
Identification and Formalization of LMS Instructional
Design Languages: Moodle Case Study

Nour El Mawas(✉), Lahcen Oubahssi, and Pierre Laforcade

LIUM, EA 4023, LUNAM University, University of Maine, 72085 Le Mans, France
nourmawas@hotmail.com

{lahcen.oubahssi,pierre.laforcade}@univ-lemans.fr

Abstract. Many universities have adopted Learning Management Systems
(LMSs) to offer teachers a range of pedagogical and administrative tools for
supporting teaching and learning activities. However, many teachers have diffi‐
culty using these LMSs; they have to encompass the LMS technical features and
services in order to understand the underlying way of designing. Despite the use
of external editors, instructional engineers don’t see the relationship between
“how they design a learning scenario” and “how the learning session can be set
up within the target LMS”. If LMSs could be able to make explicit their intrinsic
and implicit learning design model, it can be exploited as a proprietary format to
build tools and facilities dedicated to this LMS. The research presented in this
paper aims to present our method in terms of necessary analysis and steps for the
identification and the formalization of such LMSs’ instructional design
languages. The method takes into account three different viewpoints: a viewpoint
centred on the LMS macro-HMIs (Human-Machine Interfaces), a functional
viewpoint and a micro viewpoint. We validate the proposed method by applying
this formalization on two versions of Moodle.

Keywords: Learning management system · e-Learning · Instructional design ·
Operationalization · Technology enhanced learning · Process · Moodle

1 Introduction

Our research work focuses on the field of Technology Enhanced Learning (TEL)
engineering and re-engineering. TEL is a scientific domain where different disci‐
plines such Computer Science,, education, psychology, philosophy, communication
or sociology intersect [1]. We are particularly interested in applying and adapting
Computer Science solutions for providing practitioners with some customized
instructional design solutions.

Instructional Design (ID) is the systematic development of instructional specifica‐
tions using learning and instructional theories to ensure the quality of instruction. It is
the entire process of analysis about learning needs and goals as well as the development
of a delivery system to support those needs. It includes development of instructional
materials and activities and delivering and evaluation of all instruction and learner
activities [2]. It has been a well-established discipline for several decades [3].

© Springer International Publishing Switzerland 2016
S. Zvacek et al. (Eds.): CSEDU 2015, CCIS 583, pp. 21–36, 2016.
DOI: 10.1007/978-3-319-29585-5_2



TEL is a large domain for research and practice, including e-learning, mobile
learning, and Learning Management System (LMS). An LMS is the framework that
handles all aspects of the learning process. An LMS is also the concrete infrastructure
that delivers and manages instructional content, identifies and assesses individual and
organizational learning or training goals, tracks the progress towards meeting those
goals, and collects and presents data for supervising the learning process of organization
as a whole [4]. LMSs support the use of standards for describing the learning objects,
packaging them into larger content and learning units (such as lessons and courses), and
applying various instructional design strategies and techniques [5]. Nowadays, LMSs
are not restricted to distant learning only. Teachers use them for blended learning which
combines traditional face-to-face learning with computer supported learning [6]. LMSs
have created remarkable opportunities for higher education to expand the educational
process beyond the traditional classroom to include geographically dispersed
students [7].

The research work presented in this paper is a continuity of other former works in
our lab [8, 9] by proposing a new implementation approach of learning situations and
pedagogical scenarios. It takes place into the context of the GraphiT project (Graphical
Visual Instructional Design Languages for Teachers). Its main goal is to study the
possibilities and limits about the pedagogical expressiveness of operationalizable
languages to specify future leaning scenarios that could be fully deployed and automat‐
ically set up upon an existing LMS. Such instructional design languages aim at
promoting and improving the uses of current LMSs by providing practitioners with some
LMS-specific designing language and authoring-tool. Despite many existing standards
[10, 11], approaches [12], languages [13], architectures [14], and tools [13, 15] to facil‐
itate the instructional design, they are often not compatible with existing LMSs, or
require a costly reengineering of the LMS (new web service API, new runtime engines,
etc.). Moreover, they do not simplify the operationalization of the produced models.
Some translations, leading to information or semantics losses, are still required to oper‐
ationalize them into a targeted LMS.

In this paper, we are focusing on the identification and formalization of LMSs
implicit instructional design language. Indeed, the expected result will be the base for
the development of binding solutions and will simplify the instructional design on plat‐
forms. These solutions must insure that future scenarios formalized in accordance with
the language to identify will be operationalized without semantics losses into the LMS
internal structures. This process is dedicated to LMSs active communities and more
specifically to designers with a competence in IT and the service of information tech‐
nology and communication for education (pedagogical engineers) who meets difficulties
in appropriating the instructional design language of LMSs.

