
Chapter 2
Simple Electro-Magnetic Circuits

2.1 Introduction

The simplest component which utilizes electro-magnetic interaction is the coil.
A coil is an energy storage component, which stores energy in magnetic form.
Air-cored coils are frequently used (for example, in loudspeaker filters), but coils
with a core of (possibly gapped-) magnetic material are more common, because of
their increased inductance (or reduced size), which may come at the cost of reduced
maximum field strength and increased non-linearity. In this chapter we will develop
a generic model of a coil with linear and non-linear self-inductance. Furthermore,
the effect of coil resistance is considered. The use of phasors is introduced in
this chapter as a means to verify simulation of such circuits when connected to a
sinusoidal source.

2.2 Linear Inductance

The physical representation of the coil considered here is given in Fig. 2.1.
The figure shows a coil with n turns which is wrapped around a toroidally shaped
non-gapped magnetic core with cross-sectional area Am. The permeability of the
material is given as � and the average flux path length is equal to lm. Analog to
Eq. (1.6), the magnetic reluctance of the circuit is: Rm D lm=Am� and the inductance
is L D n2�Am=lm D n2=Rm.
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Fig. 2.1 Toroidal inductance

The relation between the magnetic flux and the current in the coil is described by
the expression

 D L i (2.1)

With Faraday’s law

u D
d 

dt
(2.2)

Equation (2.1) can be rewritten to the more familiar differential form of the coil’s
voltage terminal equation

u D L
di

dt
(2.3)

Equation (2.3) can be integrated on both sides and rewritten as the general equation

i.t/ D
1

L

Z t

�1

u.t/dt (2.4)

The whole integrated history of the inductor voltage is reflected by the inductor
current, so Eq. (2.4) can be expressed in a more practical form, starting at t D 0

with initial condition i.0/, according to

i.t/ D
1

L

Z t

0

u.t/dtC i.0/ (2.5)
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Fig. 2.2 Symbolic and generic model of a linear inductance

This integral form can be developed further

�i D
� 

L
(2.6)

 .t/ �  .0/„ ƒ‚ …
� 

D

Z t0

0

u.t/dt (2.7)

introducing the concept of “incremental flux linkage” � D  .t/ �  .0/. The
equation basically states that a flux-linkage variation corresponds with a voltage-
time integral (the so-called volt-second) when the resistance is zero.

A symbolic and generic model of the ideal coil is given in Fig. 2.2. With the
model of Fig. 2.2, we will now simulate the time-response of a coil in reaction to
a voltage pulse of magnitude Ou and duration T , starting at t D t0, as displayed in
Fig. 2.3. Integrating the supply voltage u over time gives the flux-linkage  in the
coil, which linearly increases from 0 at t D t0 to OuT at t D T . The current is obtained
by dividing the flux  by L.

2.3 Coil Resistance

In practical situations, the resistance of the coil wire can usually not be neglected.
Wire resistance can simply be modeled as a resistor in series with the ideal coil. The
modified symbolic model is shown in Fig. 2.4.

Figure 2.4 shows that the coil flux is no longer equal to the integrated supply
voltage u. Instead, the variable uL is introduced, which refers to the voltage across
the “ideal” (zero resistance) inductance uL D d =dt. The terminal equation for this
circuit is now given by expression (2.8).

u D iRC
d 

dt
(2.8)
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Fig. 2.3 Transient response
of inductance

Fig. 2.4 Symbolic model of
linear inductance with coil
resistance

where R represents the coil resistance. The corresponding generic model of the
lumped parameter “L, R” circuit is shown in Fig. 2.5. The generic model clearly
shows how the inductor voltage uL is decreased by the resistor voltage caused by
the current through the coil.
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Fig. 2.5 Generic model of linear inductance with coil resistance

Fig. 2.6 Non-linear generic
building block

2.4 Magnetic Saturation

As discussed in Chap. 1, the maximum magnetic flux density in magnetic materials
is limited. Above the saturation flux density, the magnetic permeability � drops
and the material will increasingly behave like air, i.e., � ! �0 when flux density
is increased further. Since motors usually work at high flux density levels, with
noticeable saturation, it is essential to incorporate saturation in our coil model.

