Chapter 2

Neighborhood-Based Collaborative
Filtering

“When one neighbor helps another, we strengthen our
communities.” — Jennifer Pahlka

2.1 Introduction

Neighborhood-based collaborative filtering algorithms, also referred to as memory-based
algorithms, were among the earliest algorithms developed for collaborative filtering. These
algorithms are based on the fact that similar users display similar patterns of rating behavior
and similar items receive similar ratings. There are two primary types of neighborhood-based
algorithms:

1. User-based collaborative filtering: In this case, the ratings provided by similar users to
a target user A are used to make recommendations for A. The predicted ratings of A
are computed as the weighted average values of these “peer group” ratings for each
item.

2. Item-based collaborative filtering: In order to make recommendations for target item
B, the first step is to determine a set S of items, which are most similar to item B.
Then, in order to predict the rating of any particular user A for item B, the ratings in
set S, which are specified by A, are determined. The weighted average of these ratings
is used to compute the predicted rating of user A for item B.

An important distinction between user-based collaborative filtering and item-based col-
laborative filtering algorithms is that the ratings in the former case are predicted us-
ing the ratings of neighboring users, whereas the ratings in the latter case are predicted using
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the user’s own ratings on neighboring (i.e., closely related) items. In the former case, neigh-
borhoods are defined by similarities among users (rows of ratings matrix), whereas in the
latter case, neighborhoods are defined by similarities among items (columns of ratings ma-
trix). Thus, the two methods share a complementary relationship. Nevertheless, there are
considerable differences in the types of recommendations that are achieved using these two
methods.

For the purpose of subsequent discussion, we assume that the user-item ratings matrix
is an incomplete m x n matrix R = [ry;] containing m users and n items. It is assumed
that only a small subset of the ratings matrix is specified or observed. Like all other collab-
orative filtering algorithms, neighborhood-based collaborative filtering algorithms can be
formulated in one of two ways:

1. Predicting the rating value of a user-item combination: This is the simplest and most
primitive formulation of a recommender system. In this case, the missing rating r,;
of the user u for item j is predicted.

2. Determining the top-k items or top-k users: In most practical settings, the merchant
is not necessarily looking for specific ratings values of user-item combinations. Rather,
it is more interesting to learn the top-k most relevant items for a particular user, or
the top-k most relevant users for a particular item. The problem of determining the
top-k items is more common than that of finding the top-k users. This is because the
former formulation is used to present lists of recommended items to users in Web-
centric scenarios. In traditional recommender algorithms, the “top-k problem” almost
always refers to the process of finding the top-k items, rather than the top-k users.
However, the latter formulation is also useful to the merchant because it can be used
to determine the best users to target with marketing efforts.

The two aforementioned problems are closely related. For example, in order to determine
the top-k items for a particular user, one can predict the ratings of each item for that user.
The top-k items can be selected on the basis of the predicted rating. In order to improve
efficiency, neighborhood-based methods pre-compute some of the data needed for prediction
in an offline phase. This pre-computed data can be used in order to perform the ranking in
a more efficient way.

This chapter will discuss various neighborhood-based methods. We will study the impact
of some properties of ratings matrices on collaborative filtering algorithms. In addition, we
will study the impact of the ratings matrix on recommendation effectiveness and efficiency.
We will discuss the use of clustering and graph-based representations for implementing
neighborhood-based methods. We will also discuss the connections between neighborhood
methods and regression modeling techniques. Regression methods provide an optimization
framework for neighborhood-based methods. In particular, the neighborhood-based method
can be shown to be a heuristic approximation of a least-squares regression model [72]. This
approximate equivalence will be shown in section 2.6. Such an optimization framework also
paves the way for the integration of neighborhood methods with other optimization models,
such as latent factor models. The integrated approach is discussed in detail in section 3.7
of Chapter 3.

This chapter is organized as follows. Section 2.2 discusses a number of key properties of
ratings matrices. Section 2.3 discusses the key algorithms for neighborhood-based collabo-
rative filtering algorithms. Section 2.4 discusses how neighborhood-based algorithms can be
made faster with the use of clustering methods. Section 2.5 discusses the use of dimensional-
ity reduction methods for enhancing neighborhood-based collaborative filtering algorithms.
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An optimization modeling view of neighborhood-based methods is discussed in section 2.6.
A linear regression approach is used to simulate the neighborhood model within a learning
and optimization framework. Section 2.7 discusses how graph-based representations can be
used to alleviate the sparsity problem in neighborhood methods. The summary is provided
in section 2.8.

2.2 Key Properties of Ratings Matrices

As discussed earlier, we assume that the ratings matrix is denoted by R, and it is an
m X n matrix containing m users and n items. Therefore, the rating of user u for item j
is denoted by 7,;. Only a small subset of the entries in the ratings matrix are typically
specified. The specified entries of the matrix are referred to as the training data, whereas
the unspecified entries of the matrix are referred to as the test data. This definition has a
direct analog in classification, regression, and semisupervised learning algorithms [22]. In
that case, all the unspecified entries belong to a special column, which is known as the class
variable or dependent variable. Therefore, the recommendation problem can be viewed as
a generalization of the problem of classification and regression.
Ratings can be defined in a variety of ways, depending on the application at hand:

1. Continuous ratings: The ratings are specified on a continuous scale, corresponding to
the level of like or dislike of the item at hand. An example of such a system is the
Jester joke recommendation engine [228, 689], in which the ratings can take on any
value between -10 and 10. The drawback of this approach is that it creates a burden
on the user of having to think of a real value from an infinite number of possibilities.
Therefore, such an approach is relatively rare.

2. Interval-based ratings: In interval-based ratings, the ratings are often drawn from
a H-point or 7-point scale, although 10-point and 20-point scales are also possible.
Examples of such ratings could be numerical integer values from 1 to 5, from -2 to 2,
or from 1 to 7. An important assumption is that the numerical values explicitly define
the distances between the ratings, and the rating values are typically equidistant.

3. Ordinal ratings: Ordinal ratings are much like interval-based ratings, except that or-
dered categorical values may be used. Examples of such ordered categorical values
might be responses such as “Strongly Disagree,” “Disagree,” “Neutral,” “Agree,” and
“Strongly Agree.” A major difference from interval-based ratings is that it is not as-
sumed that the difference between any pair of adjacent ratings values is the same.
However, in practice, this difference is only theoretical, because these different or-
dered categorical values are often assigned to equally spaced utility values. For exam-
ple, one might assign the “Strongly Disagree” response to a rating value of 1, and the
“Strongly Agree” response to a rating value of 5. In such cases, ordinal ratings are
almost equivalent to interval-based ratings. Generally, the numbers of positive and
negative responses are equally balanced in order to avoid bias. In cases where an even
number of responses are used, the “Neutral” option is not present. Such an approach
is referred to as the forced choice method because the neutral option is not present.

4. Binary ratings: In the case of binary ratings, only two options are present, correspond-
ing to positive or negative responses. Binary ratings can be considered a special case
of both interval-based and ordinal ratings. For example, the Pandora Internet radio
station provides users with the ability to either like or dislike a particular music track.
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Binary ratings are an example of the case where forced choice is imposed on the user.
In cases where the user is neutral, she will often not specify a rating at all.

5. Unary ratings: Such systems allow the user to specify a positive preference for an
item, but there is no mechanism to specify a negative preference. This is often the
case in many real-world settings, such as the use of a “like” button on Facebook.
More often, unary ratings are derived from customer actions. For example, the act of
a customer buying an item can be considered a positive vote for an item. On the other
hand, if the customer has not bought the item, then it does not necessarily indicate a
dislike for the item. Unary ratings are special because they simplify the development
of specialized models in these settings.

It is noteworthy that the indirect derivation of unary ratings from customer actions is also
referred to as implicit feedback, because the customer does not explicitly provide feedback.
Rather, the feedback is inferred in an implicit way through the customer’s actions. Such
types of “ratings” are often easier to obtain because users are far more likely to interact with
items on an online site than to explicitly rate them. The setting of implicit feedback (i.e.,
unary ratings) is inherently different, as it can be considered the matrix completion analog
of the positive-unlabeled (PU) learning problem in classification and regression modeling.

The distribution of ratings among items often satisfies a property in real-world settings,
which is referred to as the long-tail property. According to this property, only a small
fraction of the items are rated frequently. Such items are referred to as popular items. The
vast majority of items are rated rarely. This results in a highly skewed distribution of the
underlying ratings. An example of a skewed rating distribution is illustrated in Figure 2.1.
The X-axis shows the index of the item in order of decreasing frequency, and the Y-axis
shows the frequency with which the item was rated. It is evident that most of the items are
rated only a small number of times. Such a rating distribution has important implications
for the recommendation process:

1. In many cases, the high-frequency items tend to be relatively competitive items with
little profit for the merchant. On the other hand, the lower frequency items have larger
profit margins. In such cases, it may be advantageous to the merchant to recommend
lower frequency items. In fact, analysis suggests [49] that many companies, such as
Amazon.com, make most of their profit by selling items in the long tail.

2. Because of the rarity of observed ratings in the long tail it is generally more difficult
to provide robust rating predictions in the long tail. In fact, many recommendation al-
gorithms have a tendency to suggest popular items rather than infrequent items [173].
This phenomenon also has a negative impact on diversity, and users may often become
bored by receiving the same set of recommendations of popular items.

3. The long tailed distribution implies that the items, which are frequently rated by
users, are fewer in number. This fact has important implications for neighborhood-
based collaborative filtering algorithms because the neighborhoods are often defined
on the basis of these frequently rated items. In many cases, the ratings of these high-
frequency items are not representative of the low-frequency items because of the in-
herent differences in the rating patterns of the two classes of items. As a result, the
prediction process may yield misleading results. As we will discuss in section 7.6 of
Chapter 7, this phenomenon can also cause misleading evaluations of recommendation
algorithms.
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Figure 2.1: The long tail of rating frequencies

Important characteristics of ratings, such as sparsity and the long tail, need to be taken into
account during the recommendation process. By adjusting the recommendation algorithms
to take such real-world properties into account, it is possible to obtain more meaningful
predictions [173, 463, 648].

2.3 Predicting Ratings with Neighborhood-Based
Methods

The basic idea in neighborhood-based methods is to use either user-user similarity or item-
item similarity to make recommendations from a ratings matrix. The concept of a neigh-
borhood implies that we need to determine either similar users or similar items in order to
make predictions. In the following, we will discuss how neighborhood-based methods can be
used to predict the ratings of specific user-item combinations. There are two basic principles
used in neighborhood-based models:

1. User-based models: Similar users have similar ratings on the same item. Therefore, if
Alice and Bob have rated movies in a similar way in the past, then one can use Alice’s
observed ratings on the movie Terminator to predict Bob’s unobserved ratings on this
movie.

2. Item-based models: Similar items are rated in a similar way by the same user. There-
fore, Bob’s ratings on similar science fiction movies like Alien and Predator can be
used to predict his rating on Terminator.

Since the collaborative filtering problem can be viewed as a generalization of the clas-
sification/regression modeling problem, neighborhood-based methods can be viewed as
generalizations of nearest neighbor classifiers in the machine learning literature. Unlike
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Table 2.1: User-user similarity computation between user 3 and other users
Item-Id= 1 2 3 4 5 6 Mean Cosine(i,3) Pearson(i,3)

User-1d | Rating  (user-user)  (user-user)
1 7T 6 7 4 5 4 5.5 0.956 0.894
2 6 7 7 4 3 4 4.8 0.981 0.939
3 7?3 3 1 1 7 2 1.0 1.0
4 1 2 2 3 3 4 2.5 0.789 -1.0
) 1 7 1 2 3 3 2 0.645 -0.817

Table 2.2: Ratings matrix of Table 2.1 with mean-centering for adjusted cosine similarity
computation among items. The adjusted cosine similarities of items 1 and 6 with other
items are shown in the last two rows.