The paper is organized as follows. Section 2 presents related works about identifying
and formalizing LMS languages. Section 3 highlights our motivation to extract the
pedagogical LMS language. Section 4 details our approach. Section 5 is dedicated to
the application of our method on Moodle 2.4. Section 6 compares Moodle 2.4 and
Moodle 2.0 meta-models. Section 7 concludes our paper and presents our perspectives.

22 N. El Mawas et al.



2 Meta Models

In recent years, researchers have begun to formalize LMSs instructional languages in
order to specify models in conformance with the infrastructure design languages of
LMSs.

In an E-learning context, [16] defines three features that a meta-model must have:
(1) Limitation of the functionalities consisting in restricting the modeling domain to the
web services without global settings like security, (2) Identification of the element
factories consisting in identifying element factories and their capacity to set elements
which can be used by the web services, and (3) Definition of the factorization mechanism
based on the fact that a model is a simplified view of a system. This meta-model enables
a team of designers to describe what should be learnt from a scenario, the characteristics
of students that will use the scenario (learner models), how the learners will face this
knowledge (teaching and available learning strategies), etc.

[17] has proposed a meta-model for adaptive courses that can be easily integrated
into e-learning platforms. The meta-model is based on the Felder-Silverman Learning
Styles Model (FSLSM) describing a single student in accordance to four dimensions:
active & reflexive learning style, sensitive & intuitive learning style, visual & verbal
learning style, and sequential & global learning style. Other learners’ characteristics like
the state of knowledge and the learning goals are not taken into account. For presenting
the content of the course, content objects are considered to include the relevant learning
materials. Furthermore, [17] incorporates examples as course elements. Examples are
used for better illustration and provide students with more concrete material. Moreover,
students can check their acquired knowledge by the use of self-assessment tests. Another
element includes exercises that serve as practice area where students can try things out
or answer questions about interpreting predefined solutions or developing new solutions.

[9] was interested in specifying and designing learning situations supported by PBCL
(Project-Based Collaborative Learning). To allow teachers to elaborate a PBCL
scenario, they propose a meta-model dedicated to the PBCL. In this approach, teachers
can design a learning scenario based on the PBCL meta-model. Then, this scenario is
adapted to a chosen platform: a models transformation approach is proposed allowing
the integration of PBCL scenarios in a platform. [9] applies his proposal on the Moodle
platform.

All these presented works and many others [18] propose a meta-model to formalize
LMS instructional language but to our knowledge, there is no proposition that focuses
on identifying an explicit process or method to formalize it.

The next section emphasizes on the importance and the utility of defining an explicit
method to formalize LMS instructional languages.

3 Context

Many universities have adopted web-based LMSs as the TEL system. They use them to
offer teachers a range of pedagogical and administrative tools for supporting teaching
and learning activities [19]. However, many teachers have difficulty using LMSs to

Identification and Formalization of LMS Instructional Design Languages 23



create learning designs that are truly engaging to their students [20]. They are not familiar
with the implicit learning design domains of LMSs [10]. Most of open source LMSs are
very difficult to apply in real schools, because teachers are not familiar to using an LMS
which needs to take an effort to appropriate it [11].

Due to the complexity of LMS functionalities, users are expected to have some pre-
existing knowledge of these functionalities. Despite online forums, it is still difficult for a
teacher to design his courses on platforms. LMSs are in continuous evolutions and discus‐
sions regarding different versions of a platform are interwoven. In addition, many forums,
if not all, have input from developers, programmers, and software architects. That is why
forums are difficult environments for non-expert LMSs users to make sense of.

In addition, there is no support (neither human nor software products) able to help
teachers in clarifying, defining and then specifying their learning situations before
setting them up within the LMS. They have to appropriate the various screens and form-
based interfaces to abstract some low-level details to think about their global design
courses.

Teachers need solutions to narrow the gap between their educational intention and
the pedagogical features proposed by the LMS at their disposal. They ask for appropriate
tools helping them in understand the underlying “way of thinking and designing” of this
LMS.

In our work, we aim at supporting practitioners to overcome these LMSs’ obstacles
in order to help them in focusing on the design of learning situations.

Our contribution consists in extracting, identifying, and formalizing the LMS
implicit instructional design language. We also on purpose propose a meta-model
formalism to capture it. The meta-model is obtained by the abstraction of pedagogical
features and services provided by the considered LMS. This meta-model acts, according
to the language theory, as an abstract syntax. It will then be used as a basis for the
development of external editors [21, 22].

4 The LMS Centred Approach

We propose a method to identify and formalize the instructional language of LMSs. Our
approach takes into account a macro-HMI analysis, a functional analysis and a micro-
analysis. In this section, we sketch an overview of our approach then we explain in
details each step of the method.

