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Abstract. In activation network problems we are given a directed or
undirected graph G = (V,E) with a family {fuv : (u, v) ∈ E} of
monotone non-decreasing activation functions from D2 to {0, 1}, where
D is a constant-size subset of the non-negative real numbers, and the
goal is to find activation values xv ∈ D for all v ∈ V of minimum total
cost

∑
v∈V xv such that the activated set of edges satisfies some con-

nectivity requirements. We propose an algorithm that optimally solves
the minimum activation cost of k edge-disjoint st-paths (st-MAEDP)

problem in O(|V ||D|tw+1tw3(k + 1)(tw+3)2(tw+3)
(tw + 3)2(tw+3)+3) time

for graphs with treewidth bounded by a constant tw.

1 Introduction

The activation network setting can be defined as follows. We are given a directed
or undirected graph G = (V,E) together with a family {fuv : (u, v) ∈ E} of
monotone non-decreasing activation functions from D2 to {0, 1}, where D is a
constant-size subset of the non-negative real numbers, such that the activation
of an edge depends on the chosen values from the domain D at its endpoints. An
edge (u, v) ∈ E is activated for chosen values xu and xv if fuv(xu, xv) = 1, and
the activation function fuv is called monotone non-decreasing if fuv (xu, xv) = 1
implies fuv (yu, yv) = 1 for any yu ≥ xu, yv ≥ xv. The objective of activa-
tion network problems is to find activation values xv ∈ D for all v ∈ V such
that the total activation cost

∑
v∈V xv is minimized and the activated set of

edges satisfies some connectivity requirements. Activation problems generalize
several problems studied in the network literature such as power optimization,
minimum broadcast tree and installation cost optimization. Several activation
problems have been studied for arbitrary graphs in the recent research literature.
Unfortunately, many of these problems are computationally hard. Obtaining a
polynomial-time approximation algorithm is a typical approach to deal with an
NP-hard problem. Another important approach is studying the problem on graph
classes with nice decomposition properties such as bounded treewidth graphs to
determine efficient algorithms. Panigrahi [8] shows that the fundamental problem
of finding minimum activation k edge-disjoint st-paths (st-MAEDP) is NP-hard.
It is an interesting area of research to investigate this problem for graphs with
treewidth bounded by a constant tw. In this paper, we focus on developing a
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polynomial-time algorithm that optimally solves the st-MAEDP for graphs of
bounded treewidth. (Note that k is not a constant but part of the input.)

Related Work. Activation network problems were first introduced by Panigrahi
in [8] and various of these problems have been investigated in [1,2,6–8]. The
minimum activation st-path (MAP) problem is optimally solvable in polynomial-
time [8]. However, the minimum spanning activation tree (MSpAT) problem is
NP-hard to approximate within a factor of o(log n) and there exists a O(log n)-
approximation algorithm for this problem [8]. Activation network problems gen-
eralize several problems studied in the network literature such as power opti-
mization problems, which are modelled by a graph G = (V,E) where each edge
(u, v) in G is assigned a threshold power requirement θuv. For undirected graphs,
an edge (u, v) is activated for chosen values xu and xv if each of these values
is at least θuv, and it is activated if xu ≥ θuv for the directed case. The mini-
mum power st-path (MPP) problem can be solved in polynomial time for both
directed and undirected graphs [5]. For directed graphs, the minimum power
k node-disjoint st-paths problem is also optimally solvable in polynomial time
[4,11]. However, the minimum power k edge-disjoint st-paths problem is unlikely
to admit even a polylogarithmic approximation algorithm for both the directed
and undirected variants [4].

There is a 2k-approximation algorithm for the st-MAEDP problem and a 2-
approximation algorithm for the minimum activation node-disjoint st-paths (st-
MANDP) problem [6]. In [1], we have studied the st-MAEDP and st-MANDP
problems when k = 2, denoted by st-MA2EDP and st-MA2NDP respectively. We
proved that a ρ-approximation algorithm for the st-MA2NDP problem implies
a ρ-approximation algorithm for the st-MA2EDP problem. In the same paper,
we obtained a 1.5-approximation algorithm for the st-MA2NDP problem and
hence for the st-MA2EDP problem. The problems st-MAEDP and st-MANDP
for the restricted version of activation networks with |D| = 2 and a single acti-
vation function for all edges have also been studied in [1]. Under this restriction,
the st-MANDP problem is optimally solvable in polynomial time for arbitrary k
(except for one case of the activation function, in which we require k = 2). The
st-MAEDP problem, however, remains NP-hard [1,8]. So far these problems for
an arbitrary constant-size D and fixed k ≥ 2 are not known to be NP-hard.
Recently, in [2], we considered the st-MANDP and the problem of finding mini-
mum activation cost node-disjoint paths (MANDP) between k disjoint terminal
pairs, (s1, t1), . . . , (sk, tk), for graphs of bounded treewidth. We proposed algo-
rithms that optimally solve the st-MANDP problem in polynomial-time and the
MANDP problem in linear-time for graphs with bounded treewidth [2]. There
exists a polynomial-time algorithm that optimally solves the st-MA2EDP prob-
lem for graphs of bounded treewidth [1,2]. Other relevant work, applications and
motivations of activation network problems have been addressed in [1,2,6–8].