The relationship between flux-linkage and current is in the magnetically linear
case determined by the inductance, as shown in Fig. 1.14. In reality, the  .i/
relationship is only relatively linear over a limited region (in case the magnetic
circuit contains “iron” (steel) core), as shown in Fig. 1.16. The generic model
according to Fig. 2.5 needs to be revised in order to cope with the general case.

The generic building block for non-linear functions [7] is shown in Fig. 2.6. The
double edged box indicates a non-linear module with input variable x and output
variable y. The relationship between output and input is shown as y.x/ (y as a
function of the input x). In some cases, a symbolic graph of the function that is
implemented may also be shown on this building block.

The non-linear module has the coil flux  as input and the current i as output.
Hence, the non-linear function of the module is described as i . /, which expresses
the current of the coil as a function of the coil flux. The terminal equation (2.8)
remains unaffected by the introduction of saturation, only the gain module 1=L shown
in Fig. 2.5 must be replaced by the non-linear module described above. The revised
generic model of the coil is shown in Fig. 2.7.

2.5 Use of Phasors for Analyzing Linear Circuits

The implementation of generic circuits (such as those discussed in this chapter) in
PLECS allows us to study models for a range of conditions. The use of a sinusoidal
excitation waveform is of most interest given their use in electrical machines and
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Fig. 2.7 Generic model of general inductance model with coil resistance

actuators. However, there must be a way to perform “sanity checks” on the results
given by simulations. Analysis by way of phasors provides us with a tool to
look at the ac steady-state results of linear circuits. The underlying principle of
this approach lies with the fact that a sinusoidal excitation function, for example,
the applied voltage, will cause a sinusoidal output function of the same frequency,
be it that the amplitude and phase (with respect to the excitation function) will
be different. For example, in the symbolic circuit shown in Fig. 2.4, the excitation
function will be defined as u.t/ D Ou sin.!t/, where Ou and ! represent the peak
amplitude and angular frequency (rad/s), respectively. Note that the latter is equal
to ! D 2� f , where f represents the frequency in Hz. The output variables are the
flux-linkage  .t/ and current i.t/ waveforms. Both of these will also be sinusoidal,
be it that their amplitude and phase differ from the input signal u.t/. In general, a
sinusoidal function can be described by

x .t/ D Ox sin .!tC 	/ (2.9)

This function can also be written in complex notation as

x .t/ D =
n
Oxej.!tC	/

o
(2.10)

Equation (2.10) makes use of “Euler’s rule” ejy D cos yC j sin y. The imaginary part
of this expression is defined as =

˚
ejy
�
D sin y. =fg is the imaginary operator, which

takes the imaginary part from a complex number. Note that the analysis would be
identical with x .t/ in the form of a cosine function. In the latter case it would be
more convenient to use the real component of Oxej.!tC	/, using the real operator <fg.
Equation (2.10) can be rewritten to separate the time dependent component ej!t

namely:

x .t/ D =

8<
: Oxej	„ƒ‚…

x

ej!t

9=
; (2.11)



2.5 Use of Phasors for Analyzing Linear Circuits 35

The time independent component in Eq. (2.11) is known as a “phasor” and is
generally identified by the notation x. In general the phasor will have a real and
imaginary component and can therefore be represented in a complex plane.

In many cases it is also convenient to use the time differential of x.t/ namely dx=dt.
The time differential of the function x .t/ D =

˚
x ej!t

�
is

dx

dt
D =

˚
j!x ej!t

�
(2.12)

which implies that the differential of the phasor x is calculated by simply multiplying
x with j!.

2.5.1 Application of Phasors to a Linear Inductance
with Resistance Network

As a first example of the use of phasors, we will analyze a coil with linear inductance
and non-zero wire resistance, as shown in Fig. 2.4. We need to calculate the steady-
state flux-linkage and current waveforms of the circuit. The differential equation set
for this system is

u D iRC
d 

dt
(2.13a)

 D Li (2.13b)

The flux-linkage differential equation is found by substitution of Eq. (2.13b)
into (2.13a) which gives

u D
R

L
 C

d 

dt
(2.14)

The applied voltage will be u D Ou sin!t, hence the phasor representation of the
input signal according to (2.11) is: u D Ou.

