Scalable and Cost-Efficient Algorithms
for Reliable and Distributed Cloud Storage

Makhlouf Hadji*®)

Technological Research Institute, SystemX,
8, Avenue de la Vauve, 91120 Palaiseau, France
makhlouf .hadji@irt-systemx.fr

Abstract. This paper focuses on minimizing jointly data storage and
networking costs in a distributed cloud storage environment. We present
two new efficient algorithms to place encrypted data chunks and enhance
data availability when guaranteeing a minimum cost of storage and com-
munication in the same time. The proposed underlying solutions, based
on linear programming approach lead to an exact formulation with con-
vergence times feasible for small and medium network sizes. A new poly-
nomial time algorithm is presented and shown to scale to much larger
network sizes. Performance assessment results, using simulations, show
the scalability and cost-efficiency of the proposed distributed cloud stor-
age solutions.

Keywords: Cloud computing - Distributed storage + Data replication -
Commodity flow - Encryption - Broker + Optimization

1 Introduction

Cloud storage has emerged as a new paradigm to host user and enterprize data
in cloud providers and data centers. Cloud storage providers (such as Amazon,
Google, etc.) store large amounts of data and various distributed applications
[21] with differentiated prices. Amazon provides for example storage services at a
fraction of a dollar per Terabyte per month [21]. Cloud service providers propose
also different SLAs in their storage offers. These SLAs reflect the different cost
of proposed availability guarantees. End-users interested in more reliable SLAs,
must pay more, and this leads to cause high costs when storing large amounts
of data. The cloud storage providers to attract users do not charge for initial
storage or put operations. Retrieval becomes unfortunately a hurdle, a costly
process and users are likely to experience data availability problems. A way
to avoid unavailability of data is to rely on multiple providers by replicating
the data and actually chunk the data and distribute it across the providers so
none of them can actually reconstruct the data to protect it from any misuse.
This paper aims at improving this type of distributed storage across multiple

M. Hadji—A research fellow at the Technological Research Institute - IRT SystemX.

© Springer International Publishing Switzerland 2016
M. Helfert et al. (Eds.): CLOSER 2015, CCIS 581, pp. 15-37, 2016.
DOI: 10.1007/978-3-319-29582-4_2

16 M. Hadji

providers to achieve high availability at reasonable (minimum) storage service
costs by proposing new scalable and efficient algorithms to select providers for
distributed storage. The objective is to optimally replicate data chunks and store
the replicates in a distributed fashion across the providers. In order to protect
the data even further, the chunks are encrypted.

1.1 Paper Contributions and Structure

We propose data chunk placement algorithms to tradeoff data availability and
storage and communication cost and provide some guarantees on the perfor-
mance of the distributed storage. We assume end-users involved in PUT (write)
and GET (read) operations of data objects stored in an encrypted manner and
distributed optimally in different data centers require a specified level of data
availability during data retrieval. More specifically, after data encryption and
partition operations which consist to split the data into encrypted chunks to be
distributed across multiple data centers, our main work focuses on improving
and optimizing two operations:

— Data Chunks Placement Optimization: through novel (b-matching and
commodity flow techniques), efficient, scalable algorithms that minimize place-
ment and networking cost and meet data availability requirements given prob-
abilities of failure (or unavailability) of the storage systems and hence the
stored data.

— Chunk Replication: to meet a required high level of availability of the data
using optimal replication of chunks to reduce the risk of inaccessibility of the
data due to data center failures (or storage service degradations).

To realize these objectives, we derive a number of mathematical models to be
used by a broker to select the storage service providers leading to cost-efficient
and reliable data storage. The proposed broker collaborates with the providers
having different storage costs, minimum latency access and reliability (storage
service availability), as depicted in detail in Fig. 1. We assume that the providers
propose storage services to the broker and to end-users with same reliability but
with different prices (prices for a real broker for instance will be lower than those
proposed to end-users).

It is consequently assumed that there exist benefits for a storage service bro-
kerage that optimally distributes encrypted data across the most appropriate
providers. Thus, the aim of this paper consists to propose a scalable and polyno-
mial algorithm spanning a cost efficient chunk placement model that can achieve
optimal solutions, when guaranteeing high data availability to end-users.

Section 2 presents related work on cloud storage and optimization. In Sect. 3,
we use the well known Advanced Encryption Standard (AES) algorithm [26] to
encrypt end-user data and divide them into |NV| chunks. In the same section,
we propose mathematical models to deal with chunk placement and replication
in an optimal manner for given server and networking costs and availabilities.
Performance assessments and results are reported in Sect.4. Conclusion and
future work are reported in Sect. 5.

Scalable and Cost-Efficient Algorithms 17

2 Related Work

Data storage and data replication has received a lot of attention at the data
management, distribution and application level since the distribution of original
data objects and their replicas is crucial to overall system performance, especially
in the cloud environment where data are supposed to be protected and highly
available in different data centers. The current literature concerns essentially the
cloud storage problem in tandem with replication techniques to improve data
availability, but to our knowledge, does not consider data transfer in/out costs,
or migration costs, etc. We will nevertheless cite some of the related work even
if it can not be directly compared to the proposed algorithms in this paper.

In [7], authors dealt with the problem of multi-cloud storage with a focus
on availability and cost criteria. The authors proposed a first algorithm to mini-
mize replication cost and maximize expected availability of objects. The second
algorithm has the same objective subject to budget constraints. However, this
paper did not embed security aspects apart from dividing the data into chunks or
objects. In our work, we propose to divide data into encrypted chunks, that will
be optimally stored and distributed through various data centers with minimum
costs while satisfying the QoS required by end-users. Moreover, the proposed
algorithm in [7] is a simple heuristic without any convergence guarantee to the
optimal solution. Our proposed algorithm converges in few seconds to optimal
solutions benchmarked by the Bin-Packing algorithm.

In [3], authors present Scalia, a system to deal with the problem of multi cloud
data storage under availability and durability requirements and constraints. The
authors note the NP-Hardness of the considered problem, and propose algo-
rithms to solve small instances of the problem. In our work, we propose a new
efficient and scalable solution capable of handling large instances in a few sec-
onds. Clearly, the proposed solution in [3] suffers from scalability challenges to
handle on with larger instances, when our algorithms are able to quickly solve
large instances of the defined problem.