Our Results. We develop a polynomial-time algorithm for the st-MAEDP prob-
lem for graphs with treewidth bounded by tw. Our algorithm efficiently com-
bines an edge-coloring scheme with dynamic programming over a nice tree-
decomposition (see Sect. 2). The edge-coloring scheme was introduced in [12] to
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develop a polynomial-time algorithm that solves the minimum shared-edge kst-
paths (MSEP) problem (finding k paths between s and t with minimum number
of shared edges among the paths) for graphs of bounded treewidth. The MSEP
is a generalization of the problem of finding k edge disjoint st-paths.

The rest of the paper is organized as follows. In Sect. 2 we recall some defini-
tions and results of the class of graphs with bounded treewidth. Then in Sect. 3,
we present a polynomial-time algorithm that solves the st-MAEDP problem
optimally for graphs with treewidth bounded by tw. We conclude the paper by
stating some open problems in Sect. 4.

2 Preliminaries

In this paper we consider the class of graphs of bounded treewidth. A graph
G = (V,E) has treewidth tw if it has a tree-decomposition of width tw [9]. The
tree-decomposition concept is defined as follows.

Definition 1. Given a graph G = (V,E), a tree T = (I, F ) and a family
X = {Xi}i∈I of subsets of V (called bags). The pair (X , T ) is called a tree-
decomposition of G if it satisfies the following conditions:

– V =
⋃

i∈I Xi.
– For every edge (v, w) ∈ E, there exists an i ∈ I with v ∈ Xi and w ∈ Xi.
– For every vertex v ∈ V , the nodes i ∈ I with v ∈ Xi form a subtree of T .

The width of (X , T ) is the number maxi∈I |Xi| − 1. The treewidth tw of the graph
G is the minimum width among all possible tree-decompositions of the graph.

Theorem 1 ([3]). For any fixed tw, there exists a linear-time algorithm that
checks whether a given graph G = (V,E) has treewidth at most tw, and if so,
outputs a tree-decomposition (X , T ) of G with width at most tw.

Definition 2. A tree-decomposition (X , T ) is called a nice tree-decomposition,
if T is a binary tree rooted at some r ∈ I that satisfies the following:

– Each node is either a leaf, or has exactly one or two children.
– Let i ∈ I be a leaf. Then Xi = {u, v} for some (u, v) ∈ E.
– For every edge (u, v) ∈ E, there is exactly one leaf i ∈ I such that u, v ∈ Xi.

(We say that the edge (u, v) is associated with that leaf i ∈ I).
– Let j ∈ I be the only child of i ∈ I, then either Xi = Xj∪{v} or Xi = Xj\{v}.

The node i is called an introduce node or forget node, respectively.
– Let j, j′ ∈ I be the two child nodes of a node i ∈ I, then Xj = Xj′ = Xi. The

node i is called a join node of T .

Scheffler presented in [10] a special tree-decomposition that follows the struc-
ture of a nice tree-decomposition as defined above but with no restriction on the
size of leaf bags (i.e., it does not require leaf bags to be of size 2). We call that
type of tree-decomposition a Scheffler-type nice tree-decomposition. Any given
tree-decomposition for a graph G = (V,E) with treewidth at most tw can be
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easily converted into a Scheffler-type nice tree-decomposition of width tw and
size O(|V |) in linear time, if tw is a fixed constant [10]. One can also transform a
Scheffler-type nice tree-decomposition to have leaves with bags of size 2 in linear
time. Therefore, a nice tree-decomposition with leaf bags of size 2 and width tw
can be constructed from any given tree-decomposition of the same treewidth.
However, each leaf node of a Scheffler-type nice tree-decomposition may pro-
duce O(tw3) new nodes in the construction of leaves with size 2. The resulting
tree-decomposition, therefore, has O(|V |tw3) nodes.