The flux-linkage will also be a sinusoidal function, albeit with different ampli-
tude and phase:  D O sin

�
!tC 	 

�
. The parameters O and 	 are the unknowns

at this stage. In phasor representation, the flux time function can be written as

 D =
n
 ej!t

o
where  D O ej	 .

Rewriting Eq. (2.14) using these phasors, we obtain

u D
R

L
 C j! (2.15)
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Fig. 2.8 Complex plane with
phasors: u,  , i

from which we can calculate the flux phasor by reordering, namely

 D
u�

R
L C j!

� (2.16)

The amplitude and phase angle of the flux phasor are now

O D
Ouq�

R
L

�2
C !2

(2.17a)

	 D � arctan

�
!L

R

�
(2.17b)

and the corresponding current phasor is according to Eq. (2.13b): i D  =L.
The transformation of phasors back to corresponding time variable functions is

carried out with the aid of Eq. (2.11). A graphical representation of the input and
output phasors is given in the complex plane shown in Fig. 2.8.

2.6 Tutorials

2.6.1 Tutorial 1: Analysis of a Linear Inductance Model

In this chapter we analyzed a linear inductance and defined the symbolic and generic
models as shown in Fig. 2.2. The aim of this tutorial is to build a PLECS model from
this generic diagram. An example as to how this can be done is given in Fig. 2.9.
Indicated in Fig. 2.9 is the inductance model in the form of an integrator and gain
module. Also given are two “step” modules which, together with a “Sum” unit,
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Fig. 2.9 PLECS model of linear inductance with excitation function
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Fig. 2.10 PLECS results: ideal inductance simulation

generate a voltage pulse of magnitude 1 V. This pulse should start at t D 0 and
end at t D 0:5 s. Build this circuit and also add a “Scope” module which allows
you to display your data. In this exercise we look at the input voltage waveform,
the flux-linkage, and current versus time functions. Once you have built the circuit
you need to run this simulation. For this purpose you need to set the “stop time”
(under Simulations/simulation parameters dialog window) to 1 s. The inductance
value used in this case is L D 0:87H, which should be set in the “Integrator” module
dialog box. The results which should appear from your simulation after running this
PLECS file are given in Fig. 2.10.
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Fig. 2.11 PLECS model of linear inductance with resistance and excitation function
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Fig. 2.12 PLECS results: inductance simulation, with coil resistance

The dynamic model as discussed above is to be extended to the generic model
shown in Fig. 2.5. Add a coil resistance of R D 2� to the PLECS model given in
Fig. 2.9. The new model should be of the form given in Fig. 2.11.

Run the simulation again, in which case the results should be of the form given
in Fig. 2.12.
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Fig. 2.13 PLECS “symbolic” model: linear inductance with coil resistance

2.6.2 Tutorial 2: Symbolic Model Analysis of a Linear
Inductance Model

In this tutorial we will consider an alternative implementation of tutorial 1, based
on the use of symbolic models (where possible) instead of “control” blocks as
used in the previous case. Build a PLECS model of the symbolic model shown
in Fig. 2.4 with the excitation and circuit parameters as discussed in tutorial 1. Note
that “symbolic” modules in PLECS are known as “Electrical” blocks.

An example of a PLECS implementation is given in Fig. 2.13 on page 39.
The “scope” module given in Fig. 2.13 displays the results of the simulation.
The simulation results obtained with this simulation should match those given in
Fig. 2.12 where it is noted that the flux plot is not shown in this case, given that it is
not directly generated by a symbolic model. Furthermore, a “Voltmeter” (Vm1) and
“Ammeter” (Am1) are used to measure the voltage and current, respectively.

