
Chapter 2
Bacterial Growth in Chemostat

2.1 What Is a Chemostat

A chemostat, or bioreactor, is a continuous stirred-tank reactor (CSTR) used for
continuous production of microbial biomass. It consists of a fresh water and nut-
rient reservoir connected to a growth chamber (or reactor), with microorganism.
The mixture of fresh water and nutrient is pumped continuously from the reservoir
to the reactor chamber, providing feed to the microorganism, and the mixture of
culture and fluid in the growth chamber is continuously pumped out and collected.
The medium culture is continuously stirred. Stirring ensures that the contents of the
chamber is well mixed so that the culture production is uniform and steady. If the
steering speed is too high, it would damage the cells in culture, but if it is too low
it could prevent the reactor from reaching a steady state operation. Figure 2.1 is a
conceptual diagram of a chemostat.

Chemostats are used to grow, harvest, and maintain desired cells in a controlled
manner. The cells grow and replicate in the presence of suitable environment with
medium supplying the essential nutrient growth. Cells grown in this manner are
collected and used for many different applications.

These applications include:

1. Pharmaceutical: for example in analyzing how bacteria respond to different
antibiotics, or in production of insulin (by the bacteria) for diabetics.

2. Food industry: for production of fermented food such as cheese.
3. Manufacturing: for fermenting sugar to produce ethanol.

A question which arises in operating the chemostat is how to adjust the effluent
rate, that is, the rate of pumping out the mixture. In order to operate the chemostat

Electronic supplementary material The online version of this chapter (doi: 10.1007/
978-3-319-29638-8 2) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2016
C.-S. Chou, A. Friedman, Introduction to Mathematical Biology,
Springer Undergraduate Texts in Mathematics and Technology,
DOI 10.1007/978-3-319-29638-8 2

3

4 2 Bacterial Growth in Chemostat

Feed Effluent

Fig. 2.1: Stirred bioreactor operated as a chemostat, with a continuous inflow (the feed) and outflow
(the effluent). The rate of medium flow is controlled to keep the culture volume constant.

efficiently, the effluent rate should not be too small. But if this rate is too large, then
the bacteria in the growth chamber may wash out. In order to determine the optimal
rate of pumping out the mixture we need to use mathematics. In this chapter, we
develop a simple mathematical model in order to determine the optimal effluent
rate. A more comprehensive model will be developed in Chapter 8.

The mathematical model will be described by a differential equation. In this book
we shall encounter many differential equations that model biological processes. We
therefore review here some of the basic theory of differential equations.

2.2 Differential Equations

Differential equations of the first order have the form

dx
dt

= f (x, t), (2.1)

where f (x, t) is a given function. Solving this equation means that we have to find a
function x(t) which satisfies

dx(t)
dt

= f (x(t), t).

There are in fact many such solutions; but the solution will be unique if we prescribe
a condition such as

x(t0) = x0 (2.2)

for some values x0 and t0. The system (2.1)–(2.2) is called an initial value problem;
the initial time t0 may be taken, for instance, to be t0 = 0.

2.2 Differential Equations 5

Example 2.1. The solution of the differential equation

dx
dt

= t2

is x(t) = t3

3 +C, where C is an arbitrary constant. If we prescribe initial condition

x(0) = 5, then C = 5 and the unique solution is x(t) = t3

3 + 5.

Example 2.2. The solution of the initial value problem

dx
dt

= x+ 2, x(0) = 3

is given by

x(t) = 5et − 2.

There are several classes of differential equations that can be solved explicitly,
and they are introduced in the following subsections.

2.2.1 Linear Equations

Linear differential equations have the following form:

dx
dt

+ p(t)x = g(t), (2.3)

where p(t) and g(t) are given functions of t. In order to solve such an equation we
introduce the integral of p(t),

P(t) =
∫ t

0
p(s)ds,

and multiply Eq. (2.3) by eP(t),

eP(t) dx
dt

+ eP(t)p(t)x(t) = eP(t)g(t).

Note that

d
dt
[eP(t)x(t)] = eP(t) dx

dt
+ eP(t)p(t)x(t)

by the definition of P(t). Therefore,

d
dt
[eP(t)x(t)] = eP(t)g(t),

and by integrating both sides from 0 to t, we get

eP(t)x(t)− x(0) =
∫ t

0
eP(s)g(s)ds.

6 2 Bacterial Growth in Chemostat

It follows that

x(t) = e−P(t)x(0)+ e−P(t)
∫ t

0
eP(s)g(s)ds (2.4)

is the solution of (2.3) with prescribed x(0).
Note that in Example 2.2 above p(t) =−1, P(t) =−t, g(t) = 2,

e−P(t)
∫ t

0
eP(s)g(s)ds = 2et

∫ t

0
e−sds = 2et(1− e−t),

and formula (2.4) yields

x(t) = etx(0)+ 2(et − 1) = 5et − 2 if x(0) = 3.

2.2.2 Separation of Variables

Differential equations with separable variables are of the form

dx
dt

= g(x)h(t). (2.5)

Rewriting this equation in the form

1
g(x)

dx
dt

= h(t)

we get, by integration with respect to t,
∫

dx
g(x)

=

∫
h(t)dt,

from which we obtain the solution

G(x) = H(t)+C

where

G(x) =
∫

dx
g(x)

, H(t) =
∫

h(t)dt.