To avoid failure and achieve higher availability when storing data in the
cloud, reference [5] proposes a distributed algorithm to better replicate data
objects in different virtual nodes instantiated in physical servers. According to
the traffic load of all considered nodes, the authors considered three decisions
or actions as replicate, migrate, or suicide to better meet end-user requirements
and requests. However, the proposed approach consists only in checking the
feasibility of migrating a virtual node, performs suicide actions or replicating a
copy of a virtual node, without optimizing the system. In our work, we propose
optimization algorithms based on a complete description of the convexe hull of
the defined problem, leading to reach optimal solutions even for large instances.

Reference [4] proposes a simple heuristic to give stored data greater protec-
tion and higher availability by splitting a file (data) into subfiles to be placed
in different virtual machines belonging to the physical resources (data centers
for example) of one provider or different providers. The paper dealt with PUT
and GET operations to distribute and retrieve the required subfiles (data) with-
out encrypting them. The proposed heuristic in [4] can only reach suboptimal

18 M. Hadji

solutions, leading to considerable gaps compared to the optimal solutions. We
propose a new scalable and cost efficient solution to deal with the multi-cloud
storage problem.

Aiming to provide cost-effective availability and improve performance and
load balancing of cloud storage, the authors of reference [6] propose CDRM
as a cost-effective dynamic replication management scheme. CDRM consists in
maintaining a minimal number of replica for a given availability requirement, and
proposes a replica placement based on the blocking probability of data nodes.
Moreover, CDRM allows us to dynamically adjust the replica number according
to changing workload and node capacities. However, the paper focuses only on
the relationship between availability and replica number, and there is no proposal
to deal with the optimal placement of replicas.

To achieve high performance and reduce data loss when we require storage
services in the cloud, different papers in the literature propose various algorithms
that are useful only for small instances due to the NP-Hardness of the problem. In
[8], the authors propose a key-value store named Skute, which consists in dynam-
ically allocating the resources of a data cloud to several applications in a cost
effective and fair way using game theoretical models. To guarantee cloud object
storage performance, the authors of [11] propose a dynamic replication scheme
to enhance the workload distribution of cloud storage systems. The authors of
[16] conduct a study based on a dynamic programming approach, to deal with
the problem of selecting cloud providers offering storage services with different
costs and failure probabilities.

Reference [12] proposes a distributed storage solution named RACS, to
avoid vendor lock-in, reduce the cost of switching providers, and better tolerate
provider outages. The authors applied erasure coding (see references [9,10,23])
to design the proposed solution RACS. In the same spirit, references [13-15,18]
addressed the cloud storage problem described above, under different constraints
including energy consumption, budget limitation, limited storage capacities, and
the availability of the stored data.

In [1], authors propose a new solution to guarantee the data integrity when
stored in a cloud data center. The proposed solution is based on homomorphic
verifiable response and hash index hierarchy. This kind of solutions can be inte-
grated to our work to reenforce data security and privacy for reticent users.
An other reference on secured multi cloud storage can be found in [2]. Authors
presented a cryptographic data splitting with dynamic approach for securing
information. The splitting approach of the proposed solution is not deeply stud-
ied. This may lead to not select cost efficient providers.

3 System Model

To store encrypted data in multiple DCs belonging to various cloud providers
system, while optimizing storage and networking costs and failure probabilities,
we separate the global problem into a number of combinatorial optimization
sub-problems. To derive the model we make a simplifying assumption regarding

Scalable and Cost-Efficient Algorithms 19

the pricing scheme between cloud service providers, the broker and end-users.
We assume that the proposed storage price by a service cloud provider to end-
users is higher than that proposed to the broker. This can be explained by the
large amount of demands that will be required by the broker aggregating the
demands of a finite set of end-users seeking to avoid vendor lock-in and higher
availability. One can assume that prices proposed by cloud providers are smaller
as the volume of data is larger. Note that the broker will guarantee a minimum
storage cost and minimum latency meeting end-users requirements, ensuring
that the proposed cost to end-users can never exceed a certain threshold.

We first propose to use the well known AES (Advanced Encryption Stan-
dard) algorithm [26,27] for efficient data encryption. This will generate different
encrypted chunks to be distributed in the available storage nodes or data cen-
ters. This encryption ensures the confidentiality of the stored data. Moreover, the
used solution permits to construct diverse chunks (with small sizes) to facilitate
PUT and GET requests as is shown in Fig. 1.

We derive three algorithms to handle encrypted data chunk placement and
replication to guarantee data high availability, network latency and storage cost
efficiency. This can be summarized as follows:

— Data Chunk Placement: The first important objective of our paper con-
sists in guaranteeing the availability of all chunks of stored data by optimally
distributing them to a cost-efficient set of selected data centers (see Fig.1).
This avoids user lock-in, and reduces the total cost of the storage and net-
working service. This optimization is performed under end-user or data owner
constraints and requirements such as the choice of a minimum number of data
centers to be involved in storing the chunks of the data. This can reinforce
the availability of data for given data centers failure probabilities.

— Data Chunk Replication: After optimally storing the encrypted chunks
of a data according to network latency, we determine a replication algorithm
based on bipartite graph theory, to derive optimal solutions of the problem of
storing replica chunks. This ensures high data availability since content can
be retrieved even if some servers or data centers are not available.

Once all data chunks are placed in different data centers, end-users may
solicit the data by GET requests (download data). The broker needs to gather
all the data chunks, sort them, decrypt them, and finally deliver the entire data
to the end-user (see Fig.1).

In the following, we suppose that each data object (chunk) has r replicas.
Finding the optimal number of replicas of each chunk, is not in the scope of this
paper. A well-known example on the choice of r is the Google storage solution
based on r = 3 replicas of each stored data chunk [17].