4.1 The Identification and the Formalization Process: An Overview

In our work, we focus on pedagogical tasks and functionalities of a specific LMS. Our
hypothesis is that LMSs are not pedagogically neutral and they embed an implicit
language based on the LMS specific paradigm to specify the design of a learning activity
[23]. Our work aims to define the necessary analysis and steps for the identification and
formalization of an LMS instructional design language.

The first attempt to define the method was presented in [23]. However, the proposed
process did not take into account the presence of common elements between pedagogical

24 N. El Mawas et al.



activities/resources on LMS. The final meta-model excludes elements that are relevant
for instructional design such as activity completion conditions, as well as outcomes and
grade conditions.

Our method is specified according to three different viewpoints: a viewpoint centred
on macro-HMI, a functional viewpoint and a micro viewpoint.

The first viewpoint consists of HMIs analysis according to two strategies: (1) the
analysis of existing situations on the platform and (2) the analysis of interfaces related
to the specification of new situations. After the macro-HMI analysis, we factorized the
macro-HMI model in order to obtain the simplified macro model. The second viewpoint
focuses on the identification of LMS existing functions. The third viewpoint concerns
the micro analysis of the LMS instructional design language.

Figure 1 shows the proposed process. It is composed of the macro-HMI analysis, the
factorization of HMI-macro model, the functional analysis and the micro analysis. The
micro analysis is based on the micro-HMI analysis and technical analysis. The final
model results from a confrontation of micro-HMI and technical models.

In the next sections, we present in details different steps of the process.

Fig. 1. Analysis process of the instructional design language.

4.2 Macro-HMI Analysis

The macro-HMI analysis consists in identifying platform interfaces related to the
Instructional Design (ID).

LMSs are usually composed of many interfaces, developed for different purposes
and users’ categories. In our work, we have ignored interfaces related to administration
and management purposes; we are only interested in interfaces related to instructional
design usages. The instructional design language is identified using two methods: the
analysis of interfaces titles and the analysis of the navigation paths.

Identification and Formalization of LMS Instructional Design Languages 25



The first analysis step is to choose the main interface. Then, the analysis must deter‐
mine whether or not the interface provides a pedagogical aspect. Interfaces related to
ID are taken into account. The main interface concept is identified and presented on the
macro-HMI model. Relations between model concepts are finally identified and defined.

Interfaces identification is an iterative process. When a new interface is identified,
the analyst studies existing links inside this interface in order to access to new interfaces.
Only Interfaces related to ID are analyzed and added to the macro-HMI model.

The macro-HMI model is presented by the meta-model format. We have chosen the
meta-model format because it allows presenting clearly platform elements, their attrib‐
utes, relations between them and their cardinalities.

4.3 Factorization

Factorization is the process of finding common attributes shared between two or more
pedagogical elements (classes) in the macro-HMI model and moving them into an
existing or a new abstract parent element. The non-common attributes will not change
place. The difference between an abstract class and a concrete class is that a concrete
class can be instantiated. The role of an abstract class is that of possessing concrete
subclasses. This is important for the factorization of the attributes and common methods
realized by the sub-classes. Visually, an abstract class is represented implicitly with a
cursive formatting (in italics) of the name of the class (cf. Fig. 2, Activity/Resource
class).

Fig. 2. An extract of Moodle macro-HMI model.

Many works shows the relevance of classes and associations factorization in model‐
ling languages [24]. The factorization we propose is based on the fact that a model is a
simplified view of a system. Therefore a model element can factorize the system collec‐
tion of elements [15].

26 N. El Mawas et al.



This step aims to find common elements in pedagogical activities/resources and
common relations between them. Factorization is applied on the Macro-HMI model.
The macro model, resulting for the factorization, is clearer and more simplified than the
Macro-HMI model.

4.4 Functional Analysis

In the software engineering field, a software life-cycle model includes a functional anal‐
ysis in the requirements and specification phases. Functional requirements are associated
with specific functions, tasks or behaviours the system must support. Functional speci‐
fications describe what the system must do as well as requested properties of inputs and
outputs.

In our context, the functional analysis aims to identify the functionalities dedicated
to the course instructional design. The HMIs of the Macro-HMI model are analyzed
from both functional and pedagogical perspectives. Administrative perspectives (like
display functions, etc.) are rejected from the functional model. The functionalities are
implicitly embedded in interfaces via HMI widgets (buttons, links, etc.) facilitating the
interactions between users and system. Each widget has to be tested in order to determine
its pedagogical features. Then, the analyst has to give a function name for each peda‐
gogical widget. The functional analysis is an interactive process, every time we identify
a new function, we must verify its pedagogical use. Only functions with pedagogical
use are presented on the model. Sub-functions are also added to the functional model.