Throughout this paper, we consider simple undirected graphs G = (V,E)
given as an input with a nice tree-decomposition of width at most tw. We define
X+

i to be the set of all vertices in Xj for all nodes j ∈ I such that j = i or j
is a descendant of i. We denote by G+

i a partial graph of G. For a leaf node i,
G+

i is the subgraph of G with vertex set Xi and the edge of G that is associated
with i. For a non-leaf node i, G+

i is the graph that is the union of G+
j over all

children j of i. Note that the graph G+
r for the root r of the tree-decomposition

is equal to G.

3 Minimum Activation Cost k Edge-Disjoint st-Paths

Given are an activation network G = (V,E) and a pair of source and desti-
nation vertices s, t ∈ V . In this section, we consider the st-MAEDP problem
where the goal is to find activation values {xv : v ∈ V } of minimum total
cost

∑
v∈V xv such that the activated set of edges contains k edge-disjoint st-

paths Pst = P1, . . . ,Pk. We present a polynomial-time algorithm that solves the
st-MAEDP problem optimally in the case of graphs of bounded tree-width using
dynamic programming techniques. The algorithm follows a bottom-up approach
to compute a number of possible sub-solutions per nice tree-decomposition node
i ∈ I. It is easy to compute the sub-solutions for a leaf node i ∈ I because the
partial graph G+

i consists of two vertices that are connected by an edge in G
associated with i. For a non-leaf node, we use the information previously com-
puted for its children. The algorithm also constructs a table tabi to store the
computed information for each node i ∈ I.

We use an edge-coloring scheme to compute the sub-solutions per tree node.
Let C = {0, 1, . . . , k} be a set of colors. We consider a coloring fi : E(G+

i ) → C
for the graph G+

i . For each color c ∈ C, we define G+
i (fi, c) to be the subgraph

of G+
i induced by the edges with color c. Each color c ∈ C \ {0} represents

the edges used by Pc. Denote by P (X) the set of all possible partitions of the
set X. We define C(Xi) = (Y1, . . . ,Yk) to be a color vector on Xi such that
Yc ∈ P (Xi ∪ {s, t}) for all c ∈ C \ {0}. Pst(Xi) denotes the set P (Xi ∪ {s, t}). A
color vector C(Xi) = (Y1, . . . ,Yk) on Xi is called active if G+

i has a coloring fi

such that every element of the partition Yc, for each c ∈ C \{0}, is a set resulting
from the intersection between Xi ∪ {s, t} and the vertex set of a connected
component of G+

i (fi, c) (see Fig. 1 for an example of an active color vector).
Y(Xi, fi, c) denotes the partition Yc of Xi ∪{s, t}. This color vector concept was
introduced in [12] for developing a polynomial-time algorithm that optimally
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C(Xi) = {Y1,Y2,Y3}
Xi = {v1, v2, v3, v4, v5, v6} and s, t ∈ Xi

Y1 = {{v1, v2, v3}, {v4, v5}, {v6}}
Y2 = {{v1}, {v2, v3, v4}, {v5}, {v6}}
Y3 = {{v2}, {v3}, {v1, v4}, {v5, v6}}

G+
i (fi, 0)

G+
i (fi, 1)

G+
i (fi, 2)

G+
i (fi, 3)

Fig. 1. An example of an active color vector

solves the MSEP problem for graphs with bounded treewidth. One simple way
to compute the sub-solutions is by storing a color vector and an activation-
value function per each row of table tabi. However, the number of color vectors
per node i can only be bounded by (tw + 3)k(tw+3) because |Xi| ≤ tw + 1,
|Xi ∪ {s, t}| ≤ tw + 3 and |Pst(Xi)| ≤ (tw + 3)tw+3. Therefore, the number of
color vectors is not always polynomially bounded. Hence the size of the table
tabi is also not always polynomially bounded. Therefore we define a mapping
γi : Pst(Xi) → {0, 1, . . . , k} to be a count on Xi to obtain a polynomial-time
algorithm to optimally solve the st-MAEDP problem. We say that the count γi

on Xi is an active count if G+
i has a coloring fi with a color vector C(Xi) =

(Y1, . . . ,Yk) such that γi(A) = |{c ∈ C \ {0} : A = Yc}| for each A ∈ Pst(Xi).
For any active count γi, it is clear that

∑
A∈Pst(Xi)

γi(A) = k. In Fig. 1, the
counts would be 1 for all partitions A ∈ {Y1,Y2,Y3} ⊆ Pst(Xi) and 0 otherwise.
Consider a solution P = P1, . . . ,Pk for the st-MAEDP problem. Let Pi = P[G+

i ]
be the induced solution in a partial graph G+

i (i.e., the set of vertices and edges
that are both in P and in G+

i ). Since the interaction between Pi in G+
i and the

rest of the graph happens only in vertices of Xi, we can consider an activation-
value function Λi : Xi → D and a count γi : Pst(Xi) → {0, 1, . . . , k} to represent
Pi in G+

i . The idea of using counts instead of color vectors is based on [12].