Item-Id = 1 2 3 4 ) 6
User-1d |}
1 1.5 0.5 1.5 -1.5 -0.5 -1.5
2 1.2 2.2 ? -0.8 -1.8 -0.8
3 ? 1 1 -1 -1 ?
4 -1.5 -0.5 -0.5 0.5 0.5 1.5
5 -1 ? -1 0 1 1
Cosine(1, 5) 1 0.735 0.912 -0.848 -0.813 -0.990
(item-item)
Cosine(6,7) -0.990 -0.622 -0.912 0.829 0.730 1
)

(item-item

classification, where the nearest neighbors are always determined only on the basis of row
similarity, it is possible to find the nearest neighbors in collaborative filtering on the basis
of either rows or columns. This is because all missing entries are concentrated in a single
column in classification, whereas the missing entries are spread out over the different rows
and columns in collaborative filtering (cf. section 1.3.1.3 of Chapter 1). In the following dis-
cussion, we will discuss the details of both user-based and item-based neighborhood models,
together with their natural variations.

2.3.1 User-Based Neighborhood Models

In this approach, user-based neighborhoods are defined in order to identify similar users to
the target user for whom the rating predictions are being computed. In order to determine
the neighborhood of the target user i, her similarity to all the other users is computed.
Therefore, a similarity function needs to be defined between the ratings specified by users.
Such a similarity computation is tricky because different users may have different scales of
ratings. One user might be biased toward liking most items, whereas another user might
be biased toward not liking most of the items. Furthermore, different users may have rated
different items. Therefore, mechanisms need to be identified to address these issues.

For the m x n ratings matrix R = [r,;] with m users and n items, let I, denote the set
of item indices for which ratings have been specified by user (row) u. For example, if the
ratings of the first, third, and fifth items (columns) of user (row) u are specified (observed)
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and the remaining are missing, then we have I, = {1,3,5}. Therefore, the set of items
rated by both users v and v is given by I,, N I,,. For example, if user v has rated the first
four items, then I, = {1,2,3,4}, and I, N I, = {1,3,5} N {1,2,3,4} = {1, 3}. It is possible
(and quite common) for I, N I, to be an empty set because ratings matrices are generally
sparse. The set I,, N I, defines the mutually observed ratings, which are used to compute
the similarity between the uth and vth users for neighborhood computation.

One measure that captures the similarity Sim(u,v) between the rating vectors of two
users u and v is the Pearson correlation coefficient. Because I,, NI, represents the set of item
indices for which both user v and user v have specified ratings, the coefficient is computed
only on this set of items. The first step is to compute the mean rating u, for each user u
using her specified ratings:

i = Zkf;“|ruk Vue {1...m} (2.1)

Then, the Pearson correlation coefficient between the rows (users) v and v is defined as
follows:

Zkelumv(ruk Nu) (Tvk ,Uv)

\/Zkeluﬁlu Tuk — Hu)? \/Ekelumv ok — Ho)?

Strictly speaking, the traditional definition of Pearson(u,v) mandates that the values of
1y, and p, should be computed only over the items that are rated both by users u and v.
Unlike Equation 2.1, such an approach will lead to a different value of u,, depending on
the choice of the other user v to which the Pearson similarity is being computed. However,
it is quite common (and computationally simpler) to compute each p,, just once for each
user u, according to Equation 2.1. It is hard to make an argument that one of these two
ways of computing p,, always provides strictly better recommendations than the other. In
extreme cases, where the two users have only one mutually specified rating, it can be argued
that using Equation 2.1 for computing g, will provide more informative results, because
the Pearson coefficient will be indeterminate over a single common item in the traditional
definition. Therefore, we will work with the simpler assumption of using Equation 2.1 in this
chapter. Nevertheless, it is important for the reader to keep in mind that many implemen-
tations of user-based methods compute p, and p, in pairwise fashion during the Pearson
computation.

The Pearson coefficient is computed between the target user and all the other users. One
way of defining the peer group of the target user would be to use the set of k users with the
highest Pearson coefficient with the target. However, since the number of observed ratings
in the top-k peer group of a target user may vary significantly with the item at hand, the
closest k users are found for the target user separately for each predicted item, such that
each of these k users have specified ratings for that item. The weighted average of these
ratings can be returned as the predicted rating for that item. Here, each rating is weighted
with the Pearson correlation coefficient of its owner to the target user.

The main problem with this approach is that different users may provide ratings on
different scales. One user might rate all items highly, whereas another user might rate all
items negatively. The raw ratings, therefore, need to be mean-centered in row-wise fashion,
before determining the (weighted) average rating of the peer group. The mean-centered
rating s,; of a user u for item j is defined by subtracting her mean rating from the raw
rating r,;.

Sim(u, v) = Pearson(u, v) (2.2)

Suj =Tuj — fu Yu € {1...m} (2.3)
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As before, the weighted average of the mean-centered rating of an item in the top-k peer
group of target user u is used to provide a mean-centered prediction. The mean rating of
the target user is then added back to this prediction to provide a raw rating prediction 7,
of target user u for item j. The hat notation “”” on top of 7,; indicates a predicted rating,
as opposed to one that was already observed in the original ratings matrix. Let P,(j) be
the set! of k closest users to target user u, who have specified ratings for item j. Users
with very low or negative correlations with target user u are sometimes filtered from P, (j)
as a heuristic enhancement. Then, the overall neighborhood-based prediction function is as
follows:

Soerp Sl o) 5o Teng Simu) - (ny — )
ZvePu(j) |Sim(u, v)| ZvePu(j) |Sim(u, v)|
This broader approach allows for a number of different variations in terms of how the

similarity or prediction function is computed or in terms of which items are filtered out
during the prediction process.

’f‘uj = [y + (24)

Example of User-Based Algorithm

Consider the example of Table 2.1. In this case, the ratings of five users 1...5 are indicated
for six items denoted by 1...6. Each rating is drawn from the range {1...7}. Consider the
case where the target user index is 3, and we want to make item predictions on the basis of
the ratings in Table 2.1. We need to compute the predictions 737 and 73 of user 3 for items
1 and 6 in order to determine the top recommended item.

The first step is to compute the similarity between user 3 and all the other users. We
have shown two possible ways of computing similarity in the last two columns of the same
table. The second-last column shows the similarity based on the raw cosine between the
ratings and the last column shows the similarity based on the Pearson correlation coefficient.
For example, the values of Cosine(1, 3) and Pearson(1, 3) are computed as follows:

Cosine(1,3) = O3+ Tx3tdxltonl = 0.956

V62 4+ 72 442 4 52 . /32 4 32 412 412
Pearson(1,3) =
(6—55)%(3—-2)+(7—55)%*(3—-2)+(4—-5.5)*«(1—-2)+(5—5.5)*(1—2)
V1.52 4+ 1.52 4 (=1.5)2 + (—=0.5)2 - /12 + 12 4 (=1)2 + (—1)2

=0.894

The Pearson and raw cosine similarities of user 3 with all other users are illustrated in
the final two columns of Table 2.1. Note that the Pearson correlation coefficient is much
more discriminative and the sign of the coefficient provides information about similarity
and dissimilarity. The top-2 closest users to user 3 are users 1 and 2 according to both
measures. By using the Pearson-weighted average of the raw ratings of users 1 and 2, the
following predictions are obtained for user 3 with respect to her unrated items 1 and 6:

7%0.89446%0.939

7 pu— ~~ .4

"3t 0.894 + 0.939 649

o Ax0.894+450.939 _
6 089440939

n many cases, k valid peers of target user u with observed ratings for item j might not exist. This
scenario is particularly common in sparse ratings matrices, such as the case where user u has less than k
observed ratings. In such cases, the set Py (j) will have cardinality less than k.
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Thus, item 1 should be prioritized over item 6 as a recommendation to user 3. Furthermore,
the prediction suggests that user 3 is likely to be interested in both movies 1 and 6 to a greater
degree than any of the movies she has already rated. This is, however, a result of the bias
caused by the fact that the peer group {1, 2} of user indices is a far more optimistic group
with positive ratings, as compared to the target user 3. Let us now examine the impact
of mean-centered ratings on the prediction. The mean-centered ratings are illustrated in
Table 2.2. The corresponding predictions with mean-centered Equation 2.4 are as follows:

1.5%0.894 + 1.2 % 0.939

P = 2 ~ 9.

a1 =2+ 0.894 + 0.939 3.35
—1.5%0.894 — 0.8 % 0.939

Pan = 2 =~ 0.

Ta6 =2+ 0.894 + 0.939 86

Thus, the mean-centered computation also provides the prediction that item 1 should be
prioritized over item 6 as a recommendation to user 3. There is, however, one crucial differ-
ence from the previous recommendation. In this case, the predicted rating of item 6 is only
0.86, which is less than all the other items that user 3 has rated. This is a drastically differ-
ent result than in the previous case, where the predicted rating for item 6 was greater than
all the other items that user 3 had rated. Upon visually inspecting Table 2.1 (or Table 2.2),
it is indeed evident that item 6 ought to be rated very low by user 3 (compared to her other
items), because her closest peers (users 1 and 2) have also rated it lower than their other
items. Thus, the mean-centering process enables a much better relative prediction with re-
spect to the ratings that have already been observed. In many cases, it can also affect the
relative order of the predicted items. The only weakness in this result is that the predicted
rating of item 6 is 0.85, which is outside the range of allowed ratings. Such ratings can
always be used for ranking, and the predicted value can be corrected to the closest value in
the allowed range.

2.3.1.1 Similarity Function Variants

Several other variants of the similarity function are used in practice. One variant is to use
the cosine function on the raw ratings rather than the mean-centered ratings:

Zke[ NI, Tuk * Tok

\/Zkelumv Tuk \/Zkelumv

In some implementations of the raw cosine, the normalization factors in the denominator
are based on all the specified items and not the mutually rated items.

RawCosine(u, v) (2.5)

Zke[ NI, Tuk * Tok
\/Zkelu Tuk \/Eke]l,

In general, the Pearson correlation coefficient is preferable to the raw cosine because of
the bias adjustment effect of mean-centering. This adjustment accounts for the fact that
different users exhibit different levels of generosity in their global rating patterns.

The reliability of the similarity function Sim(u,v) is often affected by the number of
common ratings |I, N I,| between users u and v. When the two users have only a small
number of ratings in common, the similarity function should be reduced with a discount
factor to de-emphasize the importance of that user pair. This method is referred to as
significance weighting. The discount factor kicks in when the number of common ratings

RawCosine(u, v) (2.6)
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between the two users is less than a particular threshold 5. The value of the discount factor
is given by mm{l[;m”l’ﬁ }oand it always lies in the range [0, 1]. Therefore, the discounted

similarity DiscountedSim(u, v) is given by the following:

. min{|L, N T,|, 8}
B

The discounted similarity is used both for the process of determining the peer group and
for computing the prediction according to Equation 2.4.