4.5 Micro Analysis

The micro analysis is based on the macro and the functional models. It takes into account
two different viewpoints: micro-HMI and technical viewpoints. We propose a confron‐
tation of micro-HMI and technical models to formalize the final model.

4.5.1 Micro-IHM Analysis
The micro-HMI analysis consists in analyzing the concerned interfaces at a finer scale.
It aims to identify all elements relevant to the instructional design, including their
features (attributes, types, etc.). To conduct this analysis, we propose many steps. After
choosing an element of the macro model, the analysis concerns the interfaces for real‐
izing/defining a dedicated use case of the functional model. The concerned interface is
break down into many areas. Each component of each area (titles of blocks, menus,
forms, etc.) has to be analyzed in order to determine its pedagogical features. The anal‐
ysis concerns also many pedagogical elements which are described by the use of various
forms, widgets and software components (buttons, links, etc.). Two main categories of
the forms elements/attributes can be identified: required elements and optional elements.
The required ones have to be identified because they form the main elements of the LMS
instructional design language. The non-setting of these elements prevents the ordinary
working of system. These characteristics have to be identified: it presents an important
feature about the instructional design language of learning platforms.

Identification and Formalization of LMS Instructional Design Languages 27



4.5.2 Technical Analysis
The second step of the process concerns the technical analysis [23]. Several technical
analyses are possible: databases, source code, courses backup/restore, etc. During this
step, the main source of information for identifying the instructional design language is
the LMS database. The other technical analyses will be used during the confrontation
step.

This analysis consists in specifying a reduced Conceptual Data Model from the one
available by LMS providers if it exists. In our approach, the database analysis has to be
restricted to the tables/columns in relation to instructional design data. The main obstacle
is to identify these data. Information from the micro-HMI analysis could be useful to
achieve this goal.

This technical analysis consists in (1) looking over all database tables in order to
sketch a first draft of the model, (2) focusing on tables embedding elements in relation
to instructional design concepts. These tables can be identified through the semantic
analysis of their titles or their record fields. Some tables could be identified through their
dependencies with others or through the foreign keys. The analysis consists then in
specifying the database schema on the basis of the databases reverse engineering rules.
The Conceptual Data Model can be finally specified from this schema. This model is
relevant to represent the technical-model viewpoint because it hides ill-structured data‐
bases, misconceptions or redundancies.

4.5.3 Confrontation and Formalization
The last process step concerns the confrontation of both micro-HMI and technical
models, and the formalization of the final model. The micro-HMI and technical models
are compared in order to (1) refine the micro-HMI model, (2) detect and correct the
difference between models, (3) ensure that the final model can be easily bind to a
computer-readable format for the existing LMS.

The confrontation conducts verifications on the definition of the instructional design
elements on both models. Some differences or ambiguities (like the definition of similar
elements, the non-existence of some attributes, divergences about the types of attributes,
etc.) are so identified. They require a deeper and finer analysis of both HMI and technical
analysis. At this step, other technical-centred analysis (source code, backup packages,
etc.) can be useful. For example the source code analysis consists in directly reviewing
the LMS code.

It primarily concerns the code of the HMI definition and the queries for inserting /
selecting data. This analysis can reveal many details that developers have chosen to
encode for effectiveness or portability reasons. The aim of this process step is to
formalize the instructional design language.

5 Application of our Approach on Moodle 2.4

In this section we present the application of our process on an LMS. We have chosen
Moodle 2.4 as a use case for many reasons: (1) Moodle is increasingly used in schools,
universities and companies, (2) Moodle is also used in our university, and (3) Moodle

28 N. El Mawas et al.



has an active community who continuously develops APIs that provide tools for its
scripts (so once the editor is finalized, we will share it with the community). Note that
the version 2.4 is the installed version in our university.

5.1 Application of the Macro-HMI Analysis on Moodle 2.4

The application of macro-HMI analysis on Moodle consists in identifying interfaces
related to course design. We analyzed interfaces titles and navigation paths / URLs. We
studiously browse all the links in a specific interface. These links often point to new
interfaces. Moodle is designed based on a top-down approach: the main interface is
about specification and presentation of the course content, other interfaces (like add a
forum, a label…) are accessible from the main interface.

The Fig. 2 shows the result of applying the macro-HMI analysis on Moodle. A course
is composed of categorie(s), outcome(s), scale(s), section(s), group(s), grouping(s) and
one question bank.

