��
��

��
��

AS′′′

∀self-*action1
����

������ ∀self-*action2

			
	

��			
	

∃!

��














AS′

self-*action3 ������������� AS′′

self-*action4�������������

AS

(9)

Consider the diagram drawn in (10), which includes a left-hand square, a right-
hand square, and a big rectangle

AS′
1

�self-*action3

��

self-*action1 ��AS′
2

�self-*action4

��

self-*action2 ��AS′
3

self-*action5

��
AS1

self-*action6

��AS2
self-*action7

��AS3

(10)

If AS′
2

∼= AS2 ×AS3 AS
′
3 then the right-hand square is a pullback. The right-

hand square has a corner symbol indicating that AS′
2

∼= AS2 ×AS3 AS′
3 is a

pullback. But the corner symbol on the left might be indicating that the left-
hand square is a pullback, or the big rectangle is a pullback. Thus, If AS′

2
∼=

AS2 ×AS3 AS′
3 then the left-hand square is a pullback if and only if the big

rectangle is.
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Consider the diagram drawn in (11)

AS′
2

�self-*action4

��

self-*action2 ��AS′
3

self-*action5

��
AS1

self-*action6

��AS2
self-*action7

��AS3

(11)

where AS′
2

∼= AS2 ×AS3 AS
′
3 is a pullback. Then there is an isomorphism

AS1 ×AS2 AS
′
2

∼= AS1 ×AS3 AS
′
3

In other words,

AS1 ×AS2 (AS2 ×AS3 AS
′
3) ∼= AS1 ×AS3 AS

′
3

4.2 Spans on Autonomic Systems

Consider AS1 and AS2, a span on AS1 and AS2 is an AS together with self-*
actions self-*action1 : AS → AS1 and self-*action2 : AS → AS2.

AS
self-*action1



��
��

��
�� self-*action2

��













AS1 AS2

(12)

Let AS1, AS2, and AS3 be autonomic systems, and let

AS1
self-*action1← AS′ self-*action2→ AS2

and
AS2

self-*action3← AS′′ self-*action4→ AS3

be spans. Their composite span is given by the fiber product AS′ ×AS2 AS
′′ as

in the diagram (13):

AS′ ×AS2 AS
′′

�������������

��											

AS′

self-*action1
��

�

�����
self-*action2

				

��				

AS′′

self-*action3
����

������ self-*action4

��
�

����
�

AS1 AS2 AS3

(13)
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If there is a span as AS1 ← AS → AS2 then by the universal property of
products [6], we have a unique map AS

∃!→ AS1 × AS2.
If there are two spans as AS1 ← AS′ → AS2 and AS1 ← AS′′ → AS2.

We can take the disjoint union AS′ 
 AS′′ and by the universal property of
coproducts, we have a unique span AS1 ← AS′ 
 AS′′ → AS2 making the
diagram (14) commute.

AS′

������������

�� ������������

AS1 AS′ 
 AS′′�� ��AS2

AS′′

������������

�� ������������

(14)

Given a span AS1
self-*action1← AS

self-*action2→ AS2, we can draw a bipartite
graph with each state of AS1 drawn as a dot on the left, each state of AS2 drawn
as a dot on the right, and each state a in AS drawn as an arrow connecting vertex
self-*action1(a) on the left to vertex self-*action2(a) on the right.

4.3 Equalizers of Self-*

Suppose given two parallel self-* actions

AS1 AS2
self-*action1

self-*action2

The equalizer of self-*action1 and self-*action2 is the commutative diagram
in (15),

Eq(self-*action1,self-*action2) AS1 AS2
p self-*action1

self-*action2 (15)

where we define

Eq(self-*action1, self-*action2)
def
= {a ∈ AS1 | self-*action1(a) = self-*action2(a)}

and where p is the canonical inclusion

5 Finite Colimits in Autonomic Systems

We consider several types of finite colimits to obtain some intuition about them,
without formally defining them yet.
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5.1 Pushouts of Autonomic Systems

Suppose given the diagram (16) of ASs and self-* actions below:

AS

self-*action1

��

self-*action2 ��AS2

AS1

(16)

Its fiber sum, denoted AS1 
AS AS2, is defined as the quotient of AS1 

AS 
 AS2 by the equivalence relation ∼ generated by a ∼ self-*action1(a) and
a ∼ self-*action2(a) for all states a in AS. In other words,

AS1 
AS AS2
def
= (AS1 
 AS 
 AS2)/ ∼

where ∀a ∈ AS, a ∼ self-*action1(a) and a ∼ self-*action2(a)
There are obvious inclusions self-*action3 : AS1 → AS1 
AS AS2 and

self-*action4 : AS2 → AS1 
AS AS2. Note that if AS3 = AS1 
AS AS2 then
the diagram (17) commutes.