DiscountedSim(u, v) = Sim(u, v) (2.7)

2.3.1.2 Variants of the Prediction Function

There are many variants of the prediction function used in Equation 2.4. For example,
instead of mean-centering the raw rating r,; to the centered value s,;, one might use the
Z-score z,;, which further divides s,,; with the standard deviation o, of the observed ratings
of user u. The standard deviation is defined as follows:

2jer, (Tuj = Ha)?
Uu:\/ IIIul—l Vue {1...m} (2.8)

Then, the standardized rating is computed as follows:

Tuj — Hu Suj
Zuj = = 2.9
uj o o, (2.9)
Let P,(j) denote the set of the top-k similar users of target user u, for which the ratings of
item j have been observed. In this case, the predicted rating 7,; of target user u for item j
is as follows:

ZvePu(j) Sim(w, v) - zv;

. 2.10
S ez 1Sm(u,0) (2.10)

Tuj = Hu + ou

Note that the weighted average needs to be multiplied with o, in this case. In general, if a
function g(-) is applied during ratings normalization, then its inverse needs to be applied
during the final prediction process. Although it is generally accepted that normalization im-
proves the prediction, there seem to be conflicting conclusions in various studies on whether
mean-centering or the Z-score provides higher-quality results [245, 258]. One problem with
the Z-score is that the predicted ratings might frequently be outside the range of the per-
missible ratings. Nevertheless, even when the predicted values are outside the range of per-
missible ratings, they can be used to rank the items in order of desirability for a particular
user.

A second issue in the prediction is that of the weighting of the various ratings in Equa-
tion 2.4. Each mean-centered rating s,; of user v for item j is weighted with the similarity
Sim(u,v) of user v to the target user u. While the value of Sim(u,v) was chosen to be the
Pearson correlation coefficient, a commonly used practice is to amplify it by exponentiating
it to the power of a.. In other words, we have:

Sim(u,v) = Pearson(u, v)* (2.11)

By choosing o > 1, it is possible to amplify the importance of the similarity in the weighting
of Equation 2.4.
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As discussed earlier, neighborhood-based collaborative filtering methods are generaliza-
tions of nearest neighbor classification/regression methods. The aforementioned discussion
is closer to nearest neighbor regression modeling, rather than nearest neighbor classification,
because the predicted value is treated as a continuous variable throughout the prediction
process. It is also possible to create a prediction function which is closer to a classification
method by treating ratings as categorical values and ignoring the ordering among the rat-
ings. Once the peer group of the target user v has been identified, the number of votes for
each possible rating value (e.g., Agree, Neutral, Disagree) within the peer group is deter-
mined. The rating with the largest number of votes is predicted as the relevant one. This
approach has the advantage of providing the most likely rating rather than the average
rating. Such an approach is generally more effective in cases where the number of distinct
ratings is small. It is also useful in the case of ordinal ratings, where the exact distances
between pairs of rating values are not defined. In cases where the granularity of ratings is
high, such an approach is less robust and loses a lot of ordering information among the
ratings.

2.3.1.3 Variations in Filtering Peer Groups

The peer group for a target user may be defined and filtered in a wide variety of ways. The
simplest approach is to use the top-k most similar users to the target user as her peer group.
However, such an approach might include users that are weakly or negatively correlated with
the target. Weakly correlated users might add to the error in the prediction. Furthermore,
negatively correlated ratings often do not have as much predictive value in terms of potential
inversion of the ratings. Although the prediction function technically allows the use of weak
or negative ratings, their use is not consistent with the broader principle of neighborhood
methods. Therefore, ratings with weak or negative correlations are often filtered out.

2.3.1.4 Impact of the Long Tail

As discussed in section 2.2, the distribution of ratings typically shows a long-tail distribution
in many real scenarios. Some movies may be very popular and they may repeatedly occur
as commonly rated items by different users. Such ratings can sometimes worsen the quality
of the recommendations because they tend to be less discriminative across different users.
The negative impact of these recommendations can be experienced both during the peer
group computation and also during the prediction computation (cf. Equation 2.4). This
notion is similar in principle to the deterioration in retrieval quality caused by popular and
noninformative words (e.g., “a,” “an,” “the”) in document retrieval applications. Therefore,
the proposed solutions used in collaborative filtering are also similar to those used in the
information retrieval literature. Just as the notion of Inverse Document Frequency (idf)
exists in the information retrieval literature [400], one can use the notion of Inverse User
Frequency in this case. If m; is the number of ratings of item j, and m is the total number
of users, then the weight w; of the item j is set to the following:

= log (:;) Vie{l...n} (2.12)

Each item j is weighted by w; both during the similarity computation and during the
recommendation process. For example, the Pearson correlation coefficient can be modified
to include the weights as follows:

Zkelumluwk (Tuk = Ha) = (Tok — fio)

(2.13)
\/Zke] nI, Wk - (Fuk — thu)? \/Zke[ nI, Wk * (o — pw)?

Pearson(u, v)
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Item weighting can also be incorporated in other collaborative filtering methods. For exam-
ple, the final prediction step of item-based collaborative filtering algorithms can be modified
to use weights, even though the adjusted cosine similarity between two items remains un-
changed by the weights.

2.3.2 Item-Based Neighborhood Models

In item-based models, peer groups are constructed in terms of items rather than users.
Therefore, similarities need to be computed between items (or columns in the ratings ma-
trix). Before computing the similarities between the columns, each row of the ratings matrix
is centered to a mean of zero. As in the case of user-based ratings, the average rating of
each item in the ratings matrix is subtracted from each rating to create a mean-centered
matrix. This process is identical to that discussed earlier (see Equation 2.3), which results
in the computation of mean-centered ratings s, ;. Let U; be the indices of the set of users
who have specified ratings for item i. Therefore, if the first, third, and fourth users have
specified ratings for item ¢, then we have U; = {1, 3,4}.

Then, the adjusted cosine similarity between the items (columns) ¢ and j is defined as
follows:

ZueUmU Sui * Suj
\/ZueU nU; uz \/ZueU nU; uJ

This similarity is referred to as the adjusted cosine similarity because the ratings are mean-
centered before computing the similarity value. Although the Pearson correlation can also
be used on the columns in the case of the item-based method, the adjusted cosine generally
provides superior results.

Consider the case in which the rating of target item ¢ for user u needs to be determined.
The first step is to determine the top-k£ most similar items to item t based on the afore-
mentioned adjusted cosine similarity. Let the top-k matching items to item ¢, for which the
user u has specified ratings, be denoted by @Q:(u). The weighted average value of these (raw)
ratings is reported as the predicted value. The weight of item j in this average is equal to
the adjusted cosine similarity between item j and the target item ¢. Therefore, the predicted
rating 7,; of user u for target item ¢ is as follows:

AdjustedCosine(z, ) (2.14)

Zjth(u) AdjustedCosine(j, t) - 74
Zjth () |AdjustedCosine(7, t)]

Tut = (2.15)
The basic idea is to leverage the user’s own ratings on similar items in the final step of
making the prediction. For example, in a movie recommendation system, the item peer
group will typically be movies of a similar genre. The ratings history of the same user on
such movies is a very reliable predictor of the interests of that user.

The previous section discussed a number of variants of the basic approach for user-
based collaborative filtering. Because item-based algorithms are very similar to user-based
algorithms, similar variants of the similarity function and the prediction function can be
designed for item-based methods.

Example of Item-Based Algorithm

In order to illustrate the item-based algorithm, we will use the same example of Table 2.1,
which was leveraged to demonstrate the user-based algorithm. The missing ratings of user
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3 are predicted with the item-based algorithm. Because the ratings of items 1 and 6 are
missing for user 3, the similarity of the columns for items 1 and 6 needs to be computed
with respect to the other columns (items).

First, the similarity between items are computed after adjusting for mean-centering.
The mean-centered ratings matrix is illustrated in Table 2.2. The corresponding adjusted
cosine similarities of each item to 1 and 6, respectively, are indicated in the final two rows
of the table. For example, the value of the adjusted cosine between items 1 and 3, denoted
by AdjustedCosine(1, 3), is as follows:

AdjustedCosine(1, 3) — 1.5% 1.5+ (—=1.5) % (—0.5) + (—1) * (1) 0012
’ V152 4 (=1.5)2 + (=1)2- /152 4 (=0.5)2 4 (=1)2

Other item-item similarities are computed in an exactly analogous way, and are illustrated
in the final two rows of Table 2.2. It is evident that items 2 and 3 are most similar to item
1, whereas items 4 and 5 are most similar to item 6. Therefore, the weighted average of the
raw ratings of user 3 for items 2 and 3 is used to predict the rating 731 of item 1, whereas
the weighted average of the raw ratings of user 3 for items 4 and 5 is used to predict the
rating 735 of item 6:

340.735+3%0.912

0.735+0.912
1%0.829+1%0.730

0.829 + 0.730

31

36 =
Thus, the item-based method also suggests that item 1 is more likely to be preferred by user
3 than item 6. However, in this case, because the ratings are predicted using the ratings of
user 3 herself, the predicted ratings tend to be much more consistent with the other ratings
of this user. As a specific example, it is noteworthy that the predicted rating of item 6 is
no longer outside the range of allowed ratings, as in the case of the user-based method.
The greater prediction accuracy of the item-based method is its main advantage. In some
cases, the item-based method might provide a different set of top-k recommendations, even
though the recommended lists will generally be roughly similar.

2.3.3 Efficient Implementation and Computational Complexity

Neighborhood-based methods are always used to determine the best item recommendations
for a target user or the best user recommendations for a target item. The aforementioned
discussion only shows how to predict the ratings for a particular user-item combination, but
it does not discuss the actual ranking process. A straightforward approach is to compute all
possible rating predictions for the relevant user-item pairs (e.g., all items for a particular
user) and then rank them. While this is the basic approach used in current recommender
systems, it is important to observe that the prediction process for many user-item combina-
tions reuses many intermediate quantities. Therefore, it is advisable to have an offline phase
to store these intermediate computations and then leverage them in the ranking process.
Neighborhood-based methods are always partitioned into an offiine phase and an online
phase. In the offline phase, the user-user (or item-item) similarity values and peer groups
of the users (or items) are computed. For each user (or item), the relevant peer group
is prestored on the basis of this computation. In the online phase, these similarity values
and peer groups are leveraged to make predictions with the use of relationships such as
Equation 2.4. Let n’ < n be the maximum number of specified ratings of a user (row), and
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m’ < m be the maximum number of specified ratings of an item (column). Note that n'
is the maximum running time for computing the similarity between a pair of users (rows),
and m’ is the maximum running time for computing the similarity between a pair of items
(columns). In the case of user-based methods, the process of determining the peer group of a
target user may require O(m-n') time. Therefore, the offline running time for computing the
peer groups of all users is given by O(m? - n’). For item-based methods, the corresponding
offline running time is given by O(n? - m’).

In order to be able to use the approach for varying values of &k, one might end up having
to store all pairs of nonzero similarities between pairs of users (or items). Therefore, the
space requirements of user-based methods are O(m?), whereas the space requirements of
item-based methods are O(n?). Because the number of users is typically greater than the
number of items, the space requirements of user-based methods are generally greater than
those of item-based methods.

The online computation of the predicted value according to Equation 2.4 requires O(k)
time for both user-based and item-based methods, where k is the size of the user/item
neighborhood used for prediction. Furthermore, if this prediction needs to be executed over
all items in order to rank them for a target user, then the running time is O(k - n) for both
user-based and item-based methods. On the other hand, a merchant may occasionally wish
to determine the top-r users to be targeted for a specific item. In this case, the prediction
needs to be executed over all users in order to rank them for a target item, and the running
time is O(k - m) for both user-based and item-based methods. It is noteworthy that the
primary computational complexity of neighborhood-based methods resides in the offline
phase, which needs to be executed occasionally. As a result, neighborhood-based methods
tend to be efficient when they are used for online prediction. After all, one can afford to be
generous in allocating significantly more computational time to the offline phase.