Course sections are organized into resources and activities for students. Moodle 2.4
offers 7 resources (Book, Page, Label, IMS content package, File, Folder, and URL) and
13 activities (Forum, Database, Glossary, Assignment, Lesson, Quiz, Workshop,
SCORM package, External tool, Choice, Survey, Wiki, and Feedback). In Fig. 2, we
present only one resource (Label), and 5 activities (Survey, Chat, Workshop, Quiz, and
Forum) for clarity reasons.

In the page specification of each concept, attributes are divided into different parts.
For example, for the Chat activity, its fields are divided into 4 parts named: general,
common module settings, restrict access, and activity completion. These parts names
are presented in the macro-HMI model.

Note that there are only two types of relationships within this model: composition
relationship and inheritance relationship.

5.2 Application of the Macro-HMI Analysis on Moodle 2.4

After the macro-HMI analysis, we applied the factorization process. We noticed that
all activities/resources had the common attributes: “commonModuleSettings”,
“restrictAccess”, and “activityCompletion”. So we moved these attributes to the
Activity/Resource class. All activities had the common attribute “general” according
to the macro-HMI model, that’s why we created a class called “Activity” and we
moved the attribute “general” into it. Some Moodle activities could have outcomes
like Chat activity, Workshop, and Quiz. We added in the macro model a class named
“ActivityWithOutcomes”. This class had “outcomes” as an attribute. We noticed that
some activities with outcomes could be graded. Therefore, we added the class “Grade‐
dActivityWithOutcomes”. Among “GradedActivityWithOutcomes” class, some
activities had the common attributes “grade”. The “ActivityWithGradedSection” class
is created and contained the “grade” attribute. Some activities from the “Activity‐
WithGradeSection” had the common attributes “ratings”. The class “ActivityWithRa‐
tingsSection” is added to the macro model with the attribute “ratings”. All coming
steps are carried out on the basis of this analysis.

Identification and Formalization of LMS Instructional Design Languages 29



5.3 Application of the Functional Analysis on Moodle 2.4

Based on the macro-HMI model, we proceeded to the functional analysis on Moodle.
We divided each interface to several areas. Then, for each area, we studied the graphical
interface components to identify functionalities related to instructional design. For
example, from the main interface of a Moodle course, a teacher can show/hide/move a
section. He can modify the course description, and manage different groups. He can also
add an activity/resource in a specific section. If the teacher adds a forum, he will be
pointed to a new page about forum specification. He can add files, add/modify/delete/
separate a discussion and also reply to a discussion.

We have grounded the formalism of the functional model on the SADT (Structured
Analysis and Design Technique) Model [24]. SADT is a multi language supporting the
communication between users and designers. It is based on simple concepts in an easy
graphical and textual formalism. This language is conformed to our functional analysis
approach: top-down, hierarchical, modular and structured.

This analysis is very important in our process; it can verify existence and relation
between macro-HMI elements.

5.4 Application of the Micro Analysis on Moodle 2.4

As explained in Sect. 4.5, the micro analysis consists the micro-HMI analysis, the tech‐
nical analysis, and the confrontation and formalization process.

5.4.1 Step 1: Micro-IHM Analysis
The application of IHM-micro analysis is about characteristics identification of instruc‐
tional design elements. It is based on the macro and functional models.

For example, the “Course” class has “general” as attribute. In this phase, we study
in details fields with pedagogical use related to this attribute. “Fullname” and “short‐
name” are these fields, so we replace “general” attribute in the macro-HMI model by
“fullname” and “shortname” attributes in the micro-HMI model.

The Fig. 3 shows an extract of Moodle micro-HMI model (without taking into
account corrections in red).

Reference relationships appear in this model. For example the abstract class “Acti‐
vityWithOutcomes” refers to “Outcome” class: a teacher can define outcomes to a course
then he can associate a specific outcome to Moodle activities except for Choice, Survey,
Wiki and Feedback activities.

5.4.2 Step 2: Technical Analysis
The technical analysis consists in analyzing the Moodle database. Our goal is to identify
the Moodle instruction design language from a technical viewpoint to approve the rele‐
vant of specific data for this language.

This analysis consists in specifying the reduced Conceptual Data Model for Moodle
in relation with the instruction design. We have reviewed all Moodle database tables.
Titles semantic analysis of tables and fields allows to (1) gather the tables related to the

30 N. El Mawas et al.



ID, and (2) ignores those related to technical specifications (users’ management,
learners’ tracking…). Then we studied dependences and relations between database
tables. The generated Conceptual Data Model is based on reverse engineering rules.
Foreign keys enable the specification of required multiplicities.

In the next section, we present the confrontation and the formalization of the Moodle
instructional design language.

5.4.3 Step 3: Confrontation and Formalization
The micro-HMI analysis and the technical analysis have specified two Moodle instruc‐
tional design models according to two different viewpoints. In this step, we are interested
in the confrontation of these models to formalize Moodle instructional design language.

