
Chapter 2
Preliminaries of 3D Point Cloud Processing

In this chapter, we provide preliminaries of 3D point cloud processing. For this
purpose, we first describe the general concept of scene acquisition (Sect. 2.1) and
subsequently provide basic definitions for the most important terms which are impor-
tant to consider the contents presented in this book in the global context (Sect. 2.2).
Based on these explanations, we focus on the use of 3D point cloud data and explain
how 3D point cloud data may be acquired (Sect. 2.3) and how 3D point cloud data may
be transformed to respective 2D image representations in the form of range images
and intensity images (Sect. 2.4). Since acquired 3D point cloud data is typically
corrupted with a certain amount of noise, we enlighten the issue of filtering raw 3D
point cloud data in terms of removing unreliable 3D points (Sect. 2.5). In this regard,
we present two novel measures for point quality assessment and discuss their chances
and limitations in detail. Finally, we provide concluding remarks (Sect. 2.6).

2.1 From the Real World to a Scene and Its Representation

In order to transfer specific capabilities of human visual perception to fully automated
systems, the main goal consists of gathering information about the real world for
which we may generally involve different sensor types. However, similar to human
vision, the sensor types typically reveal a limited field-of-view and partially also a
limited perception in case of distant objects. Thus, it is impossible to describe the
real world as a whole but only a small part, and we will therefore define a scene as
the considered part of the real world, i.e., a collection of shapes and reflectance [39].

Considering a scene with a specific sensor type (Fig. 2.1), the sensor type estab-
lishes a function for mapping the considered scene onto data. In this regard, the
use of different sensor types (e.g., digital cameras, thermal cameras, multispectral
cameras, range cameras, laser scanners, etc.) typically results in data in the form of
2D imagery or 3D point cloud data. In the context of decision and control tasks,
however, the measured data generally has no information since it is only measured
data, whereas information reduces the uncertainty with respect to a specific task or
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Fig. 2.1 Generalized relation between scene, data, data representations, and task: the scene (e.g., a
tree) is mapped onto data (e.g., 3D point cloud data) which, in turn, is transformed into a different
data representation (e.g., specific features) suited to solve a specific task (e.g., 3D scene analysis)

an application. In the following chapters, we will assume that the measured data
contains information which might help us to reduce the uncertainty about a specific
task, e.g., to estimate the viewpoint or to recognize objects.

The acquired data in the form of 2D imagery or 3D point cloud data is however
typically not suited for solving specific tasks directly and, consequently, the data has
to be transferred to a different data representation being a specific description and
thus a function of the data. This means that a transformation of data from one space to
another encoding is involved, whereby the transformation is described via a function
which, in turn, may be based on a model, some lines of code or an algorithm, and
typically depends on the respective task. For instance, it may be desirable to try to
take away as much as possible from the data and retain as much as matters for the
task, i.e., to preserve only the information which is relevant for a specific task. Note
that this is in accordance with the idea to keep all the data if we do not know the
task. Furthermore, we may extend these considerations by introducing a memory as a
mechanism to store data or data representations and knowledge as something useful
one may draw conclusions from.

Note that the applied definition of information follows seminal work [39, 40]
which is in contrast to traditional information theory based on fundamental ideas of
Claude Elwood Shannon and Norbert Wiener. Traditional information theory consid-
ers information as “complexity of the data, regardless of its use and regardless of the
nuisance factors affecting it,” whereby the complexity of the data is often described
with the entropy of a respective distribution and nuisance factors may for instance be
represented by contrast, viewpoint, illumination, occlusions, quantization, and noise
[40]. With increasing complexity of the data, it becomes more and more costly to
store and transmit the data. Thus, the traditional definition of information is tailored
to data storage/compression and transmission tasks, where the semantic aspect of
the data is irrelevant1 [40]. However, if we intend to use the data for a different task,
a different definition may be desirable which—as for instance stated in [39]—also
accounts for questions regarding the information an image contains about the scene
it portrays or the value of an image for recognizing objects in the scene or navi-
gating through the scene. Consequently, the definition of information should rather

1Note that, in the context of data storage/compression and transmission tasks, the most costly signal
is represented by white noise [40].
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address the part of the data that matters for the task and thus be defined relative to the
scene. This, in turn, is in accordance with biological systems that perceive stimuli
and perform actions or make decisions in a way that maximizes some decision or
control objective [40], e.g., in order to intelligently interact with the surrounding.
For this reason, we follow the ideas presented in [39, 40] and consider the notion of
information in the context of performing a decision or action based on sensory data,
whereby a decision may represent any task of detection, localization, categorization,
and recognition of objects [40]. By focusing on the definition of information as the
part of the data that matters for the task, the complexity of the data is not relevant
to decision and control tasks2 [40]. For more detailed and further considerations, we
refer to [40].

2.2 On Points and Clouds, and Point Clouds

In this section, we intend to provide basic definitions for the most important terms
used across the whole book:

• The term point is used as in geometry, where it specifies a unique location in a
specific space. In the scope of our work, we consider the Euclidean space R

D

with D = 2 for points in 2D imagery such as image locations or 2D keypoints
and D = 3 for points in 3D space such as scanned 3D points, reconstructed 3D
points, or 3D keypoints. Hence, a point has no dimensions such as length, area, or
volume.