2.3.4 Comparing User-Based and Item-Based Methods

Item-based methods often provide more relevant recommendations because of the fact that a
user’s own ratings are used to perform the recommendation. In item-based methods, similar
items are identified to a target item, and the user’s own ratings on those items are used to
extrapolate the ratings of the target. For example, similar items to a target historical movie
might be a set of other historical movies. In such cases, the user’s own recommendations
for the similar set might be highly indicative of her preference for the target. This is not
the case for user-based methods in which the ratings are extrapolated from other users,
who might have overlapping but different interests. As a result, item-based methods often
exhibit better accuracy.

Although item-based recommendations are often more likely to be accurate, the relative
accuracy between item-based and user-based methods also depends on the data set at hand.
As you will learn in Chapter 12, item-based methods are also more robust to shilling attacks
in recommender systems. On the other hand, it is precisely these differences that can lead
to greater diversity in the recommendation process for user-based methods over item-based
methods. Diversity refers to the fact that the items in the ranked list tend to be somewhat
different. If the items are not diverse, then if the user does not like the first item, she might
not also like any of the other items in the list. Greater diversity also encourages serendipity,
through which somewhat surprising and interesting items are discovered. Item-based meth-
ods might sometimes recommend obvious items, or items which are not novel from previous
user experiences. The notions of novelty, diversity, and serendipity are discussed in detail in
Chapter 7. Without sufficient novelty, diversity, and serendipity, users might become bored
with very similar recommendations to what they have already watched.
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Figure 2.2: Explaining Alice’s top recommendations with her neighbor rating histogram

Item-based methods can also provide a concrete reason for the recommendation. For
example, Netflix often provides recommendations with statements such as the following:

Because you watched “Secrets of the Wings,” [the recommendations are] (List) .

Such explanations can be concretely addressed with item-based methods? by using
the item neighborhoods. On the other hand, these explanations are harder to address
withuser-based methods, because the peer group is simply a set of anonymous users and
not directly usable in the recommendation process.

User-based methods provide different types of explanations. For example, consider a
scenario where the movies Terminator, Alien, and Predator, are recommended to Alice.
Then, a histogram of her neighbor’s ratings for these movies can be shown to her. An
example of such a histogram is shown in Figure 2.2. This histogram can be used by Alice to
obtain an idea of how much she might like this movie. Nevertheless, the power of this type of
explanation is somewhat limited because it does not give Alice an idea of how these movies
relate to her own tastes or to those of friends she actually knows and trusts. Note that the
identity of her neighbors is usually not available to Alice because of privacy concerns.

Finally, item-based methods are more stable with changes to the ratings. This is because
of two reasons. First, the number of users is generally much larger than the number of items.
In such cases, two users may have a very small number of mutually rated items, but two
items are more likely to have a larger number of users who have co-rated them. In the
case of user-based methods, the addition of a few ratings can change the similarity values
drastically. This is not the case for item-based methods, which are more stable to changes
in the values of the ratings. Second, new users are likely to be added more frequently in

2The precise method used by Netflix is proprietary and therefore not known. However, item-based
methods do provide a viable methodology to achieve similar goals.
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commercial systems than new items. In such cases, the computation of neighborhood items
can be done only occasionally because item neighborhoods are unlikely to change drastically
with the addition of new users. On the other hand, the computation of user neighborhoods
needs to be performed more frequently with the addition of new users. In this context,
incremental maintenance of the recommendation model is more challenging in the case of
user-based methods.

2.3.5 Strengths and Weaknesses of Neighborhood-Based Methods

Neighborhood methods have several advantages related to their simplicity and intuitive
approach. Because of the simple and intuitive approach of these methods, they are easy to
implement and debug. It is often easy to justify why a specific item is recommended, and
the interpretability of item-based methods is particularly notable. Such justifications are
often not easily available in many of the model-based methods discussed in later chapters.
Furthermore, the recommendations are relatively stable with the addition of new items and
users. It is also possible to create incremental approximations of these methods.

The main disadvantage of these methods is that the offline phase can sometimes be im-
practical in large-scale settings. The offline phase of the user-based method requires at least
O(m?) time and space. This might sometimes be too slow or space-intensive with desktop
hardware, when m is of the order of tens of millions. Nevertheless, the online phase of neigh-
borhood methods is always efficient. The other main disadvantage of these methods is their
limited coverage because of sparsity. For example, if none of John’s nearest neighbors have
rated Terminator, it is not possible to provide a rating prediction of Terminator for John.
On the other hand, we care only about the top-k items of John in most recommendation set-
tings. If none of John’s nearest neighbors have rated Terminator, then it might be evidence
that this movie is not a good recommendation for John. Sparsity also creates challenges for
robust similarity computation when the number of mutually rated items between two users
is small.

2.3.6 A Unified View of User-Based and Item-Based Methods

The respective weaknesses of user-based and item-based methods arise out of the fact that
the former ignores the similarity between the columns of the ratings matrix, whereas the
latter ignores the similarity between the rows while determining the most similar entries.
A natural question arises whether we can determine the most similar entries to a target
entry by unifying the two methods. By doing so, one does not need to ignore the similarity
along either rows or columns. Rather, one can combine the similarity information between
rows and columns.

In order to achieve this goal, it is crucial to understand that the user-based and item-
based methods are almost identical (with some minor differences), once the rows have been
mean-centered. We can assume without loss of generality that the rows of the ratings matrix
are mean-centered because the mean of each row can be added back to each entry after
the prediction. It is also noteworthy that if the rows are mean-centered then the Pearson
correlation coefficient between rows is identical® to the cosine coefficient. Based on this

3There can be some minor differences depending on how the mean is computed for each row within the
Pearson coefficient. If the mean for each row is computed using all the observed entries of that row (rather
than only the mutually specified entries), then the Pearson correlation coefficient is identical to the cosine
coefficient for row-wise mean-centered matrices.
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assumption, the user-based and item-based methods can be described in a unified way to
predict the entry 7,; in the ratings matrix R:

1. For atarget entry (u, j) determine the most similar rows/columns of the ratings matrix
with the use of the cosine coefficient between rows/columns. For user-based methods
rows are used, whereas for item-based methods, columns are used.

2. Predict the target entry (u, j) using a weighted combination of the ratings in the most
similar rows/columns determined in the first step.

Note that the aforementioned description ignores either the rows or the columns in each
step. One can, of course, propose a generalized description of the aforementioned steps in
which the similarity and prediction information along rows and columns are combined:

1. For a target entry (u,j) determine the most similar entries of the ratings matrix
with the use of a combination function of the similarity between rows and columns.
For example, one can use the sum of the cosine similarity between rows and between
columns to determine the most similar entries in the ratings matrix to (u, 7).

2. Predict the target entry (u, j) using a weighted combination of the ratings in the most
similar entries determined in the first step. The weights are based on the similarities
computed in the first step.

We have highlighted the steps, which are different in the generalized method. This approach
fuses the similarities along rows and columns with the use of a combination function. One
can experiment with the use of various combination functions to obtain the most effective
results. Detailed descriptions of such unified methods may be found in [613, 622]. This
basic principle is also used in the multidimensional model of context-sensitive recommender
systems, in which the similarities along users, items, and other contextual dimensions are
unified into a single framework (cf. section 8.5.1 of Chapter 8).

2.4 Clustering and Neighborhood-Based Methods

The main problem with neighborhood-based methods is the complexity of the offline phase,
which can be quite significant when the number of users or the number of items is very
large. For example, when the number of users m is of the order of a few hundred million, the
O(m? -n') running time of a user-based method will become impractical even for occasional
offline computation. Consider the case where m = 10%® and n’ = 100. In such a case,
O(m? - n') = O(10'®) operations will be required. If we make the conservative assumption
that each operation requires an elementary machine cycle, a 10GHz computer will require
108 seconds, which is approximately 115.74 days. Clearly, such an approach will not be very
practical from a scalability point of view.

The main idea of clustering-based methods is to replace the offline nearest-neighbor com-
putation phase with an offline clustering phase. Just as the offline nearest-neighbor phase
creates a large number of peer groups, which are centered at each possible target, the clus-
tering process creates a smaller number of peer groups which are not necessarily centered
at each possible target. The process of clustering is much more efficient than the O(m? - n’)
time required for construction of the peer groups of every possible target. Once the clusters
have been constructed, the process of predicting ratings is similar to the approach used in
Equation 2.4. The main difference is that the top-k closest peers within the same cluster are
used to perform the prediction. It is noteworthy that the pairwise similarity computation
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needs to be performed only within the same cluster and therefore, the approach can be
significantly more efficient. This efficiency does result in some loss of accuracy because the
set of closest neighbors to each target within a cluster is of lower quality than that over
the entire data. Furthermore, the clustering granularity regulates the trade-off between ac-
curacy and efficiency. When the clusters are fine-grained, the efficiency improves, but the
accuracy is reduced. In many cases, very large gains in efficiency can be obtained for small
reductions in accuracy. When the ratings matrices are very large, this approach provides a
very practical alternative at a small cost.

One challenge with the use of this approach is the fact that the ratings matrix is incom-
plete. Therefore, clustering methods need to be adapted to work with massively incomplete
data sets. In this context, k-means methods can be easily adapted to incomplete data. The
basic idea of a k-means approach is to work with k central points (or “means”), which
serve as the representatives of k different clusters. In k-means methods, the solution to a
clustering can be fully represented by the specification of these k representatives. Given a
set of k representatives Yj ...Y%, each data point is assigned to its closest representative
with the use of a similarity or distance function. Therefore, the data partitioning can be
uniquely defined by the set of representatives. For an m x n data set, each representative Y;
is an n-dimensional data point, which is a central point of the ith cluster. Ideally, we would
like the central representative to be the mean of the cluster.

Therefore, the clusters are dependent on the representatives and vice versa. Such an
interdependency is achieved with an iterative approach. We start with a set of representa-
tives Y7 ...Y%, which might be randomly chosen points generated in the range of the data
space. We iteratively compute the cluster partitions using the representatives, and then re-
compute the representatives as the centroids of the resulting clusters. While computing the
centroids, care must be taken to use only the observed values in each dimension. This two-
step iterative approach is executed to convergence. The two-step approach is summarized
as follows:

1. Determine the clusters C; . ..Cj, by assigning each row in the m x n matrix to its closest
representative from Y;...Yj. Typically, the Euclidean distance or the Manhattan
distance is used for similarity computation.

2. For each i € {1...k}, reset Y; to the centroid of the current set of points in C;.

The main problem with the use of this approach is that the m x n ratings matrix is incom-
plete. Therefore, the computation of the mean and the distance values becomes undefined.
However, it is relatively easy to compute the means using only the observed values within
a cluster. In some cases, the centroid itself might not be fully specified, when no rating is
specified for one or more items in the cluster. The distance values are computed using only
the subset of dimensions, which are specified both for the data point and cluster represen-
tative. The distance is also divided by the number of dimensions used in the computation.
This is done in order to adjust for the fact that different numbers of dimensions are used for
computing the distance of a data point to various centroids, when all the centroids are not
fully specified. In this context, the Manhattan distance yields better adjustments than the
Euclidean distance, and the normalized value can be interpreted more easily as an average
distance along each observed value.