3.1 Data Placement Cost Minimization: B-Matching Formulation

We start data chunks placement model by considering each data D of a user
u, as a set of chunks (noted by N), resulting from the AES algorithm. Let S

20 M. Hadji

)

GET W mpu‘r

[Cloud Storage Broker }

Encryption/Decryption Data chunks Optimization engine Metadata

Optimal
placem--
ent

(2

;
oe D

Fig. 1. The system model: PUT and GET requests.

®
)

be the set of all available data centers able to host and store end-user data. We
investigate an optimal placement by storing all the chunks in the “best” available
data centers. Each cloud provider with a data center s € S proposes a storage
cost per Gigabyte and per month noted by ps. This price varies for different
reasons: varying demands and workloads, data center reliability, geographical
constraints, etc. End-user requests are submitted to the broker which will relay
them to cloud service providers, in an encrypted form with optimized storage
costs. The broker guarantees end-users high data availability with minimum
cost by choosing a set of cloud providers (or DCs) meeting the requirements (see
Fig.1 for more details).

In the following, we will address chunks placement optimization model based
on different constraints as the probability of failure of a data center or a provider,
and a limited storage capacity. Each data center (or provider) has a probability
of data availability (according to the number of nines in the proposed SLA),
and a failure probability (f) is then equal to 1—probability of data availability.
Moreover, the limited storage capacity is given by a storage quota proposed by
the provider to the broker according to a negotiated pricing menue.

Our optimization problem is similar to a classical Bin-Packing formulation, in
which bins can be represented by the different Data Centers, and the items can be
seen as the data chunks. Reference [24] has shown a while ago the NP-Hardness
of the Bin-Packing problem. Thus, we deduce the complexity (NP-Hardness) of
our chunks’ placement problem.

For this reason, and the fact that workloads and requests to store date arrive
overtime, the broker seeks a dynamic chunk placement solution that will be

Scalable and Cost-Efficient Algorithms 21

Data chunks

NI

1 2 3 4 5 6

LV Vs
UV, HV's

Available DCs

Fig. 2. Complete bipartite graph construction.

regularly and rapidly updated to remain cost-effective and ensure data high
availability.

Each data chunk i € N has a certain volume noted by ;. We graphically
represent the storage of a chunk ¢ in a data center k as an edge e = (i, k) (with
the initial extremity (¢ = I(e)) of e corresponding to a chunk, and the terminal
extremity (k = T'(e)) of e) representing the data center (see Fig. 2).

Based on this configuration, one can construct a new weighted bipartite graph
G = (NUS,E), where N is the set of vertices representing encrypted chunks
to be stored, and S is the set of all available data centers (see Fig.2). E is the
set of weighted edges between A/ and S constructed as follows: there is an edge
e = (i, k) between each encrypted chunk ¢ and each available data center k, and
the weight of e is given by pxv;.

We now introduce the well known “minimum weight b-matching problem” to
build a combinatorial optimization solution. The b-matching is a generalization
of the minimum weight matching problem and can be defined as follows (see [24]
for more details):

Definition 1. Let G be an undirected graph with integral edge capacities: u :
E(G) — NU oo and numbers b : V(G) — N. Then a b-matching in G is a
function f: E(G) — N with f(e) < u(e), Ve € E(G), and 3_ 5, f(€) < b(v)
for all v € V(G).

In the above, §(v) represents the set of incident edges of v. To simplify notation,
with no loss in generality, we use E and V for the edges and vertices of G. That
is we drop the G in E(G) and V(G).

From the definition, finding a minimum weight b-matching in a graph G
consists in identifying f such that)’ _p7.f(e) is minimum, where v, is an
associated cost to edge e. This problem can be solved in polynomial time since
the full description of its convex hull is given in [24].

22 M. Hadji

Proposition 1. Let G = (N U S, E) be a weighted complete bipartite graph
built as described in Fig. 2. Then, finding an optimal chunk placement solution
is equivalent to an uncapacitated (u = 0o0) minimum weight b-matching solution,
where b(v) = 1 if v € N (v is a chunk) and for all vertices v € S, we put
b(0) =0, and for v > 1, we have

B

where (is the minimum number of data centers to be used to store the data
chunks. This parameter is required by end-users to avoid vendor lock-in.

To mathematically formulate our model, we associate a real decision variable
z. to each edge e in the bipartite graph. As shown in Fig. 2, each edge links
a chunk to a data center. After optimization, if the decision is z. = 1 then
chunk 4 (¢ = I(e) initial extremity) will be stored in data center j (j = T'(e)
terminal extremity). Since the solution of a b-matching problem is based on
solving a linear program, an integer solution of the minimum weight b-matching
is found in polynomial time. This is equivalent to the optimal solution of the
chunk placement problem described in this section.

According to the storage costs listed previously and by defining the proba-
bility of failure of a data center (or a provider) noted by f, we assign each chunk
to the best data center with minimum cost. We note by Costp,. the total cost
of placing |N| chunks in an optimal manner. We can formulate the objective
function as follows:

min Costpige = Z (1 Mjf Vi) Te (2)
—Jy

c€B,e=(ij)

where v; is the volume of chunk ¢, and (1 — f) is the probability of data center
availability (or provider availability).

This optimization is subject to a number of linear constraints. For instance,
the broker has to consider the placement of all data chunks, and each chunk will
be assigned to one and only one data center (the chunk replication problem will
be discussed in the next section). This is represented by (3):

Z Te=1,YveN (3)

e€o(v)
Each data center s has a capacity Q5. This leads to the following constraints:

V]

D vores <QuVsE€S (4)
Cc=1

According to end-user requirements and to guarantee high data availability,
chunks will be deployed in different data centers to avoid vendor lock-in. This is
given by the following inequality:

Scalable and Cost-Efficient Algorithms 23

V]
Z xos < b(s),¥s €S (5)
c=1

Using the b-matching model with constraints (4), enables the use of the
complete convex hull of b-matching and makes the problem easy in terms of
combinatorial complexity theory.

Reference [24] gives a complete description of the b-matching convex hull
expressed in constraints (3), (4) and (5). These families of constraints are rein-
forced by blossom inequalities to get integer optimal solutions with continuous
variables:

Z xe—l—x(F)S{WJ,VAENUS, (6)

e€cE(G(A))

where I C 6(A) and 3 4 by +|F| is odd, and 6(A) = 37, 4 jea Zij)- E(G(A))
represents a subset of edges of the subgraph G(A) generated by a subset of
vertices A. An in depth study of blossom constraints (6) is out of the scope of
this paper, but more details can be found in [25].