2.6.3 Tutorial 3: Analysis of a Non-linear Inductance Model

In Sect. 2.4 we have discussed the implications of saturation effects on the flux-
linkage/current characteristic. In this tutorial we aim to modify the simulation model
discussed in the previous tutorial (see Fig. 2.11) by replacing the linear inductance
component with a non-linear function module as shown in the generic model (see
Fig. 2.7). In this case, the flux-linkage/current  .i/ relationship is taken to be of
the form  D tanh .i/ as shown in Fig. 2.14. Note that in this example the gradient
of the flux-linkage/current curve becomes zero for currents in excess of ˙3A. In
reality, the gradient will be non-zero when saturation occurs.

The coil resistance of the coil is increased to R D 100�. An example of a
Simulink implementation is given in Fig. 2.15. The block diagram clearly shows
the presence of the non-linear module used to implement the function i . /. The
non-linear module has the form of a “look-up” table which requires two vectors
to be entered. Upon opening the dialog box for this module, provide the following
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Fig. 2.15 PLECS model of non-linear inductance with sinusoidal excitation function

entries under: “vector of input values”: set to tanh([-5:0.1:5]) and “vector
of output values”: set to [-5:0.1:5]. Also given in Fig. 2.15 is a “sine wave”
module, which in this case must generate the function u D Ou cos!t, where ! D
100 � (rad/s) and Ou is initially set to Ou D 140

p
2V. Note that a cosine function is

used. This means that in the “Sine Wave” dialog box (under “Phase”) a phase angle
entry is required, which must be set to �=2 (PLECS knows the meaning of “�”
hence you can write this as “pi”).

Once the new PLECS model has been completed, run this simulation for a time
interval of 40ms. For this purpose set the “stop time” (under Simulations/simulation
parameters dialog window) to 40ms. Save the results from the “Scope” module
in the form of a “xxx.csv” file. An example of the results obtained with this
simulation under the present conditions is given in Fig. 2.16. The results as given in
Fig. 2.16 also include two “M-file” functions, which represent the results obtained
via a phasor analysis to be discussed below.
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Fig. 2.16 PLECS/M-file results: inductance simulation, with coil resistance and non-linear i . /
function

To obtain some idea as to whether or not the simulation results discussed in
this tutorial are correct, we calculate the steady-state flux-linkage and current
versus time functions by way of a phasor analysis. An observation of the current
amplitude shows that, according to Fig. 2.14, operation is within the linear part of the
current/flux-linkage curve. Assume a linear approximation of this function as shown
in Fig. 2.14. This approximation corresponds to an inductance value of L D 0:87H.

The input function u D Ou cos!t may also be written as

u .t/ D <

8<
: Ou„ƒ‚…

u

ej.!t/

9=
; (2.18)

where in this case the phasor u D Ou D 140
p
2V.

The actual phasor analysis must be done in MATLAB which also allows you to
use complex numbers directly. For example, you can specify a phasor xp=3+j*5
(in MATLAB form) and a reactance X=100*pi*L, where L D 0:87H.

Write an M-file which will calculate the current and flux phasors. In addition
calculate and plot the instantaneous current and flux versus time waveforms and add
the results from the PLECS simulation (generated in the form of a “xxx.csv” file).
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An example of such an M-file is given at the end of this tutorial, which also shows
the code required to plot the results from the PLECS model.

The results obtained after running this M-file are shown in Fig. 2.16 (in “black”),
together with the earlier PLECS results. A comparison between the results obtained
via the PLECS model and phasor analysis (see Fig. 2.16) shows that the waveforms
merge towards the end of the simulation time. In the first part of the simulation the
transient effects dominate, hence the discrepancy between the simulation results and
those calculated via a (steady-state ac) phasor analysis.