This step is very important in our process. We think that the use of only one analysis
method presents many negative points. For example, the micro-HMI model depends
directly on the Moodle analyst competence. This means the possibility lack of peda‐
gogical attributes. Similarly, the technical analysis is not an easy task. Many data struc‐
tures are not explicitly reported when creating the database.

From the 2 models comparison, we notice that every element/ attribute existing in
the micro-HMI model is certainly presented in the technical model. But some elements
exist in the technical model without being present in the micro-HMI model. That is why
we refer to the PHP source code analysis of Moodle to verify the presence of these
elements.

Figure 3 (including corrections in red) shows an extract of Moodle final model.
Corrections in red present the confrontation result of the two models. For example thanks
to the technical analysis, we found that every section has an order. This attribute has not

Fig. 3. An extract of Moodle micro-HMI model (without corrections in red), an extract of Moodle
final model (with corrections in red).

Identification and Formalization of LMS Instructional Design Languages 31



been detected by the micro-HMI model. The code source analysis confirms the presence
of this attribute. The attribute “SectionOrder” is presented in the final HMI model.

The confrontation phase allows also rectifying information on the micro-HMI model.
Figure 4 shows an example about relationship verification between the “GradeCondi‐
tion” class and the “Activity/Resource” class.

Fig. 4. An example about relationship verification between the “GradeCondition” class and the
“Activity/Resource” class.

Based on the micro-HMI analysis, the “GradeCondition” class refers to the abstract
class “Activity/Resource” while the same class refers to a graded activity in the technical
model. The code source analysis of Moodle conditionlib.php file confirms that the grade
condition refers to a graded activity. That is why the reference relationship is between
the two classes “GradeCondition” and “GradedActivityWithOutcomes” in the final
model. The final model resulting from the confrontation phase formalizes the Moodle
instructional design language.

6 Comparison Between Moodle 2.0 and Moodle 2.4 Meta-Models

In this section, we apply our identifying and formalizing approach on Moodle 2.0 then
we compare the two meta-models (Moodle 2.0 and 2.4) in order to identify differences
between these versions. Figure 5 (including corrections in red) shows an extract of the
Moodle 2.0 final model. Table 1 presents the differences between the two meta-models
process by being capable of identifying the new functionalities added by Moodle 2.4
developers in comparison to Moodle 2.0 (The whole Moodle’s meta-models are avail‐
able at the following link: http://www-lium.univ-lemans.fr/~laforcad/graphit/wp-
content/uploads/2015/02/metamodels.pdf).

32 N. El Mawas et al.

http://www-lium.univ-lemans.fr/%7elaforcad/graphit/wp-content/uploads/2015/02/metamodels.pdf
http://www-lium.univ-lemans.fr/%7elaforcad/graphit/wp-content/uploads/2015/02/metamodels.pdf


Table 1. Difference between Moodle 2.4 and Moodle 2.0 meta-models.

Moodle 2.4 Moodle 2.0 Comments

External Tool class Yes No The external tool activity module
enables students to interact
with learning resources and
activities on other web sites

Book class Yes No The book module enables a
teacher to create a multi-page
resource in a book-like format,
with chapters and subchapters

Relation between
Section & Activi‐
tyCompletion‐
Condition classes

Yes No This relation determines any
activity completion conditions
which must be met in order to
access the section

Relation between
Section and
GradeCondition
classes

Yes No This relation determines any
grade conditions which must be
met in order to access the
activity

Assignment class Yes Yes In Moodle 2.4 we have 1 class for
assignment (Assignment)
while in Moodle 2.0 we have 4
classes for assignment (Online
text, Advanced uploading files,
Offline activity and Upload
single file)

blindMarking
attribute for
Assignment class

Yes No Blind marking hides the identity
of students to markers

gradingMethodAs‐
signment
attribute for
Assignment class

Yes No This attribute defines the
advanced grading method
(Simple direct grading,
Marking guide, Rubric) used
for calculating grades in the
assignment

Relation between
Assignment and
Grouping classes

Yes No Students are able to collaborate on
an assignment

Identification and Formalization of LMS Instructional Design Languages 33



Fig. 5. An extract of the Moodle micro-HMI model/ the Moodle 2.0 final model (without/with
corrections in red).

This process is dedicated to LMSs active communities and more specifically to
designers with a competence in IT and the service of information technology and
communication for education (pedagogical engineers) who meets difficulties in appro‐
priating the instructional design language of LMSs.