• While there is certainly a meteorological association, we refer the term cloud
to cloud computing and thus a complex interplay of application systems which
are executed externally (within the cloud) and operated via specific interfaces
(mostly via internet platforms). In this regard, different applications focus on (i)
the external processing of computationally intensive methods in terms of runtime
and memory and (ii) the transfer of results to smartphones, tablets, notebooks,
desktop computers, or servers, e.g., in the form of web services.

• The term point cloud is used to describe a set of data points in a given space.
Following [32], we may consider a point cloud as a data structure used to represent
a collection of multidimensional points. As our focus is clearly set on 3D point
clouds representing the measured or generated counterpart of physical surfaces in a
scene, we will concentrate on 3D point clouds as a collection of 3D points which, in
turn, are characterized by spatial XYZ-coordinates and may optionally be assigned
additional attributes such as intensity information, thermal information, specific
properties (e.g., in terms of orientation and scale), or any abstract information.

Even though it is intended that some of the developed concepts and methods are
integrated in a web service, we only focus on data processing on notebooks, desktop
computers, or servers without cloud computing. This is in analogy to a variety of

2Note that extremely complex data may be useless for a decision, while extremely simple data could
directly be relevant for the same decision [40].
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research domains where the development of efficient methods with respect to process-
ing time, memory consumption, and financial costs is in the focus. For instance, the
3D reconstruction of large parts of the city of Rome, Italy, has been conducted based
on 150 k images in less than a day on a huge cluster with almost 500 cores [1]—
which we may refer to as a data processing on a cloudy day due to the involved cloud
computing—whereas the processing of large photo collections within the span of a
day on a single PC may be referred to as a processing on a cloudless day [13] which
is certainly favorable considering the related financial costs.

2.3 Point Cloud Acquisition

As all the concepts and methods developed in the scope of our work are based on the
use of 3D point cloud data as input, we will briefly discuss the acquisition of such
3D point cloud data. Generally, the acquisition of 3D point clouds representing the
counterpart of physical object surfaces in a scene has been widely investigated over
the last decades. While a variety of acquisition systems based on different principles
may be involved, particularly the optical methods have proven to be favorable as
they offer an efficient, touchless, and even far-range acquisition of 3D structures in
both indoor and outdoor environments—from small scales such as single rooms up
to large scales such as city scale or even beyond—and, thus, they have gained much
importance in photogrammetry, remote sensing, computer vision, and robotics.

Generally, we may categorize the different techniques proposed for optical 3D
shape acquisition with respect to the measurement principle they are based on, and
numerous valuable surveys following this categorization may be found in literature
[10, 20, 30, 34, 57]. Basically, this categorization first focuses on the distinction
between passive and active techniques. While passive techniques are used for scenes
with reasonable ambient lighting conditions and only collect information, active
techniques focus on actively manipulating the observed scene, e.g., by projecting
structured light patterns in the form of stripe patterns or point patterns via emitting
electromagnetic radiation in either the visible spectrum or in the form of laser light
(typically in the infrared (IR) spectrum). Based on this more general distinction, a
further distinction may directly refer to the spatial arrangement of viewpoints and
the positions of involved illumination sources. In this regard, passive techniques may
be based on a single view or on multiple views of a scene. For active techniques,
one may furthermore distinguish between a monostatic sensor configuration, where
the emitter component and the receiver component are at the same location, or a
multistatic configuration, where the emitter component and the receiver component
are spatially separated and even several of such components may be involved. From
these distinctions, a taxonomy of optical 3D shape acquisition techniques as illus-
trated in Fig. 2.2 may be derived. In order to understand the main principles and
the basis for the subsequent chapters, we provide a short description of the most
important ideas in the following subsections. For an exhaustive survey, we refer to
the aforementioned literature. However, we want to point out that, depending on the
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Fig. 2.2 Taxonomy of optical 3D shape acquisition techniques, an exemplary point cloud derived
via Multi-View Stereo (MVS) techniques (left) and an exemplary point cloud derived via phase-
based measurements (right)

involved acquisition technique and the used device, the acquired 3D point cloud data
may be corrupted with more or less noise and, in addition to spatial 3D informa-
tion in the form of XY Z -coordinates, respective point attributes such as color or
intensity information may be acquired as well. Furthermore, it should be taken into
account that—despite a variety of optical 3D shape acquisition techniques—shape
reconstruction still remains challenging for surfaces which exhibit a complex surface
reflectance behavior such as highly specular object surfaces as given for mirroring
objects where an adequate 3D reconstruction may, for instance, be achieved via more
sophisticated techniques [56].

2.3.1 Passive Techniques

Passive techniques for point cloud generation only rely on radiometric information
represented in the form of 2D imagery and thus simple intensity measurements
per pixel. In order to reconstruct 3D structures from such intensity images, different
approaches have been presented and we will focus on the two most commonly applied
strategies.