Based on the bipartite graph G, we constructed a polynomial time approx-
imation scheme of the data chunks placement problem by identifying the b-
matching formulation. The blossom constraints (6) are added to our model to
get optimal integer solutions of the placement problem whose model is finally
given by:

min Costpige = ZLS:ll lé\gl 155]05 VoXCs

ST.: ‘
ZLS:‘l ros = 1,VC € N
Zlé\gl voZcs < QS,VS €S
SV 2es <b(s), Vs €S

2peabotlF]

D eeB(G(A)) Te T T(F) < L%J ,NVAeNUS
FC6(A),> pcabo +|F| is odd
zcs ERTVC N, Vs€8

The variables and constants used in (7) are summarized in Table 1.

3.2 Data Placement and Network Latency Minimization:
Commodity Flow Modeling

To derive the data storage system when taking into account hard constraints of
network access to cloud data centers, we view the problem as a commodity flow.
To derive the mathematical model for the commodity flow problem, we define
the graph G = (V, E) representing the network between the broker and all of
the available providers or data centers. V is the set of vertices and E the set of
arcs of GG. Each arc e is weighted by a latency l.. We consider a node b as the
unique access point from the Broker to this network.

24 M. Hadji

Table 1. Variables and constants of the model (7)

Variables | Meaning

N set of data chunks

S set of data centers

ve volume of a data chunk C'

1y storage cost per Gigabyte/month of provider j
Te real variable indicating if e is solicited or not
by upper bound of the degree of v

6(A) = | Xicajea Ti)

o(v) set of incident edges to v

I6] minimum number of providers

We investigate a commodity flow algorithm ensuring that all of the chunks
(INV]) are stored within data centers with efficient storage cost and minimal
network latency. Thus, the commodity flow solution ensures the selection of the
best storage providers proposing efficient access to the data for PUT and GET
operations.

Since the objective is to minimize simultaneously the cost of storing data and
the latency to access data centers, the objective function can be given as:

S
min NetworkCostpiae = Z lewe + Z H3Yj (8)
ecE Jj=1

The first term in (8) consists to select arcs with minimum latency when accessing
the data centers. The second term ensures that the storage providers (or data
centers) with minimum storage cost are selected to access and manage the data.

The objective function described in (8) is subject to a number of constraints:

1. Arc Capacity: We note by x, a continuous variable representing the fraction
of commodity flow (data chunks) that goes through the arc e. Thus, the sum
of all flows on an arc e can not exceed the arc capacity limit C,. This is
given by:

0<z,<C,,Veec FE (9)

2. Flow Conservation: The following equation ensures flow conservation in
nodes other than the source and sink nodes:

E:(mewu—-EZ(MWmeIZO,VUEEV (lm

weV weV

where a,,, is equal to 1 if the arc (w,u) exists, and 0 otherwise.
3. Commodity Demand Satisfaction: The demand of storing |[A] data
chunks from the source node b has to be equal to the cumulated outflow

Scalable and Cost-Efficient Algorithms 25

from b, and in the same time equal to |\

S
Z AbwTow = Z Zavsxvs = |N| (11)

weV veV s=1

4. Data Confidentiality: To guarantee the data confidentiality when storing
it through various providers, we seek for a solution to store a limited number
of chunks within each provider. This is given as follows:

T
> agjme <b(j) (12)

where b(j) can be found in Proposition 1, and T is the number of nodes with
direct access to data centers.

5. Expected QoS: Data owners can request for a certain QoS which consists
to choose a minimum number of providers to be selected.

dyi>8 (13)

where y; is a binary variable indicating if a data center j is used or not.

According to these constraints, we give the following mathematical model to
cope with the problem of network access and storage cost optimization:

min NetworkCostpae = Y c g leTe + Zle HiY;
ST.:

0<z. <C.,VeeFE

ZweV GwuLwu — ZweV auswxuw =0,YueV

ZwEV ApywThw = Z’UEV Zs:l AysTys = N

T . .

ZtS:1 (5Tt < b(])vvj = 11 AR S

Zj:l yi =0

y; €{0;1},Vj=1,...,S

3.3 Data Replication Algorithm

To enhance performance and availability of end-user stored data, we propose a
replication model of data chunks depending on data center failure probabilities,
and expected availability (noted by Aegpec) required by each user. The objective
consists in finding the optimal trade-off between data center availability and
storage costs. This leads to avoiding expensive data centers with high failure
probability.

We assume that each data chunk is replicated r times, and reconstituting a
file data needs to get one copy of all chunks (i.e. || chunks among r x |N| are
necessary to reconstruct a data). Figure 3 gives more details and shows chunks
replication procedure.

26 M. Hadji

Chunk1 Chunk 2 Chunkn

v
]
]

Copy 1 Copy 1 Copy 1

S oy

Copy r1 Copy r1 | Copy r1

d

Block 1 Block 2 Block N

Fig. 3. Data replication.

It is important to note that initially, each encrypted chunk will be replicated
by the selected hosting providers within their data centers, and the broker can
reinforce this mechanism by proposing to add more replicas guaranteeing higher
data availability.

In the following, we would like to replicate |A| chunks into |S| data centers
according to various costs (storage costs) and performance requirements such as
the data availability. We suppose that S = {51,52, .. .,s|3|} and for the sake
of simplicity (due to the problem NP-Hardness), we suppose w.l.o.g. each data
center has a large amount of storage resources able to host data chunks and
replicas. We associate each data center s € S with a probability of failure f.

We suppose (as cited above) that each data chunk C' (C = 1,|N]) has r
replicas to place in r data centers that do not contain the chunk C. Thus we ask
the following question: How do we replicate data chunks through available data
centers so that the total cost of storage is optimal (minimal) and data availability
is maximal?

Thus, for each chunk C|, the problem consists in selecting a subset ¢ of r
available data centers that do not contain C, leading to a minimum storage cost
and a high probability of data availability.