Example 2.3. Consider the equation

dx
dt

=
t

x2 .

Writing it in the form

x2 dx
dt

= t

we get, by integration,

x3

3
=

t2

2
+C.

2.2 Differential Equations 7

2.2.3 Homogeneous Equations

Differential equations that can be written in the form

dx
dt

= g(
x
t
) (2.6)

are called homogeneous equations. Such equations can be solved by introducing a
new variable v = x

t , or v(t) = x(t)
t . Then

dx
dt

=
d
dt
(tv) = v+ t

dv
dt

,

and Eq. (2.6) becomes

t
dv
dt

+ v = g(v),

which is an equation with separable variables, namely,

dv
dt

=
g(v)− v

t
.

Hence ∫
dv

g(v)− v
= ln t +C.

If we denote the integral of 1/(g(v)− v) by K(v), then the solution of Eq. (2.6) is
given implicitly by the formula

K(
x
t
) = ln t +C.

Example 2.4. The equation

dx
dt

=
x2 + t2

xt

can be written in the form

dx
dt

= g(
x
t
), where g(v) = v+

1
v
.

Setting v = x
t , we get ∫

dv
g(v)− v

= ln t +C,

and the integral of the left-hand side is
∫

vdv = v2

2 . Hence

1
2
(

x
t
)2 = ln t +C,

or

x2 = 2t2(ln t +C).

8 2 Bacterial Growth in Chemostat

2.2.4 Exact Equations

Consider a differential equation of the form

g(x, t)
dx
dt

+ h(x, t) = 0. (2.7)

If there is a function F(x, t) such that

∂F
∂x

= g,
∂F
∂ t

= h, (2.8)

then Eq. (2.7) is called an exact equation, and it can be written in the form

∂F
∂x

dx
dt

+
∂F
∂ t

= 0

or
dF(x(t), t)

dt
= 0.

Hence,

F(x(t), t) = constant,

and the solution of Eq. (2.7) is given implicitly by the equation

F(x, t) = c, c is constant.

We note that if there is a function F such that (2.8) holds, then

∂g
∂ t

=
∂ 2F
∂ t∂x

=
∂ 2F
∂x∂ t

=
∂h
∂ t

.

Conversely, if the functions g and h are such that

∂g
∂ t

=
∂h
∂x

then a function F satisfying (2.8) can be constructed by integration.

2.2.5 Integrating Factor

A differential equation can sometimes be made an exact equation by multiplying it
by a function, called integrating factor. If μ = μ(x,y) is to be an integrating factor
for Eq. (2.7), then it has to satisfy the equation

∂
∂ t

(μg) =
∂
∂x

(μh),

2.2 Differential Equations 9

or

μ(
∂g
∂ t

− ∂h
∂x

)+ g
∂ μ
∂ t

− h
∂ μ
∂x

= 0.

If
1
g
(

∂g
∂ t

− ∂h
∂x

) is a function k(t) (of t only),

then we can find an integrating factor μ = μ(t) by solving

1
μ

dμ
dt

=−k(t).

On the other hand if

1
h
(

∂g
∂ t

− ∂h
∂x

) is a function m(x) (of x only),

then we can find an integrating factor μ = μ(x) by solving

1
μ

dμ
dx

= m(x).

Example 2.5. Consider the equation

t(t − x)
dx
dt

+(3xt − x2) = 0.

In this case we have

1
g
(

∂g
∂ t

− ∂h
∂x

) =
1
t

and μ(t) = t.

Multiplying the differential equation by t we obtain an exact differential equation

(t3 − tx)
dx
dt

+(3xt2 − 1
2

x2) = 0

with F(x, t) such that

∂F
∂x

= t3 − tx,
∂F
∂ t

= 3xt2 − 1
2

x2,

namely

F(x, t) = t3x− 1
2

tx2.

Hence the solution of the differential equation is

t3x− 1
2

tx2 = c, c is constant.

10 2 Bacterial Growth in Chemostat

We have actually already encountered an integrating factor for the linear equa-
tion (2.3), namely, eP. Indeed, after multiplying both sides of Eq. (2.3) by eP we
obtain an exact equation with

F(x, t) = eP(t)x(t)−
∫ t

0
eP(s)g(s)ds.

2.2.6 Existence of Solutions

So far we have shown how to solve explicitly some classes of differential equations.
For general functions f (x, t) the initial value problem (2.1)–(2.2) cannot be solved
explicitly, but it can always be solved numerically, as will be shown in the numerical
sections. The following theorem asserts that the initial value problem (2.1)–(2.2) has
a unique solution.

Theorem 2.1. Let f (x, t) be a continuously differentiable function in a domain
which contains a point (x0, t0). Then the initial value problem (2.1)–(2.2) has a
unique solution x = x(t) for t in some interval which contains the point t = t0.