The first strategy is followed by stereo matching techniques which exploit two or
more images of a scene, acquired with either multiple cameras or one moving camera,
and estimate the respective 3D structure of the scene by finding corresponding points
in the intensity images and converting their 2D locations into 3D depth values based
on triangulation [36, 46]. Classical stereo matching techniques are based on the use
of two images due to early findings in human visual perception according to which
the depth of a scene is perceived based on the differences in appearance between
what is seen by the left eye and the right eye. In contrast, Multi-View Stereo (MVS)
techniques focus on reconstructing a complete 3D object model from a collection of
images taken from known viewpoints [37].
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The second strategy is followed by Structure-from-Motion (SfM) techniques which
focus on the simultaneous recovery of both the 3D structure of a scene and the
camera pose from a large number of point tracks, i.e., corresponding image locations
[46]. One of the most general approaches to SfM has been presented with Bundle
Adjustment [47] which is able to simultaneously recover 3D structures, camera pose,
and even the intrinsic camera parameters via the consideration of bundles of rays
connecting the camera centers to 3D scene points and an adjustment in terms of
iteratively minimizing the reprojection error.

2.3.2 Active Techniques

Whereas passive techniques only rely on information arising from simple intensity
measurements per pixel, active techniques are based on actively manipulating the
observed scene by involving a scanning device which emits a signal and records
information arising from respective observations in the scene. In this context, the
emitted signal may either be a coded structured light pattern in the visible or infrared
spectrum, or electromagnetic radiation in the form of modulated laser light. For
both cases, we briefly reflect the basic ideas in order to understand the measurement
principles of the scanning devices used in the following chapters.

Scanning devices exploiting structured light projection actively manipulate the
observed scene by projecting a coded structured light pattern, and thus manipulating
the illumination of the scene. Via the projected pattern, particular labels are assigned
to 3D scene points which, in turn, may easily be decoded in images when imaging the
scene and the projected pattern with a camera. Accordingly, such synthetically gener-
ated features allow to robustly establish feature correspondences, and the respective
3D coordinates may easily and reliably be recovered by triangulation. Generally,
techniques based on the use of structured light patterns may be classified depending
on the pattern codification strategy [10, 33]:

• Direct codification strategies exploit a pattern which is typically based on a large
range of either gray or color values. Thus, each pixel may be labeled with the
respective gray or color value of the pattern at this pixel.

• Time-multiplexing strategies exploit a temporal coding, where a sequence of struc-
tured light patterns is projected onto the scene. Thus, each pixel may be assigned
a codeword consisting of its illumination value across the projected patterns. The
respective patterns may, for instance, be based on binary codes or Gray codes and
phase shifting.

• Spatial neighborhood codification strategies exploit a unique pattern. The label
associated to a pixel is derived from the spatial pattern distribution within its local
neighborhood. Thus, labels of neighboring pixels share information and provide
an interdependent coding.

Representing one of the most popular devices based on structured light projection,
the Microsoft Kinect exploits an RGB camera, an IR camera, and an IR projector.
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The IR projector projects a known structured light pattern in the form of a random
dot pattern onto the scene. As IR camera and IR projector form a stereo pair, the
pattern matching in the IR image results in a raw disparity image which, in turn, is
read out in the form of an 11-bit depth image. For respective investigations on the
accuracy and capabilities of Microsoft Kinect, we refer to [25, 38, 53, 59].

A different strategy for measuring the distance between a scanning device and
object surfaces in the local environment is followed by exploiting Time-of-Flight
(ToF) or phase measurements which are typically exploited by terrestrial or mobile
laser scanners and by Time-of-Flight (ToF) cameras. According to seminal work
[21, 24, 44], respective scanning devices may be categorized with respect to laser
type, modulation technique, measurement principle, detection technique, or config-
uration between emitting and receiving component of the device. Generally, such
scanning devices illuminate a scene with modulated laser light and analyze the
backscattered signal. More specifically, laser light is emitted by the scanning device
and transmitted to an object. At the object surface, the laser light is partially reflected
and, finally, a certain amount of the laser light reaches the receiver unit of the scan-
ning device. The measurement principle is therefore of great importance as it may
be based on different signal properties such as amplitude, frequency, polarization,
time, or phase. Many scanning devices are based on measuring the time t between
emitting and receiving a laser pulse, i.e., the respective time-of-flight, and exploiting
the measured time t in order to derive the distance r between the scanning device and
the respective 3D scene point. Alternatively, a range measurement r may be derived
from phase information by exploiting the phase difference Δφ between emitted and
received signal. However, the phase difference Δφ only is a wrapped phase and thus
the corresponding range is ambiguous so that multiples of 2π have to be added in
order to recover the unwrapped phase φ and an appropriate range measurement r . For
such a disambiguation, various image-based or hardware-based phase unwrapping
procedures have been proposed [12, 22, 23]. In order to get from single 3D scene
points to the geometry of object surfaces, respective scanning devices are typically
mounted on a rotating platform3 which, in turn, allows a sequential scanning of the
scene by successively measuring distances for discrete points on a given scan raster.
Due to the sequential scanning, however, respective scanning devices are not suited
for the acquisition of dynamic scenes. In contrast, modern range cameras use a sensor
array which allows to simultaneously acquire range information for all points on the
considered scan raster and thus estimate the scene geometry in a single shot. Such
range cameras meanwhile allow to acquire depth maps at relatively high frame rates
of about 25 fps [10, 26, 31, 57] and are thus also applicable in order to capture
dynamic scenes.