The aforementioned approach clusters the rows for user-based collaborative filtering.
In item-based methods, it would be necessary to cluster the columns. The approach is
exactly similar except that it is applied to the columns rather than the rows. A number of
clustering methods for efficient collaborative filtering are discussed in [146, 167, 528, 643,
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644, 647]. Some of these methods are user-based methods, whereas others are item-based
methods. A number of co-clustering methods [643] can be used to cluster rows and columns
simultaneously.

2.5 Dimensionality Reduction and Neighborhood
Methods

Dimensionality reduction methods can be used to improve neighborhood-based methods
both in terms of quality and in terms of efficiency. In particular, even though pairwise
similarities are hard to robustly compute in sparse rating matrices, dimensionality reduction
provides a dense low-dimensional representation in terms of latent factors. Therefore, such
models are also referred to as latent factor models. Even when two users have very few items
rated in common, a distance can be computed between their low-dimensional latent vectors.
Furthermore, it is more efficient to determine the peer groups with low-dimensional latent
vectors. Before discussing the details of dimensionality reduction methods, we make some
comments about two distinct ways in which latent factor models are used in recommender
systems:

1. A reduced representation of the data can be created in terms of either row-wise la-
tent factors or in terms of column-wise latent factors. In other words, the reduced
representation will either compress the item dimensionality or the user dimension-
ality into latent factors. This reduced representation can be used to alleviate the
sparsity problem for neighborhood-based models. Depending on which dimension has
been compressed into latent factors, the reduced representation can be used for either
user-based neighborhood algorithms or item-based neighborhood algorithms.

2. The latent representations of both the row space and the column space are determined
simultaneously. These latent representations are used to reconstruct the entire ratings
matrix in one shot without the use of neighborhood-based methods.

Because the second class of methods is not directly related to neighborhood-based methods,
it will not be discussed in this chapter. A detailed discussion of the second class of methods
will be provided in Chapter 3. In this chapter, we will focus only on the first class of methods.

For ease of discussion, we will first describe only the user-based collaborative filtering
method. In user-based collaborative filtering methods, the basic idea is to transform the
m X n ratings matrix R into a lower-dimensional space by using principal component anal-
ysis. The resulting matrix R’ is of size m x d, where d < n. Thus, each of the (sparse)
n-dimensional vector of ratings corresponding to a user is transformed into a reduced d-
dimensional space. Furthermore, unlike the original rating vector, each of the d dimensions
is fully specified. After this d-dimensional representation of each user is determined, the
similarity is computed from the target user to each user using the reduced representation.
The similarity computations in the reduced representation are more robust because the new
low-dimensional vector is fully specified. Furthermore, the similarity computations are more
efficient because of the low dimensionality of the latent representation. A simple cosine or
dot product on the reduced vectors is sufficient to compute the similarity in this reduced
space.

It remains to be described how the low-dimensional representation of each data point
is computed. The low-dimensional representation can be computed using either SVD-like
methods or PCA-like methods. In the following, we describe an SVD-like method.
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Table 2.3: Example of bias in estimating covariances
User Index  Godfather Gladiator Nero

1 1 1 1
2 7 7

3 3 1 1
4 5 7 7
) 3 1 ?
6 5 7 ?
7 3 1 ?
8 5 7 ?
9 3 1 ?
10 5 7 ?
11 3 1 ?
12 5 7 ?

The first step is to augment the m x n incomplete ratings matrix R to fill in the missing
entries. The missing entry is estimated to be equal to the mean of the corresponding row
in the matrix (i.e., the mean rating of the corresponding user). An alternative approach is
to estimate the missing entry as the mean of the corresponding column in the matrix (i.e.,
the mean rating of the corresponding item). Let the resulting matrix be denoted by Ry.
Then, we compute the n x n similarity matrix between pairs of items, which is given by
S = R}FR ¢. This matrix is positive semi-definite. In order to determine the dominant basis
vectors of R for SVD, we perform the diagonalization of the similarity matrix S as follows:

S = PAPT (2.16)

Here, P is an n x n matrix, whose columns contain the orthonormal eigenvectors of S. A
is a diagonal matrix containing the non-negative eigenvalues of S along its diagonal. Let
P, be the n x d matrix containing only the columns of P corresponding to the largest d
eigenvectors. Then, the low-dimensional representation of R is given by the matrix product
R;P;. Note that the dimensions of the reduced representation R;P; are m x d, because
Ry is an m x n matrix and Py is an n x d matrix. Therefore, each of the m users is
now represented in a d-dimensional space. This representation is then used to determine
the peer group of each user. Once the peers have been determined, the rating prediction
can be easily performed with Equation 2.4. Such an approach can also be used for item-
based collaborative filtering by applying the entire dimensionality reduction method to the
transpose of Ry instead of Ry.

The aforementioned methodology can be viewed as a singular value decomposition (SVD)
of the ratings matrix Ry. A number of other methods [24, 472] use principal component
analysis (PCA) instead of SVD, but the overall result is very similar. In the PCA method,
the covariance matrix of Ry is used instead of the similarity matrix RJ:CR ¢. For data, which
is mean-centered along columns, the two methods are identical. Therefore, one can subtract
the mean of each column from its entries, and then apply the aforementioned approach to
obtain a transformed representation of the data. This transformed representation is used
to determine the peers of each user. Mean-centering has benefits in terms of reducing bias
(see next section). An alternative approach is to first mean center along each row and then
mean-center along each column. SVD can be applied to the transformed representation.
This type of approach generally provides the most robust results.
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2.5.1 Handling Problems with Bias

It is noteworthy that the matrix Ry is derived from the incomplete matrix R by filling
in the unspecified entries with average values along either the rows or the columns. Such
an approach is likely to cause considerable bias. To understand the nature of this bias,
consider the example in Table 2.3 of ratings given by 12 users to the three movies Godfather,
Gladiator, and Nero. Let us assume that PCA is used for dimensionality reduction, and
therefore the covariance matrix needs to be estimated. Let us assume that missing values
are replaced with the averages along the columns.

In this case, the ratings are drawn on a scale from 1 to 7 by a set of 4 users for 3 movies.
It is visually evident that the correlations between the ratings of the movies Gladiator and
Nero are extremely high because the ratings are very similar in the four cases in which they
are specified. The correlation between Godfather and Gladiator seems to be less significant.
However, many users have not specified their ratings for Nero. Because the mean rating
of Nerois (1 + 7+ 1+ 7)/4 = 4, these unspecified ratings are replaced with the mean
value of 4. The addition of these new entries significantly reduces the estimated covariance
between Gladiator and Nero. However, the addition of the new entries has no impact on
the covariance between Godfather and Gladiator. After filling in the missing ratings, the
pairwise covariances between the three movies can be estimated as follows:

Godfather  Gladiator Nero

Godfather 2.55 4.36 2.18
Gladiator 4.36 9.82 3.27
Nero 2.18 3.27 3.27

According to the aforementioned estimation, the covariance between Godfather and Gladia-
toris larger than that between Gladiator and Nero. This does not seem to be correct because
the ratings in Table 2.3 for Gladiator and Nero are identical for the case where both are
specified. Therefore, the correlation between Gladiator and Nero ought to be higher. This
error is a result of the bias caused by filling in the unspecified entries with the mean of that
column. This kind of bias can be very significant in sparse matrices because most of the
entries are unspecified. Therefore, methods need to be designed to reduce the bias caused
by using the mean ratings in place of the unspecified entries. In the following, we explore
two possible solutions to this problem.

2.5.1.1 Maximum Likelihood Estimation

The conceptual reconstruction method [24, 472] proposes the use of probabilistic techniques,
such as the EM-algorithm, in order to estimate the covariance matrix. A generative model is
assumed for the data and the specified entries are viewed as the outcomes of the generative
model. The covariance matrix can be estimated as part of the process of estimating the
parameters of this generative model. In the following, we provide a simplification of this
approach. In this simplified approach, the maximum likelihood estimate of the covariance
matrix is computed. The maximum likelihood estimate of the covariance between each pair
of items is estimated as the covariance between only the specified entries. In other words,
only the users that have specified ratings for a particular pair of items are used to estimate
the covariance. In the event that there are no users in common between a pair of items, the
covariance is estimated to be 0. By using this approach, the following covariance matrix is
estimated for the data in Table 2.3.
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Godfather  Gladiator Nero

Godfather 2.55 4.36 8
Gladiator 4.36 9.82 12
Nero 8 12 12

In this case, it becomes immediately evident that the covariance between Gladiator and
Nero is almost three times that between Godfather and Gladiator. Furthermore, the movie
Nero has more than three times as much variance than was originally estimated and has
the largest variance in ratings among all movies. While the pairwise covariance between
Godfather and Gladiator was the largest compared to all other pairwise covariances using
the mean-filling technique, this same pair now shows the least of all pairwise covariances.
This example suggests that the bias corrections can be very significant in some situations.
The greater the proportion of unspecified entries in the matrix, the greater the bias of the
mean-filling technique. Therefore, the modified technique of leveraging only the specified
entries is used for computing the covariance matrix. While such a technique is not always
effective, it is superior to the mean-filling technique. The reduced n x d basis matrix P, is
computed by selecting the top-d eigenvectors of the resulting covariance matrix.

In order to further reduce the bias in representation, the incomplete matrix R can be
directly projected on the reduced matrix Py, rather than projecting the filled matrix Ry
on P,;. The idea is to compute the contribution of each observed rating to the projection on
each latent vector of P;, and then average the contribution over the number of such ratings.
This averaged contribution is computed as follows. Let e; be the ith column (eigenvector)
of Py, for which the jth entry is e;;. Let ry; be the observed rating of user  for item j in
matrix R. Then, the contribution of user u to the projection on latent vector e; is given by
ruj€ji- Then, if the set I,, represents the indices of the specified item ratings of user u, the
averaged contribution a,; of user v on the ith latent vector is as follows:

> jer, Tui€ji

| (2.17)

Qyq =
This type of averaged normalization is particularly useful in cases where the different users
have specified different numbers of ratings. The resulting m x d matrix A = [ayi|mxd 18
used as the reduced representation of the underlying ratings matrix. This reduced matrix
is used to compute the neighborhood of the target user efficiently for user-based collabo-
rative filtering. It is also possible to apply the approach to the transpose of the matrix R
and reduce the dimensionality along the user dimension, rather than the item dimension.
Such an approach is useful for computing the neighborhood of a target item in item-based
collaborative filtering. This approach of using the reduced representation for missing value
imputation is discussed in [24, 472].

2.5.1.2 Direct Matrix Factorization of Incomplete Data

Although the aforementioned methodology can correct for the bias in covariance estimation
to some extent, it is not completely effective when the sparsity level of the ratings is high.
This is because the covariance matrix estimation requires a sufficient number of observed
ratings for each pair of items for robust estimation. When the matrix is sparse, the covariance
estimates will be statistically unreliable.

A more direct approach is to use matrix factorization methods. Methods such as singular
value decomposition are essentially matrix factorization methods. For a moment, assume
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that the mxn ratings matrix R is fully specified. It is a well-known fact of linear algebra [568]
that any (fully specified) matrix R can be factorized as follows:

R=QxP" (2.18)

Here, Q is an m xm matrix with columns containing the m orthonormal eigenvectors of RRT.
The matrix P is an n X n matrix with columns containing the n orthonormal eigenvectors
of RTR. ¥ is an m x n diagonal matrix in which only diagonal entries? are nonzero and
they contain the square-root of the nonzero eigenvalues of RT R (or equivalently, RRT). It is
noteworthy that the eigenvectors of RT R and RRT are not the same and will have different
dimensionality when m # n. However, they will always have the same number of (nonzero)
eigenvalues, which are identical in value. The values on the diagonal of ¥ are also referred
to as singular values.