We shall be particularly interested in differential equation (2.1) where f is
independent of t, namely,

dx
dt

= f (x), (2.9)

and f (x) is continuously differentiable for all x. In this case Theorem 2.1 can be
extended as follows:

Theorem 2.2. The solution of the initial value problem (2.9), (2.2) exists for all
positive t as long as x(t) remains bounded.

The proof of Theorems 2.1 and 2.2 can be found, for instance, in Reference [1].

Example 2.6. Consider the system

dx
dt

= xα , x(0) = 1, (2.10)

where 0 < α < ∞. Rewriting the differential equation in the form

x−α dx = dt,

and we integrate it (note that the equation has separable variables) and use the initial
condition to obtain

x1−α

1−α
= t +

1
1−α

,

or

x(t) = [(1−α)t + 1]
1

1−α .

2.2 Differential Equations 11

If 0<α < 1 then the solution exists for all t > 0 and x(t)→∞ as t → ∞. If, however,
α > 1 then as t increases to 1/(α−1) the solution x(t) increases to ∞, so the solution
exists only for t < 1/(α − 1).

The solution of (2.9), (2.2) can also be continued to t < 0, but again only as long
as x(t) remains bounded. One often refers to a solution of (2.9), x(t) for 0 ≤ t < ∞,
as a trajectory.

2.2.7 Differential Inequalities

We shall encounter in this book differential inequalities of the form

dx
dt

+ μx ≤ b for t > 0, (2.11)

or

dx
dt

+ μx ≥ b for t > 0, (2.12)

and we shall need to determine the behavior of x(t) as t → ∞. Consider first the
inequality (2.11). Multiplying both sides by eμt (note that eμt is always positive for
real μ) we get

d
dt
(eμt x(t))≤ beμt

so that, by integration from 0 to t,

eμt x(t)− x(0)<
b
μ
(eμt − 1)

or

x(t)≤ e−μt(x(0)− b
μ
)+

b
μ
.

We conclude that if x(0)≤ b
μ then x(t)≤ b

μ for all t > 0. If however x(0)> b
μ then,

for any small ε > 0,

x(t)<
b
μ
+ ε (2.13)

if t is large enough, so that

e−μt(x(0)− b
μ
)< ε.

Similarly, from the inequality (2.12) we can deduce that for any small ε > 0

x(t)>
b
μ
− ε (2.14)

12 2 Bacterial Growth in Chemostat

if t is large enough. For later references we state:

Theorem 2.3. If a function x(t) satisfies the differential inequality (2.11), then, for
any small ε > 0, (2.13) holds for all t sufficiently large. Similarly, if a function
x(t) satisfies the inequality (2.12), then, for any small ε > 0, (2.14) holds for all t
sufficiently large.

2.3 Equilibrium and Stability

If x0 is a point such that f (x0) = 0, then the unique solution of (2.9), (2.2) is clearly
x(t) ≡ x0. Such a point x0 is called an equilibrium point, a steady state, or a
stationary point. By Taylor’s formula,

f (x) = f (x0)+ f ′(x0)(x− x0)+ (x− x0)ε(x− x0),

where ε(x− x0)→ 0 if x → x0.
Suppose x0 is an equilibrium point such that f ′(x0) < 0. Setting y = x− x0 and

by using Eq. (2.9), we then have

dy
dt

= f ′(x0)y+ yε(y),

where ε(y)→ 0 if y → 0.
If |y| is small enough so that |ε(y)|< 1

2 | f ′(x0)|, then, for y > 0,

dy
dt

< f ′(x0)y+
1
2
| f ′(x0)|y = f ′(x0)y− 1

2
f ′(x0)y =

1
2

f ′(x0)y,

so that
dy
dt

< 0 if y > 0

and y = y(t) is decreasing toward y = 0. Similarly

dy
dt

> 0 if y < 0,

so that y = y(t) is increasing toward y = 0.
Hence when f ′(x0) < 0, the solution x(t), starting near x0, moves toward x0 as t

increases; in fact, x(t)→ x0 as t → ∞. We therefore call x0 a stable equilibrium (or
more precisely asymptotically stable equilibrium). Similarly, if

f ′(x0)> 0

then solutions initiating near x0 move away from x0, as long as they are within a
small distance from x0. We call such a point x0 an unstable equilibrium.

A steady point x0 is called globally (asymptotically) stable if x(t)→ x0 for any
trajectory x(t) whose initial value x(0) is not a steady point.

2.4 Growth Models 13

2.4 Growth Models

We need to develop a mathematical model describing the growth of bacteria popula-
tion. The density x of bacteria is defined as the number of bacteria per unit volume.
If the bacteria grow at a fixed rate r, then

x(t +Δ t)− x(t) = rx(t)Δ t,

or
x(t +Δ t)− x(t)

Δ t
= rx(t),

and, taking Δ t → 0, we get
dx
dt

= rx. (2.15)

The explicit formula for the growth of x is then

x(t) = x(0) ert .

The doubling time T is defined by x(T) = 2x(0), that is, the time for the bacteria
to double in number, and it is given by

2 = erT , or T =
ln2
r

.

If a colony of bacteria, or other microorganism, is dying at rate s, then its density x
satisfies

dx
dt

=−sx, (2.16)

and

x(t) = x(0)e−st .