3In this context, a rotation around a single rotation axis is for instance applied for line laser scanners
which thus provide measurements on a 1D scan grid, whereas standard terrestrial laser scanners
involve a rotation in both horizontal and vertical direction in order to provide measurements on a
2D scan grid.
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2.4 Generation of 2D Image Representations
for 3D Point Clouds

In the scope of our work, we focus on point clouds acquired with (terrestrial or mobile)
laser scanners and range cameras. Thereby, laser scanners typically capture data by
successively considering points on a discrete, regular (typically spherical) raster, and
recording the respective geometric and radiometric information. In contrast, range
cameras have an internal sensor array for simultaneously considering all points on a
discrete, regular (typically planar) raster, and recording the respective geometric and
radiometric information. If the data acquisition is performed sufficiently fast, range
cameras also allow an acquisition of dynamic scenes. For both types of acquisition
systems, however, the sampling of data on a discrete, regular raster allows to derive
2D image representations for spatial 3D information and the respective radiometric
information. While the spatial 3D information and thus its 2D representation in
the form of a range image, where each pixel represents the distance r between the
scanning device and the respective 3D scene point, depend on the scene structure,
the captured radiometric information depends on both the scene structure and the
signal processing unit in the involved acquisition system. Note that differences with
respect to the signal processing unit mainly arise from internal processes such as
the conversion to a digital signal and signal amplification which are not identical for
different scanning devices.

In order to derive a representation which is independent of the involved scan-
ning device, it is feasible to transform the radiometric information representing the
measured energy of the backscattered laser light from arbitrary values to a given
interval of possible values. In this context, the radiometric information represented
in a matrix I ∈ R

n×m with n rows and m columns is typically transformed to an 8-bit
gray-valued image Inorm by performing a histogram normalization of the type

Inorm = uint8

(
255 · I − Imin · 1n×m

Imax − Imin

)
(2.1)

where Imin, Imax ∈ R are the minimum and maximum values of I, respectively. Thus,
the elements of the resulting (n × m)-matrix Inorm are represented by integer values
in the interval [0, 255].

Considering the adapted radiometric information, we may describe a scan S =
{IR,II} with respective 2D representations in the form of a range imageIR ∈ R

n×m

and an intensity image II = Inorm ∈ R
n×m . On both types of images, we may apply

standard image processing techniques, e.g., to detect specific features or to recognize
and segment objects. In order to obtain an impression about the characteristics of
such images, we consider a scan taken from a benchmark dataset4 [9] which is later

4This dataset is available at http://www.ikg.uni-hannover.de/index.php?id=413\&L=de (last access:
30 May 2015).

http://www.ikg.uni-hannover.de/index.php?id=413&L=de
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Fig. 2.3 Range image IR and intensity image II (top), and a visualization of the scan as 3D point
cloud where the position of the scanning device is indicated by a red dot (bottom)

used for evaluating novel approaches for point cloud registration in Chap. 4. The
respective range image IR as well as the respective intensity image II are shown in
Fig. 2.3.

2.5 Point Quality Assessment

When dealing with 3D point cloud data, it should be taken into account that, usually,
a filtering of the raw point cloud data is carried out by internal software provided
by the manufacturer of a device. Thus, the applied methodology is hidden in a

http://dx.doi.org/10.1007/978-3-319-29246-5_4


26 2 Preliminaries of 3D Point Cloud Processing

“black box” whose procedures may hardly be reconstructed. Consequently, we aim
to found our methodology on raw 3D point cloud data and, hence, understand the
routines applied for filtering 3D point cloud data by removing unreliable range
measurements. In order to do so, we first reflect different factors which influence
the quality of a range measurement as well as existing approaches for quantifying
the quality of a range measurement (Sect. 2.5.1). Based on these considerations,
we proceed with describing a standard approach based on intensity information
(Sect. 2.5.2) and, subsequently, we present two novel approaches based on range
reliability (Sect. 2.5.3) and local planarity (Sect. 2.5.4) which have been developed
in the scope of our work. In order to reason about their suitability, we provide a qual-
itative comparison (Sect. 2.5.5) as well as a quantitative comparison (Sect. 2.5.6) of
these approaches.

2.5.1 Influencing Factors and Related Work

Generally, the quality of a range measurement depends on a variety of influencing
factors. Following seminal work on categorizing these factors [6, 18, 19, 43], we
take into account four different categories:

• The first category of influencing factors is based on the design of the acquisition
system which, according to [21, 44], may be characterized by the laser type, the
modulation technique (e.g., continuous wave or pulsed lasers), the measurement
principle (e.g., time-of-flight, phase or amplitude measurements), the detection
technique (e.g., coherent or direct detection), and the configuration between trans-
mitting and receiving unit (e.g., monostatic or bistatic configuration). Concerning
these components, specific factors influencing individual point quality mainly arise
from respective hardware properties (e.g., angular resolution, angular accuracy,
and range accuracy) and the calibration of the used device (e.g., calibration model
or short-term/long-term stability).