Furthermore, one can approzximately factorize the matrix by using truncated SVD, where
only the eigenvectors corresponding to the d < min{m,n} largest singular values are used.
Truncated SVD is computed as follows:

R~ Qq%4PT (2.19)
Here, Q4, X4, and Py are m x d, d x d, and n X d matrices, respectively. The matrices Q4 and
P, respectively, contain the d largest eigenvectors of RRT and RT R, whereas the matrix ¥4
contains the square-roots of the d largest eigenvalues of either matrix along its diagonal. It
is noteworthy that the matrix P; contains the top eigenvectors of RT R, which is the reduced
basis representation required for dimensionality reduction. Furthermore, the matrix Q%4
contains the transformed and reduced m x d representation of the original ratings matrix
in the basis corresponding to Py. It can be shown that such an approximate factorization
has the least mean-squared error of the approximated entries as compared to any other
rank-d factorization. Therefore, if we can approximately factorize the ratings matrix R in
the form corresponding to Equation 2.19, it provides us with the reduced basis as well as
the representation of the ratings in the reduced basis. The main problem of using such an
approach is that the ratings matrix is not fully specified. As a result, this factorization is
undefined. Nevertheless, it is possible to recast the formulation as an optimization problem,
in which the squared error of factorization is optimized only over the observed entries of
the ratings matrix. It is also possible to explicitly solve this modified formulation using
nonlinear optimization techniques. This results in a robust and unbiased lower dimensional
representation. Furthermore, such an approach can be used to directly estimate the ratings
matrix by using Equation 2.19, once the reduced factor matrices have been determined. In
other words, such methods have a direct utility beyond neighborhood-based methods. More
details of these latent factor models and nonlinear optimization techniques will be discussed
in section 3.6 of Chapter 3. The reader should consult this section to learn how the reduced
representation may be computed by using modified optimization formulations.

2.6 A Regression Modeling View of Neighborhood
Methods

An important observation about both user-based and item-based methods is that they
predict ratings as linear functions of either the ratings of the same item by neighboring
users, or of the same user on neighboring items. In order to understand this point, we

4Diagonal matrices are usually square. Although this matrix is not square, only entries with equal indices
are nonzero. This is a generalized definition of a diagonal matrix.
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replicate the prediction function of user-based neighborhood methods (cf. Equation 2.4)

below: )

EvEPu(j) Sim(u, v) - (ro; = fiv)
ZvePu(j) |Sim(u, v)|

Note that the predicted rating is a weighted linear combination of other ratings of the same
item. The linear combination has been restricted only to the ratings of item j belonging to
users with sufficiently similar tastes to target user u. This restriction is enabled with the use
of the peer rating set P,(j). Recall from the discussion earlier in this chapter that P,(j) is
the set of k nearest users to target user u, who have also rated item j. Note that if we allowed
the set P,(j) to contain all ratings of item j (and not just specific peer users), then the
prediction function becomes similar® to that of linear regression [22]. In linear regression,
the ratings are also predicted as weighted combinations of other ratings, and the weights
(coefficients) are determined with the use of an optimization model. In the neighborhood-
based approach, the coefficients of the linear function are chosen in a heuristic way with
the user-user similarities, rather than with the use of an optimization model.

A similar observation applies to the case of item-based neighborhood methods, where
the prediction function (cf. Equation 2.15) is as follows:

Puj = J + (2.20)

Zjth(u) AdjustedCosine(j, t) - 74,

2.21
> jequ(u) [AdjustedCosine(j, t)| (221)

Tut =

The set Q¢(u) represents the set of the k closest items to target item ¢ that have also been
rated by user u. In this case, the rating of a user u for a target item ¢ is expressed as a
linear combination of her own ratings. As in the case of user-based methods, the coefficients
of the linear combination are heuristically defined with similarity values. Therefore, a user-
based model expresses a predicted rating as a linear combination of ratings in the same
column, whereas an item-based model expresses a predicted rating as a linear combination
of ratings in the same row. From this point of view, neighborhood-based models are heuristic
variants of linear regression models, in which the regression coefficients are heuristically set
to similarity values for related (neighboring) items/users and to 0 for unrelated items/users.

It is noteworthy that the use of similarity values as combination weights is rather heuris-
tic and arbitrary. Furthermore, the coefficients do not account for interdependencies among
items. For example, if a user has rated certain sets of correlated items in a very similar way,
then the coefficients associated with these items will be interdependent as well. The use of
similarities as heuristic weights does not account for such interdependencies.

A question arises as to whether one can do better by learning the weights with the use
of an optimization formulation. It turns out that one can derive analogous regression-based
models to the user-based and item-based models. Several different optimization formulations
have been proposed in the literature, which can leverage user-based models, item-based mod-
els, or a combination of the two. These models can be viewed as theoretical generalizations
of the heuristic nearest neighbor model. The advantage of such models is that they are
mathematically better founded in the context of a crisp optimization formulation, and the
weights for combining the ratings can be better justified because of their optimality from
a modeling perspective. In the following, we discuss an optimization-based neighborhood
model, which is a simplification of the work in [309]. This also sets the stage for combining
the power of this model with other optimization models, such as matrix factorization, in
section 3.7 of Chapter 3.

5A discussion of linear regression is provided in section 4.4.5 of Chapter 4, but in the context of content-
based systems.
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2.6.1 User-Based Nearest Neighbor Regression

Consider the user-based prediction of Equation 2.20. One can replace the (normalized)
similarity coefficient with the unknown parameter w;;" to model the predicted rating 7,;
of target user u for item j as follows:

=t D W (v — i) (2.22)
vE Py (j)

As in the case of neighborhood models, one can use the Pearson correlation coefficient to
define P,(j). There is, however, a subtle but important difference in terms of how P,(j) is
defined in this case. In neighborhood-based models, P,(j) is the set of k closest users to
target user u, who have specified ratings for item j. Therefore, the size of P,(j) is often
exactly k, when at least k users have rated item j. In the case of regression methods,
the set P,(j) is defined by first determining the k closest peers for each user, and then
retaining only those for which ratings are observed. Therefore, the size of set P, ( ) is often
significantly less than k. Note that the parameter k£ needs to be set to much larger values
in the regression framework as compared to that in neighborhood models because of its
different interpretation.

Intuitively, the unknown coeflicient w:°" controls the portion of the prediction of ratings
given by user u, which comes from her sumlarity to user v, because this portion is given by
WY - (Tyj — o). It is possible for wis" to be different from w5, It is also noteworthy
that wyse" is only defined for the k different values of v (user mdlces) that are closest to
user u on the basis of the Pearson coefficient. The other values of w:" are not needed by
the prediction function of Equation 2.22, and they therefore do not need to be learned. This
has the beneficial effect of reducing the number of regression coefficients.

One can use the aggregate squared difference between the predicted ratings #,,; (accord-
ing to Equation 2.22) and the observed ratings r,; to create an objective function that
estimates the quality of a particular set of coefficients. Therefore, one can use the observed
ratings in the matrix to set up a least-squares optimization problem over the unknown val-
ues of w¥¢" in order to minimize the overall error. The idea is to predict each (observed)
rating of user w with her nearest k£ users in a formal regression model, and then measure
the error of the prediction. The squared errors can be added over all items rated by user
u to create a least-squares formulation. Therefore, the optimization problem is set up for
each target user u. Let I, be the set of items that have been rated by the target user u. The
least-squares objective function for the uth user can be stated as the sum of the squares of
the errors in predicting each item in I, with the k nearest neighbors of the user in a formal
regression model:

user

Minimize J, = Z (Tuj — Puj)?

Jj€l
2
§ : § : user
- Tuj — | Hu + w,, TUJ ,Uv)
JE€L, UEPH(])

The second relationship is obtained by substituting the expression in Equation 2.22 for 7.
Note that this optimization problem is formulated separately for each target user u. How-
ever, one can add up the objective function values J,, over different target users u € {1...m}
with no difference to the optimal solution. This is because the various values of J, are ex-
pressed in terms of mutually disjoint sets of optimization variables wy:¢". Therefore, the
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consolidated optimization problem is expressed as follows:

2

Minimize ZJ —ZZ Tuj — | Hu + Z Wyl (T — Ho) (2.23)

u=1j€eIl, vEP,(F)

One can solve each of the smaller optimization problems (i.e., objective function J,) in
their decomposed form more efficiently without affecting the overall solution. However, the
consolidated formulation has the advantage that it can be combined with other optimization
models such as matrix factorization methods (cf. section 3.7 of Chapter 3) in which such a
decomposition is not possible. Nevertheless, if linear regression is to be used on a standalone
basis, it makes sense to solve these problems in their decomposed form.

Both the consolidated and decomposed versions of the optimization models are least-
squares optimization problems. These methods can be solved with the use of any off-the-
shelf optimization solver. Refer to section 4.4.5 of Chapter 4 for a discussion of closed form
solutions to linear regression problems. A desirable property of most of these solvers is that
they usually have regularization built in them, and they can therefore avoid overfitting to
some extent. The basic idea in regularization is to reduce model complexity by adding the
term A ic; D cp. () (w“ser) to each (decomposed) objective function J,,, where A > 0
is a user-defined parameter regulating the weight of the regularization term. The term
A ier, Zover iy (Wia")? penalizes large coefficients, and it therefore shrinks the absolute
values of the coeflicients. Smaller coefficients result in simpler models and reduce overfitting.
However, as discussed below, it is sometimes not sufficient to use regularization alone to
reduce overfitting.

2.6.1.1 Sparsity and Bias Issues

One problem with this regression approach is that the size of the P,(j) can be vastly dif-
ferent for the same user u and varying item indices (denoted by 7). This is because of the
extraordinary level of sparsity inherent in ratings matrices. As a result, the regression coef-
ficients become heavily dependent on the number of peer users that have rated a particular
item j along with user u. For example, consider a scenario where the target user u has
rated both Gladiator and Nero. Out of the k nearest neighbors of the target w, only one
user might rate the movie Gladiator, whereas all k might have rated Nero. As a result, the
regression coeflicient wi:¢" of the peer user v who rated Gladiator will be heavily influenced
by the fact that she is the only user who has rated Gladiator. This will result in overfitting
because this (statistically unreliable) regression coefficient might add noise to the rating
predictions of other movies.