The population density is halved at time T̄ , called the half-life, given by

T̄ =
ln2
s

.

When bacteria are confined within a bounded chamber, they cannot grow expo-
nentially forever, by following (2.15). There is going to be a carrying capacity B
of the medium which the bacterial density cannot exceed. This situation is modeled
by replacing the exponential growth (2.15) by the logistic growth

dx
dt

= rx(1− x
B
). (2.17)

The solution of (2.17) with an initial condition

x(0) = x0

14 2 Bacterial Growth in Chemostat

is given by

x(t) =
B

1+(B
x0
− 1)e−rt

. (2.18)

Indeed, to derive (2.18), we rewrite (2.17) in the form

dx
x(1− x

B)
= rdt,

or

(
1
x
+

1
B

1
1− x

B

)dx = rdt,

and integrate to obtain

lnx− ln(1− x
B
) = rt + const.

Then
x

1− x
B

=Cert ,

and solving for x we get

x(t) =
Cert

1+ C
B ert

=
B

1+ B
C e−rt

. (2.19)

Substituting t = 0, x(0) = x0, we find the value of C:

1+
B
C

=
B
x0
, or C =

x0

1− x0
B

.

Substituting C into Eq. (2.19), we obtain the formula (2.18) for the solution of
Eq. (2.17). In the logistic growth equation (2.17) the point x = B is a stable equi-
librium. From (2.18) we see that x = B is also a globally asymptotically stable equi-
librium, since, for any initial value x(0) = x0, x(t)→ B as t → ∞.

2.5 Modeling the Chemostat

Figure 2.2 shows a schematics of a chemostat with a stock of nutrient C0 pumped
into the chamber of the bacterial culture. We assume that the chemostat chamber
is well stirred so that the nutrient concentration is constant at each time t. We then
model the bacterial growth by the logistic equation (2.17), where r depends on the
constant nutrient concentration C0. If we denote by s the rate of the bacterial outflow
from the chamber, then the balance between growth and outflow is given by

dx
dt

= rx(1− x
B
)− sx. (2.20)

2.5 Modeling the Chemostat 15

C0
Flow of nurient

 and nutrient
Outflow of bacteriaBacterial

Culture Chamber

Fig. 2.2: The chemostat device.

We shall denote by [X] the dimension of any quantity X . Then,

[x] =
number
volume

, [B] =
number
volume

,

[r] =
1

time
, [s] =

1
time

.

There are two equilibrium points to (2.20), namely, x = 0, and x = (1− s
r)B. Note

that if the outflow rate is less than the growth rate of the bacteria, that is, if s < r,
then x= 0 is an unstable equilibrium, whereas x=(1− s

r)B is a stable equilibrium. If
s > r, then x = 0 is a stable equilibrium, whereas the equilibrium point x = (1− s

r)B
is not biologically relevant since it is negative.

Consider the case s < r and x(0) < (1− s
r)B. Since (1− s

r)B is a stable equilib-
rium, if x(0) is near (1− s

r)B, it will remain smaller than (1− s
r)B and will converge

to it as t → ∞. We can actually solve x(t) explicitly: writing

1
rx(1− x

B)− sx
=

1
r− s

(
1
x
+

r/B
(r− s)− rx/B

)

we have

1
r− s

[
dx
x
+

r/B
(r− s)− rx/B

dx

]
= dt.

By integration
1

r− s
[lnx− ln((r− s)− rx/B)] = t + const,

or
x

(r− s)− rx/B
= ce(r−s)t (c is constant).

Hence

(
1
c

e−(r−s)t +
r
B
)x = r− s,

16 2 Bacterial Growth in Chemostat

or

x(t) =
r− s

r
B + 1

c e−(r−s)t
. (2.21)

We see that x(t) → (1− s
r)B as t → ∞, whenever x(0) < (1− s

r)B. Note that the
formula (2.21) is valid also when x(0)> (1− s

r)B and that c is determined by

x(0) =
r− s
r
B + 1

c

, or
1
c
=

r− s
x(0)

− r
B
.

The chemostat operator would like to adjust the outflow rate s so as to get the
largest output of bacteria. The mathematical model we developed can determine
the optimal rate. Indeed, at steady state the outflow rate s is to be multiplied by
the steady state of the bacteria, which is x = (1− s

r)B. The function s(1− s
r)B takes

its maximum at s = r
2 , and with this output rate the maximum outflow per unit time

is 1
2 rB.

Summary. The chemostat operates most efficiently when s = r
2 , that is, when the

outflow rate is half the inflow rate.

Problem 2.1. Find the general solution of the differential equations

(i) dx
dt + x = 3et ;

(ii) dx
dt =−2tx+ t;

(iii) t dx
dt +αx = t2, α > 0.

Problem 2.2. Find the solution of the initial value problems

(i) dx
dt − tx = t, x(0) = 2;

(ii) dx
dt − 3x = t + 2, x(0) =−1.

Problem 2.3. Find the solution of the initial value problems

(i) dx
dt =

t
x , x(1) = 3;

(ii) dx
dt =

1+x2

xt , x(1) = 2.