• The second category of influencing factors addresses atmospheric and environ-
mental conditions [7, 49]. While uncertainties due to atmospheric conditions
mainly arise from humidity, temperature, aerosols (i.e., fine solid particles or liq-
uid droplets in the air), or variations in air pressure, the environmental conditions
address the presence of ambient lighting (i.e., natural sunlight or artificial light)
and the scene type (i.e., indoor or outdoor scene).

• The third category of influencing factors addresses characteristics of the observed
scene in terms of object materials, surface reflectivity, and surface roughness which
strongly influence light reflection on the object surfaces [27, 48, 57].

• The fourth category of influencing factors addresses the scanning geometry [2, 35],
i.e., the distance and orientation of scanned surfaces with respect to the involved
sensor. Particularly the incidence angle representing the angle between incoming
laser beam and surface normal strongly influences individual point quality [42,
43], but also those effects occurring at object edges have to be addressed [4].
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While a systematic error modeling may account for potential error sources arising
from the acquisition system [3, 8, 28, 29], scene-specific issues cannot be general-
ized and therefore have to be treated differently. In the scope of our work, we focus
on terrestrial laser scanning and mobile laser scanning in outdoor environments with
reasonable natural sunlight. Consequently, we face relatively small distances between
scene objects and the acquisition system as well as relatively small displacements of
the acquisition system for obtaining consecutive scans, so that atmospheric and envi-
ronmental conditions may be neglected. Furthermore, we do not make assumptions
on the presence of specific object materials and the corresponding surface reflectiv-
ity, since we focus on digitizing arbitrary scenes without involving prior knowledge
about the presence and the surface reflectance behavior of specific materials. As a
consequence, we mainly focus on the scanning geometry and the reflected energy
(represented as intensity value) per range measurement. Thus, we may treat the
quantification of the quality of a range measurement decoupled in a post-processing
step.

The decoupled consideration may also directly be applied for available benchmark
datasets, where we may purely focus on filtering available raw 3D point cloud data
by exploiting the captured information. On the one hand, a simple approach for
removing unreliable range measurements may be based on the captured intensity
information [4], since very low intensity values are likely to correspond to unreliable
range measurements. On the other hand, it seems desirable to explicitly address
points at depth discontinuities as these exhibit the largest uncertainty in distance. A
respective filtering may, for instance, be achieved by considering the variance of the
local normal vector [2], by removing 3D points corresponding to nonplanar objects
or objects which are susceptible to occlusions, shadows, etc. [16, 17], by applying the
Laplacian operator on the range image [5] or by involving the scan line approximation
technique [14]. Accounting for both intensity and range information, the combination
of removing points with low values in the intensity image as well as points at edges in
the range image has been proposed in order to obtain an adequate 3D representation of
a scene [45]. Furthermore, it should be taken into account that the scanning geometry
with respect to the incidence angle may have a significant influence on the accuracy
of a range measurement which becomes visible by an increase in measurement noise
with increasing incidence angles [43]. Accordingly, it would be desirable to have
a common and generic measure which considers reliability in terms of both object
edges and incidence angle.

2.5.2 Filtering Based on Intensity Information

As already mentioned above, a filtering of raw 3D point cloud data may be based
on intensity information [4], since low intensity values typically indicate unreliable
range measurements. Consequently, the main challenge of such an approach consists
of finding a suitable threshold in order to distinguish reliable range measurements
from unreliable ones. Such a threshold may for instance be derived by applying
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a histogram-based approach estimating a suitable border between bimodal distrib-
utions. However, the measured intensity values may be arbitrary and significantly
vary from one device to another, since they depend on the electronic circuits inside
the scanning device. A transfer toward a general application across a variety of
different scanning devices may easily be derived by applying a histogram normal-
ization and thereby mapping the measured intensity values onto a predefined fixed
interval whose borders may principally be selected arbitrarily. Accordingly, we may
for instance select the interval [0, 1], but—as we have already derived a 2D image
representation of intensity information in the form of an 8-bit gray-valued image
(Sect. 2.4)—it is feasible to use the interval [0, 255] instead and select the thresh-
old as a specific gray value tI,gray. Note that such a simple thresholding based on
intensity information may also be used to detect and remove soft obstacles which
are for instance given by smoke, dust, fog or steam [11].

While an intensity-based filtering of raw 3D point cloud data is straightforward,
easy-to-implement, and quite efficient,5 such considerations do not account for edge
effects where noisy range measurements are likely to occur although the respective
intensity values might be reasonable. Hence, we focus on two novel strategies which
are based on the geometric measures of (i) range reliability and (ii) local planarity
in order to quantify the quality of a range measurement.

2.5.3 Filtering Based on Range Reliability

The first of our proposed measures to quantify the reliability of a range measurement
directly addresses the fact that—instead of considering a laser beam as a ray with no
physical dimensions—it is inevitable that a laser beam has certain physical dimen-
sions which, in turn, influences the laser beam propagation. Thus, the projection of
a laser beam on the target area results in a laser footprint, i.e., a spot with finite
dimension, that may vary depending on the slope of the local surface and material
characteristics [50]. Consequently, if a measured 3D point corresponds to a laser
footprint on a geometrically smooth surface, the captured range information is rather
reliable when assuming Lambertian surfaces and reasonable incidence angles. How-
ever, at edges of objects, a laser footprint may cover surfaces at different distances to
the sensor, and thus the captured range information is rather unreliable. Even more
critical are range measurements corresponding to the sky, since these mainly arise
from atmospheric effects.