3.1 Processing the Tree Decomposition

For a tree node i ∈ I, the table tabi has multiple rows and each row represents a
solution of a unique combination of a count γi and a function of activation values
Λi. Let val(γi, Λi) denote the minimum cost value of an assignment of activation
values for G+

i which satisfies the restrictions Λi and activates an edge-colored
subgraph of G+

i that satisfies the count γi. The value val(γi, Λi) is also stored
in tabi. We compute the sub-solution tables starting at the leaves towards the
root.

Leaf. Let i ∈ I be a leaf, Xi = {u, v}. Let (γi, Λi) be any row of tabi. We
distinguish the following cases and define the value val(γi, Λi) for each case.
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Each case corresponds to a possible sub-solution in G+
i . Recall that G+

i is a
single edge. The sub-solution’s cost val(γi, Λi) is set to

∑
v∈Xi

Λi(v) if one of
the following cases applies:

– γi(A′) = k − 1 for A′ = {{u}, {v}, {s}, {t}} and γi(A′′) = 1 for A′′ =
{{u, v}, {s}, {t}} and γi(A) = 0 for all A ∈ Pst(Xi) \ {A′, A′′}, where
fuv(Λi(u), Λi(v)) = 1 and s, t /∈ Xi. Intuitively, this means that the sub-
solution is a path with one edge not containing s or t.

– γi(A′) = k − 1 for A′ = {{u}, {v}} and γi(A′′) = 1 for A′′ = {{u, v}} and
γi(A) = 0 for all A ∈ Pst(Xi) \ {A′, A′′}, where fuv(Λi(u), Λi(v)) = 1 and
s, t ∈ Xi. Intuitively, this means that the sub-solution is a path with one edge
containing s and t.

– γi(A′) = k − 1 for A′ = {{u}, {v}, {s}} and γi(A′′) = 1 for A′′ = {{u, v}, {s}}
and γi(A) = 0 for all A ∈ Pst(Xi)\{A′, A′′}, where fuv(Λi(u), Λi(v)) = 1 and
s /∈ Xi and t ∈ Xi. Intuitively, the sub-solution is a path with one edge and
one endpoint equal to t. (The roles of s and t can be exchanged.)

– γi(A′) = k for A′ = {{u}, {v}, {s}, {t}} and γi(A) = 0 for all A ∈ Pst(Xi) \
{A′}, where s, t /∈ Xi. Intuitively, this means that the sub-solution has no
edges.

– γi(A′) = k for A′ = {{u}, {v}} and γi(A) = 0 for all A ∈ Pst(Xi) \ {A′},
where s, t ∈ Xi. Intuitively, this means that the sub-solution has no edges.

– γi(A′) = k for A′ = {{u}, {v}, {s}} and γi(A) = 0 for all A ∈ Pst(Xi) \ {A′},
where s /∈ Xi and t ∈ Xi. Intuitively, this means that the sub-solution has no
edges. (The roles of s and t can be exchanged.)

In these cases we construct an edge-colored subgraph of G+
i plus activation-

values that may be part of a global solution. If none of the above cases applies,
val(γi, Λi) = +∞.

Introduce. Let i ∈ I be an introduce node, and j ∈ I its only child. We have
Xj ⊂ Xi, |Xi| = |Xj | + 1 and let v be the additional vertex in Xi. The vertex
v is isolated since i does not introduce edges in G+

i . For every row (γj , Λj)
in tabj , there are |D| rows in tabi such that for all A ∈ Pst(Xj) and all u ∈
Xi \ {v}, γi(A ∪ {{v}}) = γj(A) if v /∈ {s, t} and γi(A) = γj(A) if v ∈ {s, t}
and Λi(u) = Λj(u). The sub-solution’s cost val(γi, Λi) for these rows is set to
val(γj , Λj) + Λi(v).