Problem 2.4. Solve the equation

dx
dt

=
x+ 4t
x+ t

with x(0) = 3.

Problem 2.5. Find the solution of

(2xt +
1
x
)

dx
dt

= x2, x(3) = 1.

Problem 2.6. Find the solution of

(3x3 + xt2)
dx
dt

+ 2x2t = 0, x(2) = 8.

2.6 Numerical Simulations – Introduction to MATLAB 17

Problem 2.7. Consider the equation

dx
dt

= x(x− a)(x− 2), 0 < a < 2.

It has three steady points, x= 0, x= 2, and x= a. Determine which of them is stable.

Problem 2.8. Consider the equation

dx
dt

= (x− a)(2− x), x(0)< a,

where a < 2. Find the solution explicitly in either the forms t = t(x) or x = x(t), and
use it to prove the following:

(i) If x(0)> a then the solution exists for all t > 0 and x(t)→ 2 as t → ∞;

(ii) If x(0) < a then the solution exists for t < T , where T = 1
2−a ln | 2−x(0)

a−x(0) |, and

x(t)→−∞ as t → T .

2.6 Numerical Simulations – Introduction to MATLAB

MATLAB is a software developed by The MathWorks, Inc., and it is widely used
in science and engineering. MATLAB is a high-level language and interactive env-
ironment for numerical computation, symbolic calculation, and visualization. It is
also known for its easy handling of matrices and vectors. To access this software, in
many universities, students can install licensed MATLAB software (you can request
from the IT department in your school), and individual licenses can also be pur-
chased through MathWorks website.

We will refer the readers to MathWorks’ website for details of installation and
launch of the software. In this chapter, we will introduce some basics of MATLAB
and prompt to solving an ODE problem with MATLAB. The codes and explanations
about MATLAB are based on the version of MATLAB R2014b.

The introduction here is elementary and not comprehensive, but it will give the
readers the basic idea of how MATLAB operates and how to use this software to
solve our models. We strongly encourage the readers to practice along when reading
through numerical sections in this book.

2.6.1 Scalar Calculations

Once we launch MATLAB, the default window will have several compartments: a
panel with function buttons, and main columns “Current folder,” “Command Win-
dow,” and “Workspace.” We can change to the directory that we would like to
work in, and the corresponding folders and subfolders will show in the “Current

18 2 Bacterial Growth in Chemostat

Folder” part. The “Command Window” is for us to enter commands and do some
calculations, and the “Workspace” will save the variables that have been used in our
calculations.

MATLAB can do basic calculations as in regular calculators. MATLAB recog-
nizes the usual arithmetic operation: + (addition), − (subtraction), * (multiplica-
tion), / (division), ˆ (power). In the Command Window, we will see the prompt sign
(>>), and we can type after prompt sign and press enter, which will give us the result
of calculation. In the following, we show the MATLAB commands in teletype font.
For example,
>> (5*2+3.5) / 5
ans =
2.7000

If we do not want to see the display of the answer, we can add a semicolon
(;) after the command to suppress the display. We can also store the result into a
variable that the user assigns, for example:
>> x = (5*2+3.5) / 5
x =
2.7000
If now we check the Workspace column, we will see that ‘x’ is stored and the value
is also shown in that column. If we did not specify the name of the variable, the
result will be stored in ‘ans’ in the Workspace. It is worth noting that a valid vari-
able name starts with a letter, followed by letters, digits, or underscores. MATLAB
is case sensitive, so B and b are not the same variable. We should avoid creating vari-
able names that conflict with function names (functions will be introduced later).

MATLAB recognizes different types of numbers: (1) integer (example: 112,
−2185); (2) real number (example: 2.452, −100.448); (3) complex (example:
−0.11+ 4.4i, i =

√−1); (4) Inf (infinity); (5) NaN (not a number).
All the calculations in MATLAB are done in double precision, which means that

the numbers are accurate up to about 15 significant figures. However, we may not see
that many digits on the display window, and this is because the default output format
is to display 4 decimal places. If you type format long in the command window
followed by pressing enter, for all the numbers shown in the command window,
you will see the full display of all the digits. The command format short will
switch back to display of 4 decimal places. To know about more format, type help
format. In general, this help command is very useful when we would like to
know how to use a command or a function; we simply type help xx, in which xx
is the command of interest.

MATLAB has some built-in trigonometric functions and elementary functions.
We choose some commonly used ones to list in Table 2.1.

When we code, it is usually important to make comments in the codes. These
comments explain what the commands are for, so that the codes are easier to
read later. In MATLAB, we use the percentage sign (%) to begin a comment, and
MATLAB will take all the characters after (%) as comments and those will not be
executed. For example:
>> y = (5*2+3.5)/5ˆ2 % store the result in variable y,
and show the result on the screen.

2.6 Numerical Simulations – Introduction to MATLAB 19

Table 2.1: Commonly used MATLAB built-in functions. One can substitute ‘x’ in the table by
numbers or other variables.