In order to quantify these effects and remove unreliable range measurements—
which would typically appear as noisy behavior in a visualization of the considered
3D point cloud data—our first measure referred to as range reliability [51] is based
on the categorization of each point on the 2D scan grid by considering local image

5For our image-based consideration, we only need to calculate the sign-function of the difference
of the intensity image II and an image I ∗

I = tI,gray · 1n×m ∈ R
n×m of constant gray value tI,gray,

which yields pixel-wise conclusions about reliable or unreliable range measurements.
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Fig. 2.4 Range image IR, intensity image II, visualization of range reliability σr,3×3, logarithmic
representation of range reliability σr,3×3 and the binary confidence map derived by thresholding
based on a manually selected threshold of tσ = 0.03 m (from left to right)

patches in the respective range image. More specifically, this measure considers
a local (3 × 3) image neighborhood for each pixel (x, y) in the range image and
assigns the standard deviation σr,3×3 of all range values r within the (3 × 3) image
neighborhood to (x, y). Deriving σr,3×3 for all pixels of the range image yields a
confidence map. In this confidence map, low values σr,3×3 indicate a 3D point on a
smooth surface and are therefore assumed to correspond to reliable range measure-
ments, whereas high values σr,3×3 indicate noisy and unreliable range measurements.
Consequently, a simple thresholding based on a predefined threshold tσ may be con-
sidered as sufficient to separate reliable measurements from unreliable ones in a
binary confidence map, which is shown in Fig. 2.4 for a part of a terrestrial laser scan
which corresponds to 2304 × 1135 scanned 3D points and has been acquired with a
Leica HDS6000 on the KIT campus in Karlsruhe, Germany. According to qualitative
tests involving different scanning devices, a value of tσ = 0.03 . . . 0.10 m has proven
to be appropriate for data captured with a terrestrial laser scanner [51] and for data
captured with a range camera [54, 55], but the manual selection of a threshold based
on prior knowledge about the scene and/or data represents a limitation.

2.5.4 Filtering Based on Local Planarity

The second of our proposed measures which we refer to as local planarity [52]
is motivated by the fact that reliable range information typically corresponds to
almost planar structures in the scene which are characterized by low incidence angles.
Consequently, we aim to quantify the local planarity for each point on the 2D scan
grid by considering local image patches in the respective range image. In analogy to
the measure of range reliability, we consider (3 × 3) image neighborhoods as local
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image patches in order to assign a measure of planarity to the respective center point.
From the spatial XYZ-coordinates of all 3D points corresponding to the pixels in
the (3 × 3) image neighborhood, we derive the 3D covariance matrix known as 3D
structure tensor S3D ∈ R

3×3 whose eigenvalues λ1, λ2, λ3 ∈ Rwith λ1 ≥ λ2 ≥ λ3 ≥
0 are further exploited in order to define the dimensionality features of linearity Lλ,
planarity Pλ and scattering Sλ [58]:

Lλ = λ1 − λ2

λ1
Pλ = λ2 − λ3

λ1
Sλ = λ3

λ1
(2.2)

These dimensionality features reveal a normalization by the largest eigenvalue λ1, so
that they sum up to 1 and the largest value among the dimensionality features indicates
the characteristic behavior of the respective pixel. Accordingly, a pixel (x, y) in the
range image represents a planar 3D structure and therefore rather reliable range
information if the local planarity Pλ,3×3 in a (3 × 3) image neighborhood satisfies
the constraint

Pλ,3×3 := Pλ ≥ max {Lλ, Sλ} (2.3)

which—in contrast to the measure of range reliability—yields a binary confidence
map (e.g., as illustrated in Fig. 2.5) in a fully generic manner without involving any
manually specified thresholds and thus prior knowledge about the scene and/or data.

Note that the dimensionality features could also directly be extracted for each point
of the 3D point cloud by considering other 3D points in the local 3D neighborhood
and exploiting the respective 3D structure tensor in order to derive the eigenvalues.
However, particularly for large point clouds, it can be quite time-consuming to extract
suitable neighborhoods and, in turn, the dimensionality features resulting from the
eigenvalues of the 3D structure tensor. Consequently, the proposed consideration of

0 1 0 1 0 1 1D 2D unreliable reliable3D 

Fig. 2.5 Visualization of linearity Lλ, planarity Pλ, scattering Sλ, the classification of each pixel
according to its local behavior (linear (1D): red; planar (2D): green; scattered (3D): blue) and the
derived binary confidence map (from left to right)
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local planarity Pλ,3×3 based on a local (3 × 3) image neighborhood offers the great
advantage that the direct neighbors of each point on the regular 2D scan grid may be
derived more efficiently with respect to processing time and memory consumption
than a suitable number of neighbors in 3D.