Forget. Let i ∈ I be a forget node, and j ∈ I its only child. We have Xi ⊂ Xj ,
|Xj | = |Xi| + 1 and let v be the discarded vertex. Let A−v be the partition
A ∈ Pst(Xj) after removing the vertex v if v /∈ {s, t} and A−v equals the
partition A if v ∈ {s, t}. Note that A−v ∈ Pst(Xi) for all A ∈ Pst(Xj). For
A ∈ Pst(Xi), we say that W (A) is the set of all partitions B ∈ Pst(Xj) such
that B−v = A (i.e., W (A) = {B ∈ Pst(Xj) : B−v = A}). For each row (γi, Λi),
we consider all (γj , Λj) such that for all u ∈ Xi and A ∈ Pst(Xi), Λi(u) = Λj(u)
and γi(A) =

∑
B∈W (A) γj(B). The sub-solution’s cost val(γi, Λi) is the minimum

of val(γj , Λj) over all these (γj , Λj).
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Join. Let i ∈ I be a join node, and j, j′ ∈ I its two children. We have
Xi = Xj = Xj′ . We call a mapping βi : Pst(Xi) × Pst(Xi) → {0, 1, . . . , k} a
pair-count on Xi. We define βi to be an active pair-count if G+

i has a coloring
fi such that βi(Aj , Aj′) = |{c ∈ C : Aj = Y(Xj , fj , c) and Aj′ = Y(Xj′ , fj′ , c)}|
for each Aj , Aj′ ∈ Pst(Xi) where fj and fj′ are the restriction of fi to E(G+

j )
and E(G+

j′), respectively. Let val(βi, Λi) denote the minimum cost value of an
assignment of activation values for G+

i which satisfies the restrictions Λi and
activates an edge-colored subgraph of G+

i that satisfies the pair-count βi. The
algorithm computes all val(βi, Λi) of all βi on Xi from all pairs of sub-solutions
(γj , Λj) and (γj′ , Λj′) such that both have the same activation-value function
(Λj(u) = Λj′(u) for all u ∈ Xi) and the pair of active counts γj and γj′ satisfy
the following conditions:

C1. γj(Aj) =
∑

A∈Pst(Xi)
βi(Aj , A) for all Aj ∈ Pst(Xi).

C2. γj′(Aj′) =
∑

A∈Pst(Xi)
βi(A,Aj′) for all Aj′ ∈ Pst(Xi).

The value val(βi, Λi) is set to be the summation value of the pair of sub-solutions
(γj , Λj) and (γj′ , Λj′) that satisfy the above conditions minus the activation
cost of Xi. To determine the pair (γi, Λi) that corresponds to the pair (βi, Λi)
of pair-count and an activation-value function, we construct a bipartite graph
for each pair of partitions with a pair-count greater than 0 as follows. For each
pair Aj , Aj′ ∈ Pst(Xi) where βi(Aj , Aj′) ≥ 1, we construct a bipartite graph

H
(Aj ,Aj′ )
βi

= (Aj ∪Aj′ , E
(Aj ,Aj′ )
βi

) with partite sets Aj and Aj′ , where the vertices

aj ∈ Aj and aj′ ∈ Aj′ are joined by an edge in E
(Aj ,Aj′ )
βi

iff aj ∩aj′ �= ∅. Assume

that D1,D2, . . . , Db are the connected components of the graph H
(Aj ,Aj′ )
βi

. We
define U(Aj , Aj′) to be the family of vertex sets {

⋃
v∈Dl

v : 1 ≤ l ≤ b}. We set
the value val(γi, Λi) to be the minimum val(βi, Λi) over all (βi, Λi) such that
for each Ai ∈ Pst(Xi):

γi(Ai) =
∑

βi(Aj , Aj′)

where the summation above is taken over all pairs Aj , Aj′ ∈ Pst(Xi) such that
Ai = U(Aj , Aj′).

Extracting the Solution at the Root. The algorithm checks all the pairs (γr, Λr) of
the root bag Xr such that for all A ∈ Pst(Xr) where γr(A) ≥ 1, there is a set in
A containing both s and t. In this case (γr, Λr) corresponds to a feasible solution.
The output of the algorithm is the minimum cost value among all the feasible
solutions obtained at the root. For each row (γi, Λi) of bag Xi, we store the
rows of Xi’s children that were used in the calculation of val(γi, Λi). Computing
the optimum solution is possible by traversing top-down in the decomposition
tree to the leaves (traceback) to get the activation values, and then running a
maximum flow algorithm on the unit-capacity graph of the activated edges to
get the k edge-disjoint st-paths.
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3.2 Analysis

The following lemmas analyse the running time of the algorithm and show that
we can efficiently compute an optimal solution for the st-MAEDP problem for
graphs with bounded treewidth. Let an instance of the problem be given by
an activation network G = (V,E) with treewidth bounded by tw and terminals
s, t ∈ V . Let POPT represent an optimal solution for this instance. We use C(Pi)
to denote the activation cost of a sub-solution Pi in a partial graph G+

i .

Lemma 1. The st-MAEDP algorithm requires O(|V ||D|tw+1(k+1)(tw+3)2(tw+3)

(tw + 3)2(tw+3)+3tw3) time.