We note by P(C) the probability of chunk C availability (respect. P(C) is
the probability of non-availability of a chunk C'). P(D) is the probability of data
availability (respect. P(D) is the probability of non-availability of data D). Note
that a chunk C' is not available if all of its copies are not available (see Fig. 3).
In other words, a block in Fig. 3 with r replicas is non available if all of the data
centers storing this block are non available. By supposing the data centers are
independent, we get the following proposition:

Proposition 2. P(C) = [[,., fs. and P(D) =[], (1 ~Teeo, fs>.

Scalable and Cost-Efficient Algorithms 27

Proof.

P(C)=P(Cy and Cy and ... and C,)
— P(C)) x P(Ty) % ... x P(C)

=11 #

s€pc

A data D with r x || chunks, is entirely available if all chunks are available.
According to Proposition (2), the probability of data file availability (i.e. P(D))
is then given by:

V]
PD) =[] P(©)
Cc=1
V]
e
c=1 s€pc

The QoS requirement for end-users is presented by the data availability. This
is noted by Aegpect (as used in [7] for example). Thus, to meet end-user QoS
requirement, the broker should replicate each D in a selected sub-set of data
centers that satisfies:

M
H (1— H fs> 2 Aempect (15)

C=1 s€Epc

We derive a mathematical model to efficiently reduce the replication costs
noted by Costrep, under the QoS requirements described by the inequality (15).
As the number of replicas of each chunk is supposed to be r, we seek an optimal
sub-set of data centers of size r to store the replicas of each chunk. Moreover,
our solution should not put all the chunks within the same data center to avoid
vendor lock-in. Thus, in the following, we address a mathematical optimization
model to efficiently replicate all the chunks of a data D.

V]

ming, Costrep = Y 021 D sepp HsVC
ST.: 16)
N
{ ‘C:|1 (1 - Hchpc fs) > Aea:pect>)
|90C|:r7 VO:17|N|a

Solving the model (16) is equivalent to find a subset of data centers able to
host chunks in a cost efficient manner, and that satisfies the requirement (15).
We propose a simple and scalable algorithm to solve (16) in few seconds for
large number of data centers and data chunks. Without loss of generality, we
assume that minimizing a function Z is approximatively equivalent to minimize

28 M. Hadji

In(Z). Thus, for each chunk C, we seek a subset of data centers that minimizes
In(J T4, fs)- This is equivalent to minimize }° . In(fs). Moreover, We con-
struct a new bipartite graph Gy = (Vo U S, Es), where V3 is the set of chunks
to be stored and S5 is the set of all available data centers (see Fig.4). Es is the
set of weighted edges between the two parts of vertices of G5. There is an edge
between each chunk C' and each data center s (not containing a copy of chunk
C) with a weight given by In(f,). If a data center s has already stored a copy
of chunk C| then the weight of the edge (C, s) is equal to 2. Figure4 gives more
details.

Degree =b
=r-1

Degree=
r-1 =b

Degree= =b
r-1

Fig. 4. New bipartite graph G2 to replicate chunks.

From graph Go, we identify a minimum weight b-matching with a given
vector b as follows:

— for each v € V4, degree of v is equal to b(v) =r — 1,
— the degree of each vertex v € Sy is equal to b(v) given by (1).

To summarize, we give the following algorithm, leading to find the best subset
of data centers to replicate all the chunks in a cost efficient manner, verifying
condition (15).

Algorithm 1. Data replication algorithm.

Step 0: Construct the bipartite graph G2 (see Fig. 4);

Step 1: Compute a b-Matching with a minimum cost solution using the vector b;
Step 2: Check if (15) is satisfied;

Step 3: If (15) is not satisfied, GOTO Step 0, by incrementing the degrees of vertices
in SQ;

Scalable and Cost-Efficient Algorithms 29

The Algorithm 1 is deployed to replicate efficiently r — 1 copies of each chunk C
of a data D.

3.4 Data Chunk Splitting

In this section, we discuss the rational number of chunks (JAV*|) to be used to split
the data according to data center failure probabilities (fs for a DC s), number
of replicas (r) of each chunk, and the data availability expected by end-users

(Aempect)-

According to Proposition (2), we seek a rational number of encrypted chunks
to get after splitting the data when satisfying end-users QoS represented by data
availability Aezpect- We get the following inequality:

IV V]
PD = H PC = H (1 H fs> Z Aempect (17)
C=1

C=1 s€pco

As Aczpect < 1 and H‘é\/:ll (1 —Isepo fs) < 1, inequality (17) leads to the
following one:
IV
In H (1 — H fs> < In (Aexpect) (18)
Cc=1 s€pc

We also note that for each chunk indexed by C, we have r replicas and then
|oc| = r. For the sake of simplicity, we also suppose that the failure probability
of each data center is close to the average failure probability given by f. This

allows us to deduce: .

s€Epc

And following inequality (18), we get:

|N| X In (1 - ?T’) S In (Aempect) (20)
According to (20), we deduce the number of data chunks as follows:

|N*‘ > In (Aencpect)

In (1 - ?7>
4 Numerical Results

To evaluate and assess performance, our algorithms have been implemented
and evaluated using simulations and an experimental platform managed by an
instance of OpenStack [19]. The linear programming solver CPLEX [22] was
used to derive the b-matching solution, the Commodity flow algorithm and the
Bin-Packing solution used to benchmark our heuristic.

30 M. Hadji

As our goal in this paper is to analyze and discuss the applicability and the
interest of storage brokerage services in interaction with multiple data centers
or cloud providers, we devote some numerical results to cross validating our
proposed algorithms and assessing their cost efficiency and scalability for large
data sizes. It is obvious to remark that the Bin-Packing model used to place
data chunks invokes a branch and bound approach leading to explore the entire
space of all the existing solutions. This leads to find “optimal” solutions for small
data sizes serving as a benchmark for other approaches and algorithms. As the
data size increases, the optimal solution for data chunk placement can only be
found in exponential time. Thus, for large data, we resort to our heuristic solu-
tion based on graph theory (commodity flow) and the b-matching approach. In
addition, our performance evaluation seeks to identify the limits of the discussed
problem in terms of algorithmic complexity, and its suitability for optimizing real
life instances. We will also determine the gap between the suboptimal heuristic
solutions and the optimal solution provided by the Branch and Bound model
when it can be reached in acceptable times.