2.5.5 A Qualitative Comparison of Different Measures

In order to provide an impression about the performance of the different measures
for quantifying the quality of range measurements, we consider 2D image represen-
tations for range and intensity information in Fig. 2.6 as well as the respective binary
confidence maps based on (i) intensity information when applying a threshold of
tI,gray = 10 (for an 8-bit gray-valued image), (ii) the measure σr,3×3 of range reliabil-
ity when applying a threshold of tσ = 0.03 m, and (iii) the generic measure Pλ,3×3 of
local planarity. For each measure, the corresponding effect in 3D space is visualized
in Fig. 2.7. This figure clearly reveals that the use of intensity information alone is not
sufficient to adequately filter raw 3D point cloud data and thereby completely remove
the noisy behavior. In contrast, the strategies based on the two geometric measures
retain adequate representations of local object surfaces. Whereas the strategy based
on the measure σr,3×3 of range reliability provides almost planar object surfaces for
significantly varying incidence angles (Fig. 2.6), the strategy based on the measure
Pλ,3×3 of local planarity only provides almost perpendicular object surfaces with
almost planar behavior and thus favors lower incidence angles which tend to yield
more accurate range measurements. Note that, even though the sphere target in the
lower left part of the depicted images does not provide a planar surface, the mea-
sures of range reliability and local planarity indicate reliable range measurements for
almost all points corresponding to the surface of the sphere target, and only points

0 15 0 255 unreliable reliableunreliable reliable unreliable reliable

Fig. 2.6 Range image IR, intensity image II, and the derived binary confidence maps based on
intensity information, range reliability σr,3×3 and local planarity Pλ,3×3 (from left to right)
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Fig. 2.7 Raw 3D point cloud data, 3D point cloud data filtered via intensity information, 3D point
cloud data filtered via the measure σr,3×3 of range reliability and 3D point cloud data filtered via
the measure Pλ,3×3 of local planarity (from top to bottom)

at the edges are considered as unreliable. This is due to the consideration of rela-
tively small (3 × 3) image neighborhoods, where no significant deviation in range
direction and no significant deviation from a locally planar surface may be observed.
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2.5.6 A Quantitative Comparison of Different Measures

In this section, we intend to quantitatively compare the different measures for point
quality assessment and verify our observations made in the previous subsection. For
this purpose, we consider a fairly simple scenario and carry out theoretical consider-
ations for the proposed measures of range reliability σr,3×3 and local planarity Pλ,3×3

and, thereby, we aim to point out consequences concerning what we may expect
when applying these measures on range images. This is of utmost importance since
we may thus easily explain the significant differences between the binary confidence
maps depicted in Figs. 2.4 and 2.5.

The considered scenario focuses on the characteristics of scanned 3D points on a
planar surface with a certain distance and a certain incidence angle with respect to the
scanning device. Considering fundamentals of projective geometry as for instance
described in [15], the 3D coordinates of any point X ∈ R

3 on a ray in 3D space sat-
isfy the constraint X = A + bv, where A ∈ R

3 denotes a known 3D point on the ray,
b ∈ R represents a scalar factor and v ∈ R

3 indicates the direction of the ray. Without
loss of generality, we may transfer this equation from world coordinates to camera
coordinates as indicated by a superscript c, i.e., Xc = Ac + bvc. Note that assuming
the model of a pinhole camera is valid when using range cameras and approximately
valid when considering a local (3 × 3) neighborhood on a spherical scan grid with
reasonable angular resolution. Since the considered rays thus intersect each other at
the projective center 0c, it is straightforward to use the point Ac = 0c = [0, 0, 0]T as
known 3D point on all rays. Following the standard definitions, we may furthermore
define the camera coordinate frame relative to the device in a way so that the Xc-axis
points to the right, the Y c-axis to the bottom and the Zc-axis in depth. Consider-
ing a local (3 × 3) image neighborhood, we may conduct point quality assessment
by looking along the Zc-axis and assuming an angular resolution Δα of the camera.
Accordingly, the directions vc of the 8 neighboring rays which are exploited to obtain
a local (3 × 3) image neighborhood may easily be derived by an intersection with the
(Zc = 1)-plane and we thus evaluate the geometric behavior of range measurements
in a field-of-view given by (2Δα × 2Δα). Note that, in this context, typical angular
resolutions would be Δα ≈ {0.36◦ (middle scan density) , 0.18◦ (high scan density),
0.09◦ (super high scan density), 0.05◦ (ultra high scan density)} for a terrestrial laser
scanner of type Leica HDS6000, Δα ≈ 0.2◦ for a range camera of type PMD[vision]
CamCube 2.0 and Δα ≈ 0.09◦ for a range camera of type Microsoft Kinect.