2.6.3.1 M-File Code

%Tutorial 3, chapter 2
close all
L=0.87; %inductance value (H)
R=100;%resistance
dat = csvread(’tut3ch2data.csv’,1,0) % read in data from

PLECS
close all
L=0.87; %inductance value (H)
R=100; %resistance
subplot(3,1,1)
plot(dat(:,1),dat(:,2)); % voltage input
xlabel(’ (a) time (s)’)
ylabel(’voltage (V)’)
grid
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
subplot(3,1,2)
plot(dat(:,1),dat(:,3),’r’); % flux-linkage
xlabel(’ (b) time (s)’)
ylabel(’\psi (Wb)’)
grid
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
subplot(3,1,3)
plot(dat(:,1),dat(:,4),’g’); % current
xlabel(’ (c) time (s)’)
ylabel(’ current (A)’)
grid
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%complex analysis
u_ph=140*sqrt(2); %voltage phasor
w=2*pi*50; %excitation frequency

(rad/)
X=w*L;%reactance
i_ph=u_ph/(R+j*X); %current phasor
i_pk=abs(i_ph); %peak current value
i_rho=angle(i_ph); % angle current phasor
psi_ph=i_ph*L;%flux phasor
psi_pk=abs(psi_ph); %peak value flux
psi_rho=angle(psi_ph); %angle current phasor
%%%%%%%%%%%plot results
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time=[0:40e-3/100:40e-3];
i_t=i_pk*cos(w*time+i_rho); %current/time function
psi_t=psi_pk*cos(w*time+psi_rho); %flux/time function
subplot(3,1,3)
hold on
plot(time,i_t,’k’); %add result to plot 3
legend(’PLECS’,’m-file’)
subplot(3,1,2)
hold on
plot(time,psi_t,’k’); %add result to plot 2
legend(’PLECS’,’m-file’)

2.6.4 Tutorial 4: PLECS Based Analysis of a Non-linear
Inductance Model with Revised Excitation Condition

It is instructive to repeat the analysis given in tutorial 3 by changing the peak supply
voltage to Ou D 240

p
2V in the PLECS model and M-file. An example of the results,

which should appear after running your files, is given in Fig. 2.17.
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Fig. 2.17 PLECS/M-file results: induction simulation, with coil resistance, non-linear i . /, and
higher peak voltage



44 2 Simple Electro-Magnetic Circuits

A comparison between the results obtained via the phasor analysis and PLECS
simulation shows that the two are now decidedly different. The reason for the
discrepancy is that the increased supply voltage level has increased the flux levels,
which forces operation of the inductance into the non-linear regions of the flux-
linkage/current curve. Note that the phasor analysis uses the same L D 0:87H
inductance value. To prevent invalid conclusions, we must be aware that this ac
phasor analysis tool is only usable for linear models.

2.6.5 Tutorial 5: PLECS Based Electro-magnetic Circuit
Example

This tutorial makes use of the magnetic model introduced previously (see
Sect. 1.8.1) which is to be connected to a 100V, 50Hz sinusoidal voltage source.
The coil resistance R of the coil is assumed to be 500�. Build a PLECS based
model, which shown the magnetic structure and symbolic (electrical) circuit.
Add a scope module to show: applied voltage, current, flux linked with the
coil, and the coil MMF. Use the geometry parameters as defined in Sect. 1.8.1.
The PLECS model according to Fig. 2.18 is an implementation of said problem.
Readily observable are the “electrical” (“black” connections) and magnetic (“red”
connections) components together with the meters used to measure voltage, current,
and MMF. Furthermore, a meter dPhi is present, which measures the circuit flux
differential d�=dt, hence a integrator must used to generate the circuit flux �. The
flux-linkage  D n� is found by adding a gain module after the integrator with
gain 1000, which is the number of turns of the coil. the simulation results by way
of three “SCOPE” submodules. The results displays on the Scope module show the
required variables for a time interval of 40ms (Fig. 2.19).

R1
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FMMF
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Am1
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Fig. 2.18 PLECS simulation: electro-magnetic circuit example
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Fig. 2.19 Simulation results for electro-magnetic circuit example

It is instructive to briefly consider the results shown on the scope module:

• Current: this waveform lags the voltage waveform as expected because the coil
has inductance and resistance.

• Flux linkage: this waveform is identical to the current waveform, but the
magnitude is different. This is to be expected as the flux linkage is equal to
 D L i, where L is the inductance which according to Sect. 1.8.1 was found
to be 2:19H.

• Coil MMF: this waveform is identical to the current waveform, but the magnitude
is different. This is to be expected as the coil MMF is equal to MMF D n i, where
n is the number of coil turns, set to 1000.
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