4.1 Simulation Environment

The proposed algorithms in this paper were evaluated using a 1.70 GHz server
with 6 GBytes of available RAM. We used data files with sizes ranging from
100 Megabytes to 4 Gigabytes. These data were stored in a distributed manner
over a number of available data centers ranging from 10 to 50. We associate
with each data center, a price per Gigabyte and per month, uniformly generated
between 0 $ and 1 $. Each data is splitting multiple chunks and each chunk size is
equal to 1 Megabyte. This configuration leads to construct a full mesh bipartite
graph as described above. The number of generated bipartite graphs was set to
100 in our simulations yielding an average value reported in the following curves
and tables. Without loss of generality, we suppose that each data center has
an unlimited storage capacity. Moreover, we also used a platform of 20 servers
running a Havana instance of OpenStack [19] in a multi-node architecture. Each
server (assimilated to a data center in real life) proposes Swift containers [20]
to store data chunks. We associate a storage cost to each container (or DC) as
described above. It is important to note that we used Swift API only to guarantee
PUT and GET operations from and to the broker by intercepting and hosting
encrypted chunks, without considering Swift replication policy. To improve our
broker functionalities, we will add an S3 compatible interface allowing end-users
to request the broker storing their data within Amazon S3.

4.2 Performance Evaluation

The first experiment consists in comparing the Bin-Packing and b-Matching
(heuristic) approaches in terms of delay to derive the optimal and suboptimal
solutions, respectively. We report different scenarios in Table 2, varying the num-
ber of data centers able to store end-users data (from 12 to 700 DCs), and the
number of chunks ranging from 50 chunks to 2000 chunks, which is equivalent

Scalable and Cost-Efficient Algorithms 31

to store data size of 50 Megabytes to 2000 Megabytes, as each chunk is of 1
Megabyte. The performance of the heuristic algorithm compared to the optimal
solution is represented by a gap defined as the percentage difference between the
cost of the optimal and the heuristic solutions:

szol - BPsol
B-Psol

where BPs, is the cost of the exact solution provided by the Bin-Packing
algorithm (to use as a reference or benchmark) and bMy,; is the cost of the
b-Matching solution.

Table 2 reports the results of the evaluation and clearly shows the difficulty
to reach optimal solutions using the Bin-Packing (Branch and Bound) algorithm
whose resolution times become prohibitive for the scenarios of a data file of 2
Gigabytes to be distributed on a selected set of data centers among 300, 500 and
700 providers or data centers. Our heuristic solution performs close to optimal
with Gap not exceeding 6 % for the evaluated cases. More specifically the gap is
in the interval [0.65 %; 5.93 %)].

The results shown in Table 2 illustrate the difficulty to optimally solve the
data chunks placement problem (see case of a data of 50 Mb with 25 DCs).
At the same time, they demonstrate that the heuristic approach can find good
and near-optimal solutions whose cost is quite close to the optimum (see case of
data with 2000 MB and 700 DCs). Our algorithm provides an excellent trade-
off between convergence time, optimality, scalability and cost. With respect to
convergence time as seen in the third column of Table 2, it converges in a few
seconds for the scenario with 2000 chunks and 700 DCs (54 secs compared to
more than 3 hours for Bin-Packing).

To get a better grasp of the relative performance of the two algorithms used
in this paper, a data file of 100 Megabytes is used and split into 100 encrypted
chunks to be stored in a number of data centers ranging from 20 to 200. Figure 5
shows the characteristics of the algorithms. The b-matching algorithm achieves
the best cost performance since it has consistently incurred the smallest cost,
very close to the Bin-Packing which does not scale (as seen in Table 2). Excep-
tionally, one can remark in Fig. 5 (the scenario with 20 to 40 available DCs), the
cost found by the b-Matching is slightly lower than the cost of the Bin-Packing
leading to negligible SLA violations caused by the quality of the upper bound
given by Eq. (1) which should be enhanced in a future work. This is explained by
the difficulty to optimally store and place all the data chunks in different data
centers.

Another experiment consists in evaluating the proposed heuristic solution to
determine the trade-off between storage cost and data availability. We associate
with each user a required percentage of its data availability, denoted by Aczpect-
We reformulate Acgpect in terms of the number of nines required by a user.
We simulated a cloud storage market of 15 data centers belonging to different
providers having different failure rates. For example, Amazon S3 [21] offers two
levels of services: “Standard Storage” witch has 11 nines of storage availability
for 0.03$ per Gigabyte per month, while “Amazon S3 Reduced Redundancy

Gap(%) = 100 x (22)

32 M. Hadji

Table 2. Encrypted data chunks placement: b-Matching algorithm performances.

IN| | |S] | b-Matching time (sec) | Bin-packing time (sec) | Gap (%)
50 12 |0.15 0.16 2.24
25 |0.15 0.16 5.93
40 |0.17 0.18 2.06
100 (25 |0.17 0.20 3.08
50 |0.18 0.20 0.65
75 10.20 0.22 2.98
500 | 100 1.10 2.11 1.94
250 1.27 3.68 4.37
350 1.33 4.20 0.97
1000 200 | 7.22 12.7 5.36
400 | 8.5 17.5 1.37
700 10.4 22.6 3.66
2000 | 300 | 30.7 >3H 1.45
500 | 45.2 >3H 4.3
700 | 54.8 >3H 0.81

Storage (RRS)” has 4 nines of data availability for 0.024$ per GB per month.
The simulated market is summarized in Table 3.

We consider a user data of 100 Gigabytes, and we investigate four methods
to find the trade-off between a maximum data availability and a minimum price
(cost). We use the following scenarios:

— Minimum Price: A user selects simply the cheapest provider in the mar-
ket (Provider 15 proposing a price of $0.01 per Gigabyte and per month in
Table 3) without concerns on data availability (3 nines). Following this app-
roach, the data will be stored with a total minimum costs of 1$ and a weak
data availability (3 nines in Fig.6). Moreover, the user is locked-in within
one cloud provider with a weak data availability. This can lead to disrupting
services and loss of data.