Once the rays have been derived for a field-of-view of (2Δα × 2Δα), we may
proceed by assuming that these rays intersect a plane π which is parameterized in the
camera coordinate frame by a 3D point Xc

π and a normal vector nc
π ∈ R

3. Thereby,
we define the 3D point Xc

π as the point which results from the intersection of π with
the Zc-axis, and we further assume that the distance between Xc

π and 0c is given by
d, i.e., Xc

π = [0, 0, d]T . Initially, we consider the case of a normal vector nc
π which

coincides with the Zc-axis, and thus the plane π is perpendicular to the Zc-axis
and parallel to the XcY c-plane. Subsequently, we rotate the plane π by an angle β

around the axis defined by the point Xc
π = [0, 0, d]T and the direction [0, 1, 0]T in
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Fig. 2.8 Behavior of the measure σr,3×3 of range reliability for increasing incidence angles β. The
applied threshold of tσ = 0.03 m is indicated with a red line

the camera coordinate frame. As a result, the angle β coincides with the incidence
angle and we get 9 points of intersection for angles β ∈ [0◦, 90◦).

In order to verify the suitability of the proposed measure σr,3×3 of range reliabil-
ity, we simply exploit the distances between the projective center 0c and the 9 points
of intersection. These distances correspond to range measurements and the measure
σr,3×3 of range reliability (see Sect. 2.5.3) simply represents the standard deviation of
the 9 considered distances (i.e., range values). For a representative example, we con-
sider the use of a range camera of type PMD[vision] CamCube 2.0 and, accordingly,
we select the angular resolution to Δα = 0.2◦ and the distance between projective
center 0c and Xc

π to d = 5 m. The respective behavior of σr,3×3 for varying incidence
angles is visualized in Fig. 2.8. This figure clearly reveals that, when applying the
proposed threshold of tσ = 0.03 m, range measurements are assumed to be reliable
for incidence angles of less than about 63.3◦. A less strict threshold of tσ = 0.10 m
even results in reliable range measurements up to incidence angles of about 81.4◦.

In order to verify the suitability of the proposed measure Pλ,3×3 of local planarity,
we exploit the 3D coordinates of the 9 points of intersection in order to derive the 3D
structure tensor S3D and its eigenvalues λ1, λ2 and λ3 as well as the dimensionality
features of linearity Lλ, planarity Pλ and scattering Sλ (see Sect. 2.5.4). For a repre-
sentative example, we again consider the use of a range camera of type PMD[vision]
CamCube 2.0 and, accordingly, we select the angular resolution to Δα = 0.2◦ and
the distance between projective center 0c and Xc

π to d = 5 m. The respective values
of the dimensionality features for angles β ∈ [0◦, 90◦) are depicted in Fig. 2.9, and
they reveal that the locally planar 3D structure provides a planar behavior in the
interval [0◦, 45◦] and a linear behavior beyond this interval. As a consequence, range
measurements are assumed to be reliable if the local (3 × 3) image neighborhood
represents a locally planar 3D structure with an incidence angle in [0◦, 45◦]. Note
that, due to the narrow field-of-view of (2Δα × 2Δα) for a local (3 × 3) image patch,
noisy range measurements e.g., corresponding to the sky will not be indicated by a
scattered behavior, but by a linear behavior since only a significant variation in ray
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Fig. 2.9 Behavior of the dimensionality features of linearity Lλ (red), planarity Pλ (green), and
scattering Sλ (blue) for increasing incidence angles β

direction will be present. Furthermore considering that the dimensionality features
are normalized by the largest eigenvalue, our observations on reliable range measure-
ments in terms of local planarity are independent from both the angular resolution
Δα and the distance between Xc

π and 0c.
Based on these results, the considered scenario allows to provide qualitative state-

ments on the suitability of both measures. The binary confidence map shown in
Fig. 2.4 provides more reliable range measurements than the binary confidence map
depicted in Fig. 2.5, particularly for those scanned 3D points on planar surfaces with
a higher incidence angle. The reason for this behavior becomes visible when com-
paring Figs. 2.8 and 2.9, since applying the measure σr,3×3 of range reliability also
allows incidence angles which are much larger than 45◦, whereas the measure Pλ,3×3

of local planarity relates reliable range measurements to planar surfaces with inci-
dence angles of up to only about 45◦. Furthermore, it should be taken into account
that, while the measure σr,3×3 of range reliability depends on the distances between
the projective center and the 9 points of intersection as well as the angular resolution
Δα of the scanning device, the measure Pλ,3×3 of local planarity is independent from
both of them.

2.6 Conclusions

In this chapter, we have described fundamentals concerning the definition of 3D
point clouds and their acquisition. Focusing on active point cloud acquisition via
laser scanners and range cameras, we have addressed the issue of how to transform
the captured 3D point cloud data to 2D representations in the form of range images
and intensity images, since such images allow to exploit a rich variety of approaches
which have proven to be effective and efficient for tasks such as feature extrac-
tion, object recognition, or object segmentation. Furthermore, we have provided an
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overview on techniques for judging about the quality of each 3D point by consid-
ering the reliability of the respective range measurement and, in this context, we
have presented two novel approaches and discussed their capabilities. From a com-
parison of 3D visualizations of raw 3D point cloud data and, respectively, filtered
3D point cloud data for an exemplary TLS scan, we may conclude that a filtering
based on point quality assessment might not only visually improve the results, but
also alleviate subsequent tasks relying on either all or only some of the acquired 3D
points. Later, in Chap. 4, we will make use of the presented concepts for (i) generat-
ing 2D representations and (ii) assessing point quality in the context of point cloud
registration, and we will see significant advantages arising from such concepts.
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