AS

�self-*action1

��

self-*action2 ��AS2

self-*action4

��
AS1

self-*action3

��AS3

(17)

Given the setup of diagram (17), we define the pushout of AS1 and AS2

over AS to be any autonomic system AS3 for which we have an isomorphism
AS3

∼=→ AS1
ASAS2. The corner symbol “�” in diagram (17) indicates that AS3

is the pushout.
For diagram (16), For any autonomic system AS3 and commutative solid

arrow diagram in (18). In other words, self-* actions self-*action3 : AS1 →
AS3 and self-*action4 : AS2 → AS3 such that self-*action3 ◦ self-*action1 =
self-*action4 ◦ self-*action2, there exists a unique arrow

� self-*action3, self-*action4 �: AS1 
AS AS2 → AS3

making everything commute. In other words,

self-*action3 =� self-*action3, self-*action4 � ◦self-*action′
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and
self-*action4 =� self-*action3, self-*action4 � ◦self-*action′′

AS
self-*action1

�������������
self-*action2

�������������

AS1

self-*action3

����

������

self-*action′



�
��

��
��

��
��

��
��

��
��

��
��

AS2

self-*action4
����

������

self-*action′′

		��
��
��
��
��
��
��
��
��
��
��
�

AS3

AS1 
AS AS2

∃!

��














(18)

5.2 Coequalizers of Self-*

Suppose given two parallel self-* actions

AS1 AS2
self-*action1

self-*action2

The coequalizer of self-*action1 and self-*action2 is the commutative diagram
in (19),

AS1 AS2 Coeq(self-*action1,self-*action2)
self-*action1

self-*action2

q

(19)

where we define the coequalizer of self-*action1 and self-*action2 is the quo-
tient of AS2 by the equivalence relation generated by

{(self-*action1(a), self-*action2(a))|a ∈ AS1} ⊆ AS2 × AS2

In other words,

Coeq(self-*action1, self-*action2)
def
= AS2/self-*action1(a) ∼ self-*action2(a)

6 Conclusions

The paper is a reference material for readers who already have a basic under-
standing of self-* in ASs and are now ready to consider finite limits and col-
imits in ASs using algebraic language. Algebraic specification is presented in a
straightforward fashion by discussing in detail the necessary components and
briefly touching on the more advanced components.



20 P.C. Vinh

Acknowledgements. Thank you to NTTU (Nguyen Tat Thanh University, Vietnam)
for the constant support of our work which culminated in the publication of this paper.
As always, we are deeply indebted to the anonymous reviewers for their helpful com-
ments and valuable suggestions which have contributed to the final preparation of the
paper.

References

1. IBM. Autonomic Computing Manifesto (2001). http://www.research.ibm.com/
autonomic/

2. Vinh, P.C.: Formal aspects of self-* in autonomic networked computing systems. In:
Zhang, Y., Yang, L.T., Denko, M.K. (eds.) Autonomic Computing and Networking,
pp. 381–410. Springer, US (2009)

3. Vinh, P.C.: Toward formalized autonomic networking. Mob. Netw. Appl. 19(5),
598–607 (2014). doi:10.1007/s11036-014-0521-z

4. Vinh, P.C.: Concurrency of self-* in autonomic systems. Future Gener. Comput.
Syst. 56, 140–152 (2015). doi:10.1016/j.future.2015.04.017

5. Vinh, P.C.: Algebraically autonomic computing. Mob. Netw. Appl. (2016). doi:10.
1007/s11036-015-0615-2

6. Vinh, P.C.: Products and coproducts of autonomic systems. In: Vinh, P.C., Alagar,
V. (eds.) ICCASA 2015. LNICST, vol. 165, pp. 1–9. Springer, Heidelberg (2016)

7. Vinh, P.C., Tung, N.T.: Coalgebraic aspects of context-awareness. Mob. Netw. Appl.
18(3), 391–397 (2013). doi:10.1007/s11036-012-0404-0

http://www.research.ibm.com/autonomic/
http://www.research.ibm.com/autonomic/
http://dx.doi.org/10.1007/s11036-014-0521-z
http://dx.doi.org/10.1016/j.future.2015.04.017
http://dx.doi.org/10.1007/s11036-015-0615-2
http://dx.doi.org/10.1007/s11036-015-0615-2
http://dx.doi.org/10.1007/s11036-012-0404-0


http://www.springer.com/978-3-319-29235-9


	Finite Limits and Colimits in Autonomic Systems
	1 Introduction
	2 Outline
	3 Basic Concepts
	4 Finite Limits in Autonomic Systems
	4.1 Pullbacks of Autonomic Systems
	4.2 Spans on Autonomic Systems
	4.3 Equalizers of Self-*

	5 Finite Colimits in Autonomic Systems
	5.1 Pushouts of Autonomic Systems
	5.2 Coequalizers of Self-*

	6 Conclusions
	References