— Maximum Availability: A user selects the provider with high availability
in the simulated market (Provider 1 with 10 nines in Table 3). According to
pricing proposal of Provider 2, the total storage cost is higher than the cost
of the first scenario (10$ in Fig. 6). This may also lead to users’ lock-in within
the same provider.

— Average Price: In this case, we use the average price of the market, and
we store the data within the provider with equivalent price (Provider 9 with
0.06% per Gigabyte per month in Table3). The total data cost in this case
is equal to 6$ with 6 nines of data availability (according to the proposal of
Provider 6). This scenario presents higher data availability than scenario 1

Scalable and Cost-Efficient Algorithms

2000~

1800~

1600

1400

Cost Evolution ($)

1200~

1001

---Bin-Packing (Exact) approach |-
-&-b-Matching (Heuristic) approach

80 100 120
Number of available Data Centers

il
140 160 180 200

Fig. 5. Storage cost gap.

Table 3. Storage market costs and data availability.

Providers | Price ($/GB/month) | Data availability
Prov 1 0.1 99.99999999 %
Prov 2 0.095 99.99999995 %
Prov 3 0.09 99,9999999 %
Prov 4 0.085 99,9999995 %
Prov 5 0.08 99,999999 %
Prov 6 0.075 99,999995 %
Prov 7 0.07 99.99999 %
Prov 8 0.065 99,99995 %
Prov 9 0.06 99,9999 %
Prov 10 |0.055 99,9995 %
Prov 11 |0.05 99,999 %

Prov 12 0.04 99,995 %

Prov 13 |0.03 99.99 %

Prov 14 |0.02 99.95 %

Prov 15 |0.01 99.9%

33

with a considerable cost increase. In this case, we also solicited one provider
to store the data, which may cause user lock-in.

— Distributed Storage: We used our proposed approach (Algorithm 1) to find
the trade-off between data availability and price. As depicted in Fig. 6, our
solution reaches a maximum availability of 8 nines with a minimum cost of
48. This is due to data distribution over a set of selected providers with high
availability and reasonable prices, avoiding user lock-in at the same time.

34 M. Hadji

10 nines

6nines
6,

8nines
4

Data Storage Cost ($)

3nines
—

Minimum Price Maximum Availability ~ Average Price Distributed Storage

Fig. 6. Data storage cost and availability trade-off.

1 0,
$ 2500+ * graph density of 30% i
L -8-graph density of 50%
g 2000f -&-graph denstty of 80% i

Optimization Ti
=)
=4

/U/

& & & o mimim o ?)
0 500 1000 1500 2000 2500 3000
Network Size (# nodes)

Fig. 7. Commodity flow time resolution.

The following experimentation evaluates the time resolution of the commod-
ity flow algorithm to reach optimal solutions for small and large graph instances.
Figure 7 depicts the behaviour of this solution for three types of graph density
ranging in {30 %; 50 %; 80 %}.

The commodity flow algorithm optimizes network access cost and storage
cost in tandem for different graph instances. We find that our approach reaches
optimal solutions for graph instances (number of nodes less than 2500 for a
density of 30 %), in acceptable times (/2100 s). When we increase the connectivity
of the graph (50 % and 80 %), the commodity flow algorithm can reach optimal
solutions in less than 100s for graphs of less than 2000 nodes, but this time
becomes prohibitively long past few thousands nodes (up than 2500 nodes). For
this last case, we will investigate in a future work, new approaches (rounding
techniques, for example) to accelerate solutions space exploration.

A last experiment consists in evaluating the behavior of the number of repli-
cas (noted by) of each chunk with the evolution of the number of data chunks
(IN*]) identified in (21) for example. We supposed that the average value of data
centers failure probability is equal to 1073, when the expected data availability
required by cloud consumers is equal to 99.9999 %.

Scalable and Cost-Efficient Algorithms 35

FN
1

—#replicas

w
o
T

w
T

ro

Number of replicas
o
2

—
o
T

0 10 20 30 40 50 60 70
Number of encrypted chunks

Fig. 8. Data chunks replication behavior.

Figure 8 depicts the evolution of r for different chunks number ranging from
1 to 60. Thus, we remark that for a number of chunks |N*| < 43, the number
of required replicas is equal to 2, and for |[N*| > 44 chunks, the number of
replicas converges to 3 and there is no need to replicate more even for larger
number of chunks. This may lead to store large data volumes with reduced costs
when satisfying the required QoS (data availability). Note that this result is very
similar than that determined by the Google File System solution [17].

5 Summary and Future Work

In this paper, we propose efficient and scalable algorithms to cope with the
encrypted and distributed data storage problem in a multi-cloud environnement,
when taking into account SLA requirements and network latency constraints.
Our approaches are based on b-Matching and Commodity Flow theory to opti-
mize the storage cost and the network latency in one shot, while considering data
failure constraints. The b-Matching algorithm works in tandem with a replica-
tion solution allowing to efficiently increase the data availability of end-users.
This replication algorithm is based on a simple and fast approach giving near
optimal solutions even for large problem instances. The commodity flow algo-
rithm leads to combine data storage and network latency in one stage to reduce
total cost.

Our future research will extend the model of the commodity flow to address
elasticity through predictions of dynamic incoming demands’ variations or sto-
chastic behavior. This can be done by proposing new polynomial algorithms
based on rounding techniques to deal with large problem instances. This will lead
to reinforce our broker’s functionalities to give cloud consumers various means to
consume proposed cloud resources in a more secure manner with reduced cost.

36

M. Hadji

References

10.

11.

12.

13.

14.

15.