The basic idea is to change the prediction function and assume that the regression for
item j predicts only a fraction ‘P“k(j )| of the rating of target user u for item j. The implicit
assumption is that the regression coefficients are based on all the peers of the target user,
and one must interpolate incomplete information as a fraction. Therefore, this approach
changes the interpretation of the regression coefficients. In this case, the prediction function
of Equation 2.22 is modified as follows:

~ P user
Tuj'| ]{E = [y + Z w,, Tv] Nv) (224>

vE P, (7)

A number of other heuristic adjustments are sometimes used. For example, along the lines of
the ideas in [312], one can use a heuristic adjustment factor of \/|P,(5)|/k. This factor can
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often be simplified to 1/|P,(j)| because constant factors are absorbed by the optimization
variables. A related enhancement is that the constant offset p, is replaced with a bias
variable b,, which is learned in the optimization process. The corresponding prediction
model, including heuristic adjustment factors, is as follows:

D ovepu () Wou'" - (Toj = by*")

VIPa ()|

Note that this model is no longer linear because of the multiplicative term w5 - buse”
between two optimization variables. Nevertheless, it is relatively easy to use the same least-
squares formulation, as in the previous case. In addition to user biases, one can also incor-

porate item biases. In such a case, the model becomes the following;:

user . __ puser __ pitem
ZvePu(j) Wayy, (rvj bv bj )

VIPa ()|

Furthermore, it is recommended to center the entire ratings matrix around its global mean
by subtracting the mean of all the observed entries from it. The global mean needs to
be added back to the predictions. The main problem with this model is computational.
One must pre-compute and store all user-user relations, which is computationally expensive
and requires O(m?) space over m users. This problem is similar to that encountered in
traditional neighborhood-based models. Such models are suitable in settings in which the
item space changes rapidly, but the users are relatively stable over time [312]. An example
is the case of news recommender systems.

N user
Tuj = bu +

(2.25)

Fuj = DU 4 BT (2.26)

2.6.2 Item-Based Nearest Neighbor Regression

The item-based approach is similar to the user-based approach, except that the regression
learns and leverages item-item correlations rather than user-user correlations. Consider
the item-based prediction of Equation 2.21. One can replace the (normalized) similarity
coefficient AdjustedCosine(j,¢) with the unknown parameter w;iem to model the rating
prediction of user u for target item ¢:

Fur= Y Wi T (2.27)
JEQ:(u)

The nearest items in Q¢(u) can be determined using the adjusted cosine, as in item-based
neighborhood methods. The set Q:(u) represents the subset of the k nearest neighbors of
the target item ¢, for which user u has provided ratings. This way of defining Q(u) is subtly
different from that of traditional neighborhood-based methods, because the size of set Q;(u)
might be significantly less than k. In traditional neighborhood methods, one determines the
closest k items to target item ¢, for which the user u has specified ratings, and therefore
the size of the neighborhood set is often exactly k. This change is required to be able to
effectively implement the regression-based method.

Intuitively, the unknown coefficient w;ffm controls the portion of the rating of item ¢,
which comes from its similarity to item j, because this portion is given by w;'-iem - Tyj. The
prediction error of Equation 2.27 should be minimized to ensure the most robust predictive
model. One can use the known ratings in the matrix to set up a least-squares optimization
problem over the unknown values of w%em in order to minimize the overall error. The idea
is to predict each (observed) rating of target item ¢ with its nearest k items and then,
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create an expression for the least-squares error. The optimization problem is set up for each
target item ¢. Let Uy be the set of users who have rated the target item ¢. The least-squares
objective function for the tth item can be stated as the sum of the squares of the errors in
predicting each specified rating in Uy:

Minimize J; = Z (Tut — Fut)?

ueU;
it 2
=Y Y wl )
u€Us JEQ+(u)

Note that this optimization problem is formulated separately for each target item ¢. However,
one can add up the terms over various values of the target item ¢ with no difference to
the optimization solution, because the unknown coefficients wéiem in the various objective
functions are non-overlapping over different values of the target item ¢ € {1...n}. Therefore,

we have the following consolidated formulation:

Minimize Z Z (Tut — Z W™ 1) (2.28)

t=1 ueU; JEQ+(u)

This is a least-squares regression problem and it can be solved with the use of any off-the-
shelf solver. Furthermore, one can also solve each of the smaller optimization problems (i.e.,
objective function J;) in its decomposed form more efficiently without affecting the overall
solution. However, the consolidated formulation has the advantage that it can be combined
with other optimization models, such as matrix factorization methods (cf. section 3.7 of
Chapter 3). As in the case of user-based methods, significant challenges are associated with
the problem of overfitting. One can add the regularization term A=, cr, 3= icq, () (W5™)?
to the objective function J;.

As discussed in section 2.6.1.1 for the case of the user-based model, one can incorporate
adjustment factors and bias variables to improve performance. For example, the user-based
prediction model of Equation 2.26 takes on the following form in the item-wise model:

e BT (g ~ 2 B
VI1Qu(w)|

Furthermore, it is assumed that the ratings are centered around the global mean of the
entire ratings matrix. Therefore, the global mean is subtracted from each of the ratings
before building the model. All predictions are performed on the centered ratings, and then
the global mean is added back to each prediction. In some variations of the model, the bias
terms by + b%™ within brackets are replaced with a consolidated constant term B,;.
This constant term is derived using a non-personalized approach described in section 3.7.1
of Chapter 3. The resulting prediction model is as follows:

> ieQuw) Wi™ + (ruj — Buj)
V1Q:(w)|

A least-squares optimization model is formulated, and a gradient descent approach is used
to solve for the optimization parameters. This is precisely the model used in [309]. The
resulting gradient-descent steps are discussed in section 3.7.2 of Chapter 3. The user-user
model is known to perform slightly better than the item-item model [312]. However, the
item-based model is far more computationally and space-efficient in settings where the
number of items is much smaller than the number of users.

Pur = by + b + (2.29)

Fup = BUST 4 B (2.30)
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2.6.3 Combining User-Based and Item-Based Methods

It is natural to combine the user and item-based models in a unified regression frame-
work [312]. Therefore, a rating is predicted based on its relationship with similar users as
well as similar items. This is achieved by combining the ideas in Equations 2.26 and 2.30
as follows:

ZuePu(j) Wy -+ (Tvj — Buj) Zjth(u) w;’icm “(ruj — Buj)

VIPu(j)] V1Q:(w)|

As in previous cases, it is assumed that the ratings matrix is centered around its global
mean. A similar least-squares optimization formulation can be used in which the squared
error over all the observed entries is minimized. In this case, it is no longer possible to
decompose the optimization problem into independent subproblems. Therefore, a single
least-squares optimization model is constructed over all the observed entries in the ratings
matrix. As in the previous cases, the gradient-descent approach can be used. It was reported
in [312] that the fusion of the user-based and item-based models generally performs better
than the individual models.

Fuj = DUSET 4 bt (2.31)

2.6.4 Joint Interpolation with Similarity Weighting

The method in [72] uses a different idea to set up the joint neighborhood-based model.
The basic idea is to predict each rating of target user u with the user-based model of
Equation 2.22. Then, instead of comparing it with the observed value of the same item, we
compare it with the observed ratings of other items of that user.
Let S be the set of all pairs of user-item combinations in the ratings matrix, which have
been observed:
S = {(u,t) : 7y is observed} (2.32)

We set up an objective function which is penalized when the predicted rating #,; of an item
j is far away from the observed rating given to a similar item s by the same target user u.
In other words, the objective function for target user u is defined as follows:

Minimize Z Z AdjustedCosine(j,s) - (Tus — Fuj)’
s:(u,s)ES jij#s
2

= Z ZAdjustedCosine(j,s)- Tus— | Hut Z Wea'"  (Twj— o)
s:(u,s)ESj:j#s vEP,(J)

Regularization can be added to the objective function to reduce overfitting. Here, P,(j) is
defined as the k closest users to target user u, who have also rated item j. Therefore, the
conventional definition of P,(j) as used in neighborhood-based models is leveraged in this
case.

By using the adjusted cosine as a multiplicative factor of each individual term in the
objective function, the approach forces the target user’s ratings of similar items to be
more similar as well. It is noteworthy that both user and item similarities are used in this
approach, but in different ways:

1. The item-item similarities are used as multiplicative factors of the terms in the ob-
jective function to force predicted ratings to be more similar to observed ratings of
similar items.
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2. The user-user similarities are used for predicting the ratings by restricting the regres-
sion coefficients to the relevant peer group P, (j) of the target user w.

Although it is also possible, in principle, to switch the roles of users and items to set up
a different model, it is stated in [72] that the resulting model is not as effective as the
one discussed above. This model can be solved with any off-the-shelf least-squares solver.
A number of methods are also discussed in [72] for handling sparsity.

2.6.5 Sparse Linear Models (SLIM)

An interesting method, based on the item-item regression in section 2.6.2, is proposed
in [455]. This family of models is referred to as sparse linear models because they encour-
age sparsity in the regression coefficients with the use of regularization methods. Unlike the
methods in [72, 309], these methods work with non-negative rating values. Therefore, unlike
the techniques in the previous sections, it will not be assumed that the ratings matrix is
mean-centered. This is because mean-centering will automatically create negative ratings,
corresponding to dislikes. However, the approach is designed to work with non-negative
ratings, in which there is no mechanism to specify dislikes. From a practical point of view,
the approach is most appropriate® for implicit feedback matrices (e.g., click-through data
or sales data), where only positive preferences are expressed through user actions. Fur-
thermore, as is common in implicit feedback settings, missing values are treated as Os for
the purposes of training in the optimization formulation. However, the optimization model
might eventually predict some of these values to be highly positive, and such user-item
combinations are excellent candidates for recommendation. Therefore, the approach ranks
items on the basis of prediction errors on the training entries that have been set to 0.

Unlike the technique in section 2.6.2, these methods do not restrict the regression coeffi-
cients to only the neighborhood of the target item ¢. Then, the prediction function in SLIM
is expressed as follows:

n
Fut = Y W™ vy Yu€{l...m}, Vte {1...n} (2.33)
j=1
Note the relationship with Equation 2.27 in which only the neighborhood of the target
item is used to construct the regression. It is important to exclude the target item itself on
the right-hand side to prevent overfitting. This can be achieved by requiring the constraint
that wit™ = 0. Let R = [f,;] represent the predicted ratings matrix and let W™ =
[w}’éem] represent the item-item regression matrix. Therefore, if we assume that the diagonal
elements of W™ are constrained to be 0, then we can stack up the instantiations of
Equation 2.33 over different users and target items to create the following matrix-based
prediction function:

R — Rwitem
Diagonal(W#e™) = 0
Therefore, the main goal is to minimize the Frobenius norm |[|R — RW®™||2 along with

some regularization terms. This objective function is disjoint over different columns of W
(i.e., target items in regression). Therefore, one can solve each optimization problem (for

6The approach can be adapted to arbitrary rating matrices. However, the main advantages of the
approach are realized for non-negative ratings matrices.
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a given value of the target item t) independently, while setting wi®™ to 0. In order to
create a more interpretable sum-of-parts regression, the weight vectors are constrained to
be non-negative. Therefore, the objective function for target item ¢ may be expressed as

follows: N
(rut _ 'f'ut Z 1tem _|_ )\1 Z |w1tcm,

n

n
item ztem item
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The last two terms in the objective function correspond to the elastic-net regularizer, which
combines Li- and Lo-regularization. It can be shown [242] that the L;-regularization compo-
nent leads to sparse solutions for the weights w;;, which means that most of the coefficients
wjs have zero values. The sparsity ensures that each predicted rating can be expressed as a
more interpretable linear combination of the ratings of a small number of other related items.
Furthermore, since the weights are non-negative, the corresponding items are positively re-
lated in a highly interpretable way in terms of the specific level of impact of each rating in
the regression. The optimization problem is solved using the coordinate descent method,
although any off-the-shelf solver can be used in principle. A number of faster techniques
are discussed in [347]. The technique can also be hybridized [456] with side-information (cf.
section 6.8.1 of Chapter 6).