Proof. The running time of the algorithm depends on the size of the tables
and the combination of tables during the bottom-up traversal. For each set of
vertices X, there are at most |X||X| possible partitions. Therefore, for each node
i, |Pst(Xi)| ≤ (|Xi| + 2)(|Xi|+2) ≤ (tw + 3)(tw+3). That means there are at most
(k + 1)(tw+3)(tw+3)

possible active counts γ on Xi. The table tabi in a processed
bag Xi contains no more than (k + 1)(tw+3)(tw+3) |D|tw+1 rows corresponding to
the possible active counts γ and the |D| possible activation values for each vertex
of Xi. Consider all possible row combinations with equal activation functions for
two tables for a join node. Since there are at most (tw + 3)2(tw+3) possible pairs
of partitions, there are at most (k + 1)(tw+3)2(tw+3)

possible active pair-counts
on Xi. For each pair-count βi, there is a pair of active counts γj and γj′ such
that the conditions C1 and C2 are satisfied. Computing γj and γj′ from βi

takes O((tw+3)2(tw+3)) time. Therefore, the computation of the value val(β,Λ)
for each combination of pair-count β and activation function Λ needs O((tw +
3)2(tw+3)) time. Thus we see that all pairs (β,Λ) and val(β,Λ) can be computed
in O((k + 1)(tw+3)2(tw+3)

(tw + 3)2(tw+3)|D|tw+1) time. Since |A| ≤ tw + 3 for
all A ∈ Pst(Xi), the bipartite graph H

(Aj ,Aj′ )
βi

defined in the join node contains
no more than (tw + 3)2 edges and can be constructed in O((tw + 3)3) time.
Therefore, for each βi, one can compute the active count γi that satisfies γi(Ai) =∑

βi(Aj , Aj′) where the summation is taken over all Aj , Aj′ ∈ Pst(Xi) such
that Ai = U(Aj , Aj′) and update the value val(γi, Λi) to be equal to val(βi, Λi)
if val(βi, Λi) ≤ val(γi, Λi) in O((tw + 3)2(tw+3)(tw + 3)3) time. Thus, we can
compute all val(γ, Λ) of all combinations of active count γ and activation-value
function Λ on Xi in time O((k + 1)(tw+3)2(tw+3)

(tw + 3)2(tw+3)+3|D|tw+1). Since
the tree-decomposition T has O(|V |tw3) nodes, one can compute all the tables
for all nodes in O(|V ||D|tw+1tw3(k + 1)(tw+3)2(tw+3)

(tw + 3)2(tw+3)+3) time. 
�

Lemma 2. For any processed bag Xi, let POPT
i be the induced solution of POPT

in G+
i and (γOPT

i , ΛOPT
i ) be the corresponding count and activation values, then

val(γOPT
i , ΛOPT

i ) ≤ C(POPT
i ) (1)

Proof. We use induction over the tree decomposition to prove that the value of
(γOPT

i , ΛOPT
i ) is at most the activation cost of POPT

i . The base case are the
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leaf nodes where the hypothesis clearly holds. Let us assume that the induction
hypothesis holds for all descendants of bag Xi. We want to prove that the induc-
tion hypothesis holds also for Xi and that can be proven by showing that the
hypothesis holds for all different types of the bag Xi.

Introduce. Let us assume that i is an introduce node and j its only child and let
v be the additional vertex in Xi. The statement (1) holds for Xj because it is
a child of the bag Xi. Let (γOPT

j , ΛOPT
j ) be the corresponding active count and

activation values of POPT
j . The following statement holds:

val(γOPT
j , ΛOPT

j ) ≤ C(POPT
j )

(γOPT
i , ΛOPT

i ) and (γOPT
j , ΛOPT

j ) both agree on the activation values for all
vertices in Xi \ {v}. The additional vertex v is an isolated vertex in the induced
graph G+

i and the one vertex set {v} is in A for all A ∈ Pst(Xi) such that
γOPT

i (A) ≥ 1. Since ΛOPT
i (v) ∈ D is the activation value of the vertex v, then:

val(γOPT
i , ΛOPT

i ) = val(γOPT
j , ΛOPT

j ) + ΛOPT
i (v)

≤ C(POPT
j ) + ΛOPT

i (v)

= C(POPT
i )

The statement (1) holds for an introduce node.