. Varghese, L.A., Bose, S.: Integrity verification in multi cloud storage. In: Proceed-

ings of International Conference on Advanced Computing (2013)

. Balasaraswathi, V.R., Manikandan, S.: Enhanced security for multi-cloud storage

using cryptographic data splitting with dynamic approach. In: Advanced Commu-
nication Control and Computing Technologies (ICACCCT) Conference, pp. 1190—
1194 (2014)

. Thanasis, P.G., Bonvin, N., Aberer, K.: Scalia: an adaptive scheme for efficient

multi-cloud storage. In: Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, Los Alamitos, CA, USA,
pp. 20: 1-20: 10 (2012)

. Srivastava, S., Gupta, V., Yadav, R., Kant, K.: Enhanced distributed storage on

the cloud. In: Computer and Communication Technology (ICCCT) Conference,
pp. 321-325 (2012)

. Yanzhen, Q., Naixue, X.: RFH: A resilient, fault-tolerant and high-efficient replica-

tion algorithm for distributed cloud storage. In: Parallel Processing (ICPP) Con-
ference, pp. 520-529 (2012)

. Qingsong, W., Veeravalli, B., Bozhao, G., Lingfang, Z., Dan, F.: CDRM: a cost-

effective dynamic replication management scheme for cloud storage cluster. In:
Cluster Computing (CLUSTER) IEEE Conference, pp. 188-196 (2010)

. Mansouri, Y., Toosi, A.N., Buyya, R.: Brokering algorithms for optimizing the

availability and cost of cloud storage services. In: Proceedings of the 2013 IEEE
International Conference on Cloud Computing Technology and Science, Washing-
ton, DC, USA, vol. 01, pp. 581-589 (2013)

. Bonvin, N.; Papaioannou, T.G., Aberer, K.: A self-organized, fault-tolerant and

scalable replication scheme for cloud storage. In: Proceedings of the 1st ACM
Symposium on Cloud Computing, Indianapolis, Indiana, USA, pp. 205-216 (2010)

. Rodrigues, R., Liskov, B.: High availability in DHT's: erasure coding vs. replication.

In: van Renesse, R. (ed.) IPTPS 2005. LNCS, vol. 3640, pp. 226-239. Springer,
Heidelberg (2005)

Li, J., Li, B.: Erasure coding for cloud storage systems: a survey. Tsinghua Sci.
Technol. J. 18, 259-272 (2013)

Jindarak, K., Uthayopas, P.: Enhancing cloud object storage performance using
dynamic replication approach. In: Parallel and Distributed Systems (ICPADS)
IEEE Conference, pp. 800-803 (2012)

Abu-Libdeh, H., Princehouse, L., Weatherspoon, H.: RACS: a case for cloud stor-
age diversity. In: Proceedings of the 1st ACM Symposium on Cloud Computing,
New York, NY, USA, pp. 229-240 (2010)

Ford, D., Labelle, F., Popovici, F., Stokely, M., Truong, V.A., Barroso, L., Grimes,
C., Quinlan, S.: Availability in globally distributed storage systems. In: Proceedings
of the 9th USENIX Symposium on Operating Systems Design and Implementation
(2010)

Myint, J., Thinn Thu, N.: A data placement algorithm with binary weighted tree
on PC cluster-based cloud storage system. In: Cloud and Service Computing (CSC)
Conference, pp. 315-320 (2011)

Negru, C., Pop, F., Cristea, V., Bessisy, N., Jing, L.: Energy efficient cloud storage
service: key issues and challenges. In: Emerging Intelligent Data and Web Tech-
nologies (EIDWT) Conference, pp. 763-766 (2013)

16.

17.
18.
19.
20.
21.
22.

23.

24.

25.

26.

27.

Scalable and Cost-Efficient Algorithms 37

Chia-Wei, C., Pangfeng, L., Jan-Jan, W.: Probability-based cloud storage providers
selection algorithms with maximum availability. In: Parallel Processing (ICPP)
Conference, pp. 199-208 (2012)

Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. SIGOPS Oper.
Syst. Rev. 37, 29-43 (2003)

Zhang, Q.F., Xue-zeng, P., Yan, S., Wen-juan, L.: A novel scalable architecture of
cloud storage system for small files based on P2P. In: Cluster Computing Work-
shops (CLUSTER WORKSHOPS) Conference, pp. 41-47 (2012)

Openstack. https://www.openstack.org/

Swift. http://docs.openstack.org/developer/swift/

Amazon Web Services. http://aws.amazon.com/fr/s3/pricing/

CPLEX Optimizer. http://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/

Weatherspoon, H., Kubiatowicz, J.D.: Erasure coding vs. replication: a quantitative
comparison. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002.
LNCS, vol. 2429, pp. 328-337. Springer, Heidelberg (2002)

Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms.
Springer, Heidelberg (2001)

Grotschel, M., Lovasz, L., Shrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, Heidelberg (1985)

Kang, S., Veeravalli, B., Aung, K.M.M.: ESPRESSO: an encryption as a service
for cloud storage systems. In: Sperotto, A., Doyen, G., Latré, S., Charalambides,
M., Stiller, B. (eds.) AIMS 2014. LNCS, vol. 8508, pp. 15-28. Springer, Heidelberg
(2014)

NIST: Announcing the Advanced Encryption Standard (AES) (2014)

https://www.openstack.org/
http://docs.openstack.org/developer/swift/
http://aws.amazon.com/fr/s3/pricing/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

2 Springer
http://www.springer.com/978-3-319-29581-7

Cloud Computing and Services Science

S5th International Conference, CLOSER 2015, Lisbon,
Portugal, May 20-22, 2015, Revised Selected Papers
Helfert, M.; Méndez Mufioz, V.; Ferguson, D. (Eds.)
2016, XM, 299 p. 91 illus., Softcover

ISBN: 978-3-319-20581-7

	Scalable and Cost-Efficient Algorithms for Reliable and Distributed Cloud Storage
	1 Introduction
	1.1 Paper Contributions and Structure

	2 Related Work
	3 System Model
	3.1 Data Placement Cost Minimization: B-Matching Formulation
	3.2 Data Placement and Network Latency Minimization: Commodity Flow Modeling
	3.3 Data Replication Algorithm
	3.4 Data Chunk Splitting

	4 Numerical Results
	4.1 Simulation Environment
	4.2 Performance Evaluation

	5 Summary and Future Work
	References