7 Conclusion

In this paper is dedicated for teachers-designers using Learning Management Systems
within their academic organizations. Nowadays Learning Management Systems like
Moodle are Widespread within academic organizations, they are not limited to distant
courses, and they Provide many tools and services to teachers-designers. But teachers
have many problems related to their uses. In fact, teachers are trained on how to use an
LMS but not how to design learning situations on it. In addition, Teachers must abstract
instruction design from technical/administrative details. Our work aims at exploiting the
LMS implicit language in order to allow the elaboration of some external, well suited
and dedicated authoring tools. To this aim, we identify and formalize the LMS implicit
instructional design language. In this paper, we present techniques for specifying meta-
models both based on the LMS semantics and directed towards the practitioners’ one.
We apply these techniques on two versions of the Moodle platform: 2.4 and 2.0. These
meta models allows to provide teachers-designers with some graphical Visual Instruc‐
tional Design Languages, and their dedicated editors, taking into account their practices
and needs, while ensuring that produced models will be operationalized without major
semantics losses into the targeted LMS.

34 N. El Mawas et al.



Based on meta-models, we will originally develop VIDLs on top of the LMS internal
language in order to insure the binding issue and the semantics mapping. By only
extending LMS with a dedicated communication API, binding issues will be addressed.
We will propose then to target teachers-designers instructional design needs and prac‐
tices, capturing into analysis & design patterns, by developing VIDLs designed on top
of the LMSs languages by some Model-Driven Engineering and Domain-Specific
Modelling techniques and tools.

Our research work allows teachers-designers community to design their entire
courses, outside platforms, basing on their pedagogical needs without technical diffi‐
culties. Our approach promotes the use of all LMS activities and resources and expands
LMS pedagogical concepts not by adding new concepts to users but by facilitating and
clarifying the existing tools thanks to the external editor. It can confirm that every LMS
is not pedagogically neutral but embeds an implicit instructional design language relying
on specific paradigms and educative theories followed by the LMS providers.

Acknowledgements. This work and submission are funded by the French GraphiT project
[ANR-2011-SI02-011] (http://www-lium.univ-lemans.fr/~laforcad/graphit/).

References

1. Tchounikine, P., Morch, A., Bannon, L.: A computer science perspective on technology-
enhanced learning, pp. 275–288. Springer, The Netherlands (2009)

2. Berger, C., Kam, R.: Definitions of instructional design (1996). http://www.umich.edu/
~ed626/define.html

3. Gimenes, I.; Barroca, L.; Barbosa, E., Júnior, Oliveira, E.A.: Learning design in software
engineering courses. In: International Conference on Computer Supported Education,
CSEDU 2014, 1-3 April 2014, Barcelona (2014)

4. Szabo, M., Flesher, K.: CMI Theory and Practice: Historical Roots of Learning Managment
Systems. Paper presented at the E-Learn 2002 World Conference on E-Learning in Corporate,
Government, Healthcare, Higher Education, Montreal, Canada, pp. 929–936 (2002)

5. Jovanovic, J., Gasevic, D., Brooks, C., Devedzic, V., Hatala, M.: LOCO-analyst: a tool for
raising teachers’ awareness in online learning environments. In: The 2nd European
Conference on Technology Enhanced Learning, Crete, Greece, pp. 112–126 (2007)

6. Graham, C.J.: Blended learning systems: definitions, current trends and future directions. In:
Bonk, C.J., Graham, C.R. (eds.) Handbook of Blended Learning: Global Perspectives, Local
Designs, pp. 3-21. Pfeiffer Publishing, San Francisco, CA (2005)

7. Brito, I.S., Tavares, M., Rodrigues, E.: Using ICT to support e-Learning in higher education.
In: Proceedings of the 6th International Conference on Computer Supported Education.
CSEDU 2014, Barcelona, Spain (2014)

8. Oubahssi, L., Laforcade, P., Cottier, P.: Re-engineering of the apprenticeship elec-tronic
booklet: adaptation to new users requirements. In: The 10th IEEE International Conference
on Advanced Learning Technologies, Sousse, Tunisia, pp. 511–515, July 2010

9. Abdallah, F., Toffolon, C., Warin, B.: Models transformation to implement a Project- Based
Collaborative Learning (PBCL) scenario: Moodle case study, pp. 639–643. Santander,
Cantabria, Spain, IEEE-ICALT (2008)

Identification and Formalization of LMS Instructional Design Languages 35

http://www-lium.univ-lemans.fr/%7elaforcad/graphit/
http://www.umich.edu/%7eed626/define.html
http://www.umich.edu/%7eed626/define.html


10. Martinez-Ortiz, I., Sierra, J.L., Fernández-Manjón, B.: Enhancing IMS LD units of learning
comprehension. In: The 4th International Conference on Internet and Web Applications and
Services, Venice, Italy, pp. 561–566, May 2009