Forget. Assume that i is a forget node and j its only child and let v be the
discarded vertex in Xi. The statement (1) holds for Xj because it is a child of
the bag Xi. Let (γOPT

j , ΛOPT
j ) be the corresponding active count and activation

values of POPT
j . The following statement holds:

val(γOPT
j , ΛOPT

j ) ≤ C(POPT
j )

(γOPT
i , ΛOPT

i ) and (γOPT
j , ΛOPT

j ) both agree on activation values for all vertices
in Xj \ {v}. The discarded vertex v is either an isolated vertex or part of a
connected component in the induced solution POPT

j and that means the value
val(γOPT

j , ΛOPT
j ) is one of the values that has been considered when calculating

val(γOPT
i , ΛOPT

i ). Then:

val(γOPT
i , ΛOPT

i ) ≤ val(γOPT
j , ΛOPT

j ) ≤ C(POPT
j ) = C(POPT

i )

Then the statement (1) holds for a forget node.

Join. Assume that i is a join node and j and j′ its children. Let (γOPT
i , ΛOPT

i )
be the corresponding active count and activation values of the induced solution
POPT

i in G+
i . POPT

i is the union of its children sub-solutions POPT
j and POPT

j′ .
Let (γOPT

j , ΛOPT
j ) and (γOPT

j′ , ΛOPT
j′ ) be the corresponding active count and

activation values of POPT
j and POPT

j′ , respectively. The statement (1) holds for
Xj and Xj′ because they are children of the bag Xi. For all l ∈ {j, j′} the
following statement holds:

val(γOPT
l , ΛOPT

l ) ≤ C(POPT
l )
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Let (βOPT
i , ΛOPT

i ) be the corresponding active pair-count and activation values
of the induced solution POPT

i in G+
i which satisfies conditions C1 and C2 for

(γOPT
j , ΛOPT

j ) and (γOPT
j′ , ΛOPT

j′ ). We know that POPT
i is a sub-solution in G+

i ,
therefore, val(βOPT

i , ΛOPT
i ) is one of the values that has been considered when

computing val(γOPT
i , ΛOPT

i ). Then:

val(γOPT
i , ΛOPT

i ) ≤ val(βOPT
i , ΛOPT

i )

= val(γOPT
j , ΛOPT

j ) + val(γOPT
j , ΛOPT

j ) −
∑

v∈Xi

ΛOPT
i (v)

≤ C(POPT
j ) + C(POPT

j′ ) −
∑

v∈Xi

ΛOPT
i (v)

= C(POPT
i )

Then the induction hypothesis holds for a join node. 
�

Lemma 3. For any processed bag Xi, any pair (γi, Λi) where val(γi, Λi) = ci <
∞ corresponds to an edge-coloring plus activation-values Pi = (fi, Λ

+
i ) where

fi : E(G+
i ) → {0, . . . , k} and Λ+

i : X+
i → D with the following properties:

– The active count of Pi in Xi is γi.
– The activation values of Pi in Xi are Λi.
– The total activation cost in X+

i is ci.

Proof. We prove by induction that for any bag Xi there exists an edge-coloring
and activation-values Pi with the above properties. The base case are the leaf
nodes where the hypothesis clearly holds. Let us assume that the induction
hypothesis holds for all the descendants of bag Xi. We want to prove that the
induction hypothesis holds also for Xi and that can be proved by showing that
the hypothesis holds for all different types of the bag Xi.

Introduce. Assume that i is an introduce node and j its only child and v the
additional vertex in Xi. Let (γi, Λi) be some entry with val(γi, Λi) = ci < ∞. The
induction hypothesis holds for Xj . Let (γj , Λj) be the corresponding active count
and activation function that have been used for the calculation of val(γi, Λi).
Then (γj , Λj) corresponds to an edge-coloring and activation-values Pj that
satisfies the above properties. From the algorithm, (γi, Λi) and (γj , Λj) both
agree on the activation values for all vertices in Xi\{v}. Moreover, the additional
vertex v is an isolated vertex in the induced graph G+

i and the one vertex set
{v} is in A for all A ∈ Pst(Xi) such that γi(A) ≥ 1. The value of (γi, Λi) is
equal to the value of (γj , Λj) added to the activation value of the vertex v. The
union of the isolated vertex v and Pj is an edge-coloring with activation-values
that satisfies all properties of the induction hypothesis. Thus, the induction
hypothesis holds for an introduce node.

Forget. Assume that i is a forget node and j its only child and v the discarded
vertex. Let (γi, Λi) be some entry with val(γi, Λi) = ci < ∞. The induction
hypothesis holds for Xj . Let (γj , Λj) be the corresponding active count and
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activation function that have been used for the calculation of val(γi, Λi). Then
(γj , Λj) corresponds to an edge-coloring and activation-values Pj that satisfies
the above properties. From the algorithm, (γj , Λj) has the minimum value cost
among all possible rows of Xj that can produce (γi, Λi) and both agree on
activation values for all vertices in Xj \ {v}. The discarded vertex v is part of
the edge-coloring Pj . Therefore (γi, Λi) corresponds to the edge-coloring and
activation-values Pj and we can set Pi = Pj . The induction hypothesis holds
for a forget node.