MATLAB build-in functions descriptions
abs(x) absolute value of x
sqrt(x) square root of x
sin(x) sine of x in radians
sind(x) sine of x in degrees
cos(x) cosine of x in radians

cosd(x) cosine of x in degrees
tan(x) tangent of x in radians
cot(x) cotangent of x in radians
sec(x) secant of x in radians
csc(x) cosecant of x in radians
asin(x) inverse sine of x in radians
acos(x) inverse cosine of x in radians
atan(x) inverse tangent of x in radians
sinh(x) hyperbolic sine of x in radians
cosh(x) hyperbolic cosine of x in radians
exp(x) exponential of x
log(x) natural logarithm of x

log2(x) base 2 logarithm of x
log10(x) base 10 logarithm of x
ceil(x) round x toward infinity
floor(x) round x toward minus infinity
round(x) round x to the nearest integer

If the operation is too long, one can use ‘. . .’ to extend the command to the next line,
for example:
>> z = 10*sin(pi/3)*...
>> sin(piˆ2/4)

A convenient way to record the commands we are typing is to use ‘diary FILE-
NAME’, for example:
>> diary myfile
>> x = sqrt(5);
>> y = exp(x);
>> diary off
In the same directory, if you open the file ‘myfile,’ we will see the records of com-
mands and outputs. We can turn the diary back on by using ‘diary on.’

2.6.2 Vector and Matrix Operations

In previous examples, we have discussed how to use MATLAB to do the usual scalar
calculations. In fact, MATLAB is very powerful when it comes to calculations of

20 2 Bacterial Growth in Chemostat

vectors and matrices, and it is a vector oriented programming language. For this
reason, we should maximize the use of vector and matrix operations in our codes.

In the previous section, variables were used to store scalars. Here we show that
they can also be used to store vectors. The following is an example to assign a vector
to a variable:
>> s = [1 3 5 2]; % note the use of [], and the spaces
between the numbers; one can also use comma (,) to
separate the numbers
>> t = 2*s + 1 % 1 will be added to all the entries of 2*s
t =
3 7 11 5

In the above example, MATLAB uses [] to establish a row vector [1 3 5 2] and
stores it in the variable s, and does an operation on it to make a new row vector
[3 7 11 5] and stores it in the variable t. To extract one element from the vector or
part of the vector to do operations, we type:
>> t(3) % display the third entry of vector t
ans =
11

>> t(3) = 2 % assign another value to the third entry of
vector t
t =
3 7 2 5

>> 2*t - 5*s
ans =
1 -1 -21 0

As we have learned in linear algebra, in order to add or subtract, two vectors need
to have the same length.
>> a = [1 2 3]; b = [5 6];
>> a + b
Error using +
Matrix dimensions must agree.
The above message means we have inconsistent matrix or vector dimensions, so we
need to go back to check the dimensions of our matrices or vectors. Although we
cannot add or subtract a and b, we can combine them to form a new vector, for
example,
>> cd = [-b, 3*a]
cd =
-5 -6 3 6 9

Sometimes, we need vectors whose entries are part of an arithmetic sequence, a
convenient way to define it is to use the colon notation:
>> 1:2:6 % this will generate a row vector, starting
at 1, ending at 6, with increment 2
ans =
1 3 5

2.6 Numerical Simulations – Introduction to MATLAB 21

>> 3:10 % without specifying the increment, it will
be set as 1
ans =
3 4 5 6 7 8 9 10

With this trick, we can easily extract a part of a vector, and do operations:
>> t(2:4) - 1 % this will be the same as typing
t([2 3 4])-1
ans =
6 1 4

We have learned how to define and use row vectors. The operations for column
vectors are similar. The only difference is that the entries of a column vector are
separated by semicolon (;) or by making a new line.
>> cv = [-1; pi; exp(2)]
cv =
1.0000
3.1416
7.3891

>> cv2 = [1
2
3]
cv2 =
1
2
3

The row and column vectors can be transposed to become column and row vec-
tors, respectively. The transpose of a vector or matrix is done by putting an apostro-
phe after the variable name.
>> cv’, t’
ans =
1.0000 3.1416 7.3891

ans =
3
7
2
5

Similar to creating vectors, an m×n matrix can be created by adding a semicolon
(;) after the end of each row. As in row and column vectors, entries in a row are
separated by spaces or commas, while rows are separated by using semicolons or
by making a new line. For example:
>> A = [1 2 3 4; 5 6 7 8; 9 10 11 12]
A =
1 2 3 4
5 6 7 8
9 10 11 12

22 2 Bacterial Growth in Chemostat

We can extract or change any single entry in the matrix
>> A(2,3) = 5; % change the (2,3) entry of A to 5
or extract part of the matrix
>> B = A(2,1:3) % take the second row, the first
to third column, store as a new matrix B
>> B =

5 6 7
We can combine matrices, as long as the dimensions are consistent.
>> A =[A B’] % transpose B, make it as the last column
vector and merge with A
A =
1 2 3 4 5
5 6 7 8 6
9 10 11 12 7

We can extract the whole row or column by using semicolon
>> A(:,3) % note here ‘:’ can be replaced by ‘1:end’,
that is, 1 to end
A =
3
7
11