11. Mekpiroona, O., Tammarattananonta, P., Buasrounga, N., Apitiwongmanita, N., Pravalpruka,
B., Supnithia, T.: SCORM in open source LMS: a case study of LEARNSQUARE. In:
ICCE2008, Taipei, Taiwan, pp. 166–170 (2008)

12. De Vries, F., Tattersall, C., Koper, R.: Future developments of IMS Learning Design tooling.
Educ. Technol. Soc. 9(1), 9–12 (2006)

13. Baggetun, R., Rusman, E., Poggi, C.: Design Patterns for collaborative learning: from practice
to theory and back. In: Proceedings of World Conference on Educational Multimedia,
Hypermedia and Telecommunications, AACE 2004, Chesapeake, VA, pp. 2493–2498 (2004)

14. Alario-Hoyos, C., Bote-Lorenzo, M.L., Gómez-Sánchez, E., Asensio-Pérez, J.I., Vega-
Gorgojo, G., Ruiz-Calleja, A.: GLUE!: An Architecture for the Integration of External Tools
in Virtual Learning Environments. Comput. Educ. 60(1), 122–137 (2013)

15. Al-Ajlan, A., Zedan, H.: E-learning (Moodle) based on service oriented architecture. In:
Proceedings of the EADTU’s 20th Anniversary Conference, Lisbon, Portugal, 8-9 November,
Lisbon-Portugal, pp. 62–70, vol. 1 (2007)

16. Caron P.-A., Derycke A., Le Pallec X.: The bricoles project: support socially informed design
of learning environment. In: 12th International Conference on Artificial Intelligence in
Education (AIED 2005), pp. 759–761. IOS Press, Amsterdam (2005)

17. Graf. S.: Adaptivity in learning management systems focusing on learning styles. PhD thesis,
Vienna University of Technology (2007)

18. Drira, R., Laroussi, M., Le Pallec, X., Warin, B.: Contextualizing Learning Scenarios
According to Different Learning Management Systems. TLT 5(3), 213–225 (2012)

19. Coates, H., James, R., Baldwin, G.: A critical examination of the effects of learning
management systems on university teaching and learning. Tert. Educ. Manag. 11, 19–36
(2005)

20. Steel, C.: Reconciling university teacher beliefs to create learning designs for LMS
environments. The University of Queensland. Australas. J. Educ. Technol. (AJET2009)
25(3), 399–420 (2009)

21. Loiseau, E., Laforcade, P.: Specification of learning management system-centred graphical
instructional design languages - A DSM experimentation about the Moodle platform. In:
ICSOFT’13, Reykjavik, Iceland, pp. 29–31 (2013)

22. Laforcade, P., Abedmouleh, A.: Improving the design of courses thanks to graphical and
external dedicated languages: a moodle experimentation. In: Moodle Research Conference
2012, Heraklion, Greece, 14-15 septembre 2012, pp. 94–101 (2012)

23. Abedmouleh, A., Oubahssi, L., Laforcade, P., Choquet, C.: Expressing the implicit
instructional design language embedded in an LMS: motivations and process. In: Computers
and Advanced Technology in Education, Naples, Italie, Juin 2012

24. Dao, M., Huchard, M., Rouane Hacene, M., Roume, C., Valtchev, P.: Improving
generalization level in UML models iterative cross generalization in practice. In: 12th
International Conference on Conceptual Structures, ICCS’04, Huntsville, USA, pp. 346–360
(2004)

36 N. El Mawas et al.



http://www.springer.com/978-3-319-29584-8


	Identification and Formalization of LMS Instructional Design Languages: Moodle Case Study
	Abstract
	1 Introduction
	2 Meta Models
	3 Context
	4 The LMS Centred Approach
	4.1 The Identification and the Formalization Process: An Overview
	4.2 Macro-HMI Analysis
	4.3 Factorization
	4.4 Functional Analysis
	4.5 Micro Analysis
	4.5.1 Micro-IHM Analysis
	4.5.2 Technical Analysis
	4.5.3 Confrontation and Formalization


	5 Application of our Approach on Moodle 2.4
	5.1 Application of the Macro-HMI Analysis on Moodle 2.4
	5.2 Application of the Macro-HMI Analysis on Moodle 2.4
	5.3 Application of the Functional Analysis on Moodle 2.4
	5.4 Application of the Micro Analysis on Moodle 2.4
	5.4.1 Step 1: Micro-IHM Analysis
	5.4.2 Step 2: Technical Analysis
	5.4.3 Step 3: Confrontation and Formalization


	6 Comparison Between Moodle 2.0 and Moodle 2.4 Meta-Models
	7 Conclusion
	References