Join. Assume that i is a join node and j and j′ its children. Let (γi, Λi) be
some entry with val(γi, Λi) = ci < ∞. Since val(γi, Λi) = ci < ∞, then
there is a pair of active pair-count and activation function (βi, Λi) such that
val(γi, Λi) = val(βi, Λi) and for each Ai ∈ Pst(Xi), γi(Ai) =

∑
βi(Aj , Aj′)

where the summation is taken over all pairs Aj , Aj′ ∈ Pst(Xi) satisfying
Ai = U(Aj , Aj′). Let (γj , Λj) and (γj′ , Λj′) be the pairs that have been used
for the calculation of val(βi, Λi) which satisfy the conditions C1 and C2. We
know that val(γj , Λj) < ∞ and val(γj′ , Λj′) < ∞ and the induction hypothesis
holds for Xj and Xj′ . Therefore, (γj , Λj) and (γj′ , Λj′) correspond to edge-
colorings with activation-values Pj = (fj , Λ

+
j ) and Pj′

= (fj′ , Λ+
j′), respectively.

For each pair of partitions Aj and Aj′ where γj(Aj) = rj , γj′(Aj′) = rj′ and
βi(Aj , Aj′) = r > 0, there are rl colors for partition Al in P l = (fl, Λl) for
l ∈ {j, j′}. Therefore, we choose r unused colors zj

1, z
j
2, . . . , z

j
r for Aj in Pj

and r unused colors zj′
1 , zj′

2 , . . . , zj′
r for Aj′ in Pj′

and then recolor both zj
w in

G+
j (fj , z

j
w) and zj′

w in G+
j′(fj′ , zj′

w ) with a new color zjj′
w for all w ∈ {1, . . . , r}.

The colors zj
1, z

j
2, . . . , z

j
r in Pj and colors zj′

1 , zj′
2 , . . . , zj′

r in Pj′
are now marked

as used. Note that there are always enough unused colors because the condi-
tions C1 and C2 are satisfied. After recoloring Pj and Pj′

and since for each
Ai ∈ Pst(Xi), γi(Ai) =

∑
βi(Aj , Aj′) where the summation is taken over all

pairs Aj , Aj′ ∈ Pst(Xi) satisfying Ai = U(Aj , Aj′), it follows that the active
count of the union Pj ∪Pj′

in Xi is γi. Moreover, (γi, Λi), (γj , Λj) and (γj′ , Λj′)
all have the same activation-value function (Λi(u) = Λj(u) = Λj′(u) for all
u ∈ Xi). That means the activation values of the union Pj ∪ Pj′

in Xi are Λi.
The algorithm also computes the cost value of (γi, Λi) as follows:

val(γi, Λi) = val(βi, Λi) = val(γj , Λj) + val(γj′ , Λj′) −
∑

v∈Xi

Λi(v)

Since val(γj , Λj) and val(γj′ , Λj′) are the total activation costs in X+
j and X+

j′ ,
respectively, then the summation of these activation costs minus the activation
values for all u ∈ Xi is the total activation cost in X+

i . We can set Pi to be the
edge-coloring and activation values Pj ∪ Pj′

that satisfies the properties of the
lemma. The induction hypothesis holds for a join node. 
�
We obtain the following theorem by combining the above lemmas.

Theorem 2. The st-MAEDP problem for graphs with treewidth bounded by tw

can be solved optimally in O(|V ||D|tw+1tw3(k+1)(tw+3)2(tw+3)
(tw+3)2(tw+3)+3)

time.
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Corollary 1. For any fixed k, the st-MAEDP problem for graphs of bounded
treewidth can be solved optimally in linear-time FPT parameterized by the
treewidth tw.

4 Conclusion

To the best of our knowledge, the st-MAEDP problem for graphs with treewidth
bounded by tw considered here has not been addressed before. We estab-
lished an algorithm that solves the problem optimally in O(|V ||D|tw+1tw3(k +
1)(tw+3)2(tw+3)

(tw+3)2(tw+3)+3) time. Our algorithm also solves the st-MAEDP
problem when k = 2 in linear-time and this is an improvement over the cubic
algorithm obtained in [2]. It would be interesting if one can obtain a faster or
even linear-time algorithm for the st-MAEDP problem in graphs with treewidth
bounded by a constant.
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