>> A(1,:)
A =
1 2 3 4 5

Then we can redefine, or delete a row or a column from a matrix A:
>> A(:,2) = [] % delete the second column of A
(: represents all the rows, [] is an empty vector)
>> A = [A; 4 3 2 1; 0 -1 -2 -3]; % adding the fourth and
fifth row in the matrix A
To find out the dimension of a matrix, we use the command “size.”
>> size(A’) % the output is [number of rows, number of
columns]
ans =
4 5

To obtain the length of a vector, we use “length.”
>>length(A(1,:))
ans =
4

There are some built-in matrix generating functions,
>> ones(2,3) % this generates a 2x3 matrix with ones
>> zeros(4,4) % this generates a 4x4 matrix with zeros
>> eye(5) % this generates a 5x5 identity matrix
>> diag([1 3 5]) % this generates a matrix with 1 3 5 on
its diagonal

2.6 Numerical Simulations – Introduction to MATLAB 23

Next, let us do matrix-matrix or matrix-vector multiplication. When we use * in
the matrix operations, it will operate as the matrix-matrix multiplication in linear
algebra. For example,
>> X = [1 2 3; 0 2 4]; Y = [5 2; 1 1; 10 7]; W = X*Y
W =
37 25
42 30

If we try
>> X*X
then we will see an error message about the matrix dimension, because an m× n
matrix can only be multiplied by an n× k matrix. Sometimes we would like to per-
form component-by-component operations, but not matrix-matrix multiplications;
for that purpose we need to use ‘.*’ instead of ‘*’. The following commands will
give different results:
>> W.* W % component-by-component operation
>> W * W % matrix-matrix multiplication
and we will find that X.*X works because it is a component-by-component op-
eration. Note that the use of ‘.*’ requires the two matrices to have the same size.
This component-wise operation of matrices can also be used for division (‘./’) and
exponents (‘.ˆ’).

Problem 2.9. Try the following command to generate a vector x.
>> x = 0:0.01:2
What is the x you see on MATLAB? Then use the command
>> y = sin(x)
to generate another vector y, what is y?

Problem 2.10. Let x = [2,5,1,6].

(a) Add 15 to each element. [Hint: x+ 15.]
(b) Add 3 to only the odd-indexed elements of x.
(c) Output the vector whose elements are squares of the corresponding elements of

x. [Hint: .* or .ˆ]

Problem 2.11. Let x = [3,1,6,8]′ and y = [2,1,3,5]′ (x and y are column vectors).

(a) Add x to y.
(b) Raise each element of x to the power specified by the corresponding element

in y.
(c) Divide each element of y by the corresponding element in x. [Hint: ./]
(d) Multiply each element in x by the corresponding element in y, and call the result

‘z’. [Hint: .*]
(e) Add up the elements in z and assign the result to a variable called ‘w’. [Hint:

w=sum(z).]
(f) Compute (sinx)′ ∗ y−w.

24 2 Bacterial Growth in Chemostat

2.6.3 Program Files

MATLAB program (script) files are essentially text files with a file extension ‘.m’.
We can start a new script file simply by clicking an icon on the MATLAB window
called ‘New Script’ (name may vary in different systems or versions). A program
file can contain a series of commands to be executed (scripts), or it can contain a
function that accepts input arguments and produces output. Let’s open a new script
file and type the following in the file:
a = 3.5;
b = 1;
x = sin(a)-b;
Save this file as ‘testscript.m’ in our working directory. In the command window,
type
>> testscript
and press enter, and you will see
x =
-1.3508

We can also execute the script file by directly clicking the ‘Run’ button on the script
file window.

Another way to obtain the result is to make the file a function file. Open another
script file, and name it ‘fun1.m’. In the file, type and save
function x = fun1(a,b)
x = sin(a)-b;
In the command window, type
>> fun1(3.5,1)
and you can see that it produces the same result as before. We can try more sets of
(a,b)
>> a1 = fun1(2,-1)
>> a2 = fun1(-2.4,10)

2.6.4 Numerical Algorithms for Solving Ordinary Differential
Equations

Most of the time, the solution of an ordinary differential equation problem (2.1)
does not have a closed-form solution. In this case, one looks for numerical solutions
that approximate the exact solution. Since numerical solutions are just approxima-
tions, it is also important to understand the accuracy and robustness of the numerical
method.

Suppose the initial value problem is

dx
dt

= f (x, t), t ≥ t0, x(t0) = x0. (2.22)

2.6 Numerical Simulations – Introduction to MATLAB 25

Let tn be some time point with tn ≥ t0, then by integrating the equation from tn to t,
one gets

x(t) = x(tn)+
∫ t

tn
f (x,τ)dτ ≈ x(tn)+ (t − tn) f (x(tn), tn). (2.23)

The approximation of the integral in (2.23) is good as long as t is sufficiently close
to tn. Suppose we would like to compute the solution of (2.22) at t = T , T > t0. To
get an approximate solution at time T , we can discretize the interval [t0,T] into N
uniform subintervals [tn, tn+1],n = 0, ..,N − 1, with tN = T and tn+1 − tn = h = T

N .
We call h the step size. We will use lowercase x to denote the exact solution of (2.22)
and capital X to denote the approximate solution.

Using the approximation in (2.23), we then define a numerical scheme by

Xn+1 = Xn + h f (X(tn), tn). n = 0, · · · ,N − 1, (2.24)

where Xn is the approximation of x(tn). This is called the forward Euler Method,
named after Leonhard Euler (1707–1783). The error of this scheme is O(h), which
can be formally derived from the Taylor expansion. Hence, the smaller the time step
size is, the more accurate the approximate solution will be. Generally, a numerical
scheme is called k-th order accurate if the error is O(hk), where h is the discretization
size. So Euler method is first order accurate. Although nowadays there are many
high order accurate schemes to solve ordinary differential equations, Euler method
is still a classical one when we first learn numerical methods. In MATLAB, we
have some options of using Runge-Kutta methods [2] to solve ordinary differential
equations, which will be introduced as follows.

Using MATLAB to Solve ODE

When solving problem (2.22) with MATLAB, we need to provide three pieces of
information for the program:

1. the right-hand side function f (x, t);
2. the initial condition x(t0) = x0;
3. the integration interval [t0,T].

The first step is to define functions in MATLAB. Recall that we introduced in
the previous subsection about using a function file to define a single function, which
reads in arguments and produces outputs. Another way is to use ’function handle,’ a
MATLAB value that provides a means of calling a function indirectly. For example,
to define f (x, t) = t − 2x, we can type in the command window
>> f = @(x,t) t-2*x; %The @ operator constructs a
function handle for this function
>> f(3,1)
ans =

-5

26 2 Bacterial Growth in Chemostat

Problem 2.12. Try to use a script file to define the above function.

Now, to solve a simple ODE

dx
dt

= t − 2x, 0 ≤ t ≤ 2, x(0) = 1,

we can type the following in the command window:
>> g = @(t,x)(t-2*x);
>> tspan = [0, 0.2]; % integrate the ODE from 0 to 0.2
>> x0 = 2; % the initial condition x(0) = 2
>> [t,x] = ode45(g,tspan,x0)

Note that the first argument in the function g is ‘t’ and the second is ‘x’; we
have to keep this order (time is first, followed by other variables) when we define
functions for MATLAB ODE solvers. The ODE solver we used is ‘ode45,’ a built-in
Runge-Kutta solver in MATLAB.

Also, when we output variables t and x, we can see that t and x are column
vectors. The vector t records the discrete time points in the MATLAB simulations,
starting at 0 (the initial time) and ending at 0.2 (the final time). The vector x is
of the same length as t, and the elements are the approximate solutions at time
corresponding to elements in vector t (the first element of x is 2, which is the initial
condition).

We can save the above commands in a script file so that we do not have to retype
next time. A slightly different version is to use a function file to define the right-hand
side function f (x, t), see Algorithms 2.1 and 2.2 (run ‘main BacterialGrowth.m’,
and ‘fun BacterialGrowth.m’ is to be called when ‘ode45’ is solving the ODE).
A plot of x versus t will be shown by the ‘plot’ command.

Algorithm 2.1. Main script file to solve dx/dt = t − 2x (main BacterialGrowth.m)

%%% This code solves the ODE dx/dt=t-2x, 0<=t<=0.2 with x(t=0)=2

tspan = [0,0.2]; % integrate the ode from 0 to 0.2
x0 = 2; % the initial condition x(0) = 2
[t,x] = ode45('fun_BacterialGrowth',tspan,x0);
plot(t,x)

Algorithm 2.2. fun BacterialGrowth.m

%%% This function will be called by main_BacteriaGrowth.m
function dx = fun_BacterialGrowth(t,x)
dx = t - 2*x;

2.6 Numerical Simulations – Introduction to MATLAB 27

Problem 2.13. Write a code to solve the ODE (refer to Eq. (2.17))

dx
dt

= x
(

1− x
2

)
, 0 ≤ t ≤ 10,

with initial condition x(0) = 0.5.

(a) Run the code and get the two column vectors of discrete time points and the
corresponding approximate solutions.

(b) Use the vector of time points to compute a vector containing the exact solution
at those time points. [Hint: refer to formula (2.18); exponential of x is ’exp(x)’
in MATLAB.]

(c) Compute the absolute value of the difference between the approximate and exact
solutions.

(d) Plot the numerical solution and the exact solution on the same figure with dif-
ferent markers and different colors (refer to the numerical section of Chapter 3
for plotting).

Problem 2.14. Solve the equation in Problem 2.8 with a = 1 numerically in the
form x = x(t) when (i) x(0) = 1

2 , (ii) x(0) = 3
2 . For (i), plot x for the time interval

when finite solution exists (starting from 0); for (ii), plot x for 0 ≤ t ≤ 10.

http://www.springer.com/978-3-319-29636-4

	Introduction
	Bacterial Growth in Chemostat
	System of Two Linear Differential Equations
	Systems of Two Differential Equations
	Predator–Prey Models
	Two Competing Populations
	General Systems of Differential Equations
	The Chemostat Model Revisited
	Spread of Disease
	Enzyme Dynamics
	Bifurcation Theory
	Atherosclerosis: The Risk of High Cholesterol
	Cancer-Immune Interaction
	Cancer Therapy
	Tuberculosis
	Solutions
	Index