It is evident that this model is closely related to the neighborhood-based regression
models discussed in the previous sections. The main differences of the SLIM model from
the linear regression model in [309] are as follows:

1. The method in [309] restricts the nonzero coefficients for each target to at most the k
most similar items. The SLIM method can use as many as |U;| nonzero coefficients. For
example, if an item is rated by all users, then all coefficients will be used. However, the
value of wit*™ is set to 0 to avoid overfitting. Furthermore, the SLIM method forces
sparsity by using the elastic-net regularizer, whereas the method in [309] preselects the
weights on the basis of explicit neighborhood computation. In other words, the work
in [309] uses a heuristic approach for feature selection, whereas the SLIM approach
uses a learning (regularization) approach for feature selection.

2. The SLIM method is primarily designed for implicit feedback data sets (e.g., buying
an item or customer clicks), rather than explicit ratings. In such cases, ratings are
typically unary, in which customer actions are indications of positive preference, but
the act of not buying or clicking on an item does not necessarily indicate a negative
preference. The approach can also be used for cases in which the “ratings” are ar-
bitrary values indicating only positive preferences (e.g., amount of product bought).
Note that such scenarios are generally conducive to regression methods that impose
non-negativity in the coefficients of the model. As you will learn in Chapter 3, this
observation is also true for other models, such as matrix factorization. For example,
non-negative matrix factorization is primarily useful for implicit feedback data sets,
but it is not quite as useful for arbitrary ratings. This is, in part, because the non-
negative, sum-of-parts decomposition loses its interpretability when a rating indicates
either a like or a dislike. For example, two “dislike” ratings do not add up to a “like”
rating.
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3. The regression coefficients in [309] can be either positive or negative. On the other
hand, the coefficients in SLIM are constrained to be non-negative. This is because the
SLIM method is primarily designed for the implicit feedback setting. Non-negativity
is often more intuitive in these settings and the results are more interpretable. In fact,
in some cases, imposing non-negativity might improve” the accuracy. However, some
limited experimental results have been presented [347], which suggest that removing
non-negativity constraints provides superior performance.

4. Although the SLIM method also proposes a prediction model for the ratings (according
to Equation 2.33), the final use of the predicted values is for ranking the items in order
of the predicted value. Note that the approach is generally used for data sets with
unary ratings and therefore, it makes sense to use the predicted values to rank the
items, rather than predict ratings. An alternative way of interpreting the predicted
values is that each of them can be viewed as the error of replacing a non-negative
rating with O in the ratings matrix. The larger the error is, the greater the predicted
value of the rating will be. Therefore, the items can be ranked in the order of the
predicted value.

5. Unlike the work in [309], the SLIM method does not explicitly adjust for the varying
number of specified ratings with heuristic adjustment factors. For example, the right-
hand side of Equation 2.29 uses an adjustment factor of v/|Q;(u)| in the denominator.
On the other hand, no such adjustment factor is used in the SLIM method. The
adjustment issue is less pressing for the case of unary data sets, in which the presence
of an item is usually the only information available. In such cases, replacing missing
values with Os is a common practice, and the bias of doing so is much lower than in
the case where ratings indicate varying levels of likes or dislikes.

Therefore, the models share a number of conceptual similarities, although there are some
differences at the detailed level.

2.7 Graph Models for Neighborhood-Based Methods

The sparsity of observed ratings causes a major problem in the computation of similarity in
neighborhood-based methods. A number of graph models are used in order to define similar-
ity in neighborhood-based methods, with the use of either structural transitivity or ranking
techniques. Graphs are a powerful abstraction that enable many algorithmic tools from the
network domain. The graphs provide a structural representation of the relationships among
various users and/or items. The graphs can be constructed on the users, on the items, or
on both. These different types of graphs result in a wide variety of algorithms, which use

7 It is noteworthy that imposing an additional constraint, such as non-negativity, always reduces the
quality of the optimal solution on the observed entries. On the other hand, imposing constraints increases the
model bias and reduces model variance, which might reduce overfitting on the unobserved entries. In fact,
when two closely related models have contradicting relative performances on the observed and unobserved
entries, respectively, it is almost always a result of differential levels of overfitting in the two cases. You
will learn more about the bias-variance trade-off in Chapter 6. In general, it is more reliable to predict
item ratings with positive item-item relationships rather than negative relationships. The non-negativity
constraint is based on this observation. The incorporation of model biases in the form of such natural
constraints is particularly useful for smaller data sets.
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either random-walk or shortest-path methods for recommendation. In the following, we will
describe the algorithms used for performing recommendations with various types of graph
representations of ratings matrices.

2.7.1 User-Item Graphs

It is possible to use structural measures on the user-item graph, rather than the Pearson
correlation coefficient, for defining neighborhoods. Such an approach is more effective for
sparse ratings matrices because one can use structural transitivity of edges for the recom-
mendation process.

The user-item graph is defined as an undirected and bipartite graph G = (N, U N;, A),
where N, is the set of nodes representing users, and V; is the set of nodes representing items.
All edges in the graph exist only between users and items. An undirected edge exists in A
between a user ¢ and an item j, if and only if user ¢ has rated item j. Therefore, the number
of edges is equal to the number of observed entries in the utility matrix. For example, the
user-item graph for the ratings matrix of Figure 2.3(a) is illustrated in Figure 2.3(b). The
main advantage of graph-based methods is that two users do not need to have rated many
of the same items to be considered neighbors as long as many short paths exist between
the two users. Therefore, this definition allows the construction of neighborhoods with the
notion of indirect connectivity between nodes. Of course, if two users have rated many
common items, then such a definition will also consider them close neighbors. Therefore,
the graph-based approach provides a different way of defining neighborhoods, which can be
useful in sparse settings.

The notion of indirect connectivity is achieved with the use of path- or walk-based
definitions. Some common methods for achieving this goal include the use of random-walk
measures or the Katz measure, which is discussed in section 2.7.1.2. Both these measures are
closely related to the problem of link prediction in social network analysis (cf. section 10.4
of Chapter 10), and they demonstrate the fact that graphical models of recommender sys-
tems connect the link-prediction problem to the vanilla recommendation problem. In the
following, we discuss different ways of defining neighborhoods on the graph representation.

2.7.1.1 Defining Neighborhoods with Random Walks

The neighborhood of a user is defined by the set of users that are encountered frequently
in a random walk starting at that user. How can the expected frequency of such random
walks be measured? The answer to this problem is closely related to the random-walk
methods, which are used frequently in Web-ranking applications. One can use either the
personalized PageRank or the SimRank method (cf. Chapter 10) to determine the k most
similar users to a given user for user-based collaborative filtering. Similarly, one can use this
method to determine the k£ most similar items to a given item by starting the random walk
at a given item. This approach is useful for item-based collaborative filtering. The other
steps of user-based collaborative filtering and item-based collaborative filtering remain the
same.

Why is this approach more effective for sparse matrices? In the case of the Pearson’s
correlation coefficient, two users need to be connected directly to a set of common items
for the neighborhood to be defined meaningfully. In sparse user-item graphs, such direct
connectivity may not exist for many nodes. On the other hand, a random-walk method
also considers indirect connectivity, because a walk from one node to another may use any
number of steps. Therefore, as long as large portions of the user-item graphs are connected,
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Figure 2.3: A ratings matrix and corresponding user-item graph

it is always possible to meaningfully define neighborhoods. Such user-item graphs can also
be used to directly predict ratings with the use of a variety of models. Such related methods
will be discussed in section 10.2.3.3 of Chapter 10.

2.7.1.2 Defining Neighborhoods with the Katz Measure

Rather than using a probabilistic measure, such as random walks, it is possible to use the
weighted number of walks between a pair of nodes in order to determine the affinity between
them. The weight of each walk is a discount factor in (0, 1), which is typically a decreasing
function of its length. The weighted number of walks between a pair of nodes is referred
to as the Katz measure. The weighted number of walks between a pair of nodes is often
used as a link-prediction measure. The intuition is that if two users belong to the same
neighborhood based on walk-based connectivity, then there is a propensity for a link to be
formed between them in the user-item graph. The specific level of propensity is measured
with the number of (discounted) walks between them.

Definition 2.7.1 (Katz Measure) Let n ij ) be the number of walks of length t between
nodes i and j. Then, for a user-defined parameter 5 < 1, the Katz measure between nodes
i and j is defined as follows:

Katz(i,7) Zﬁt (t (2.34)

The value of 3 is a discount factor that de-emphasizes walks of longer lengths. For small
enough values of (3, the infinite summation of Equation 2.34 will converge.

Let K be the m x m matrix of Katz coefficients between pairs of users. If A is the
symmetric adjacency matrix of an undirected network, then the pairwise Katz coefficient
matrix K can be computed as follows:

K= ZBA (I—pBA)! (2.35)
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The value of 8 should always be selected to be smaller than the inverse of the largest
eigenvalue of A to ensure convergence of the infinite summation. The Katz measure is
closely rated to diffusion kernels in graphs. In fact, several collaborative recommendation
methods directly use diffusion kernels to make recommendations [205].

A weighted version of the measure can be computed by replacing A with the weight
matrix of the graph. This can be useful in cases where one wishes to weight the edges in
the user-item graph with the corresponding rating. The top-k nodes with the largest Katz
measures to the target node are isolated as its neighborhood. Once the neighborhood has
been determined, it is used to perform the prediction according to Equation 2.4. Many
variations of this basic principle are used to make recommendations:

1. It is possible to use a threshold on the maximum path length in Equation 2.34. This
is because longer path lengths generally become noisy for the prediction process.
Nevertheless, because of the use of the discount factor 3, the impact of long paths on
the measure is generally limited.

2. In the aforementioned discussion, the Katz measure is used only to determine the
neighborhoods of users. Therefore, the Katz measure is used to compute the affinity
between pairs of users. After the neighborhood of a user has been determined, it is
used to make predictions in the same way as any other neighborhood-based method.

However, a different way of directly performing the prediction, without using neigh-
borhood methods, would be to measure the affinity between users and items. The
Katz measure can be used to compute these affinities. In such cases, the links are
weighted with ratings, and the problem is reduced to that of predicting links between
users and items. These methods will be discussed in more detail in section 10.4.6 of
Chapter 10.

The bibliographic notes contain a number of references to various path-based methods.

2.7.2 User-User Graphs

In user-item graphs, the user-user connectivity is defined by an even number of hops in
the user-item graph. Instead of constructing user-item graphs, one might instead directly
create user-user graphs based on 2-hop connectivity between users. The advantage of user-
user graphs over user-item graphs is that the edges of the graph are more informative in the
former. This is because the 2-hop connectivity can directly take the number and similarity of
common items between the two users into account, while creating the edges. These notions,
referred to as horting and predictability, will be discussed slightly later. The algorithm uses
the notion of horting to quantify the number of mutually specified ratings between two
users (nodes), whereas it uses the notion of predictability to quantify the level of similarity
among these common ratings.

The user-user graph is constructed as follows. Each node u corresponds to one of the m
users in the m X n user-item matrix. Let I,, be the set of items for which ratings have been
specified by user u, and let I,, be the set of items for which ratings have been specified by
user v. Edges are defined in this graph with the notion of horting. Horting is an asymmetric
relationship between users, which is defined on the basis of their having rated similar items.
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Definition 2.7.2 (Horting) A user w is said to hort user v at level (F,G), if either of
the following are true:

I,NI,|>F
I, N L|/|I.| > G

Here, F and G are algorithm parameters. Note that it is sufficient for one of the two
aforementioned conditions to hold for user u to hort user v. The notion of horting is used
to further define predictability.

Definition 2.7.3 (Predictability) The user v predicts user u, if u horts v and there exists
a linear transformation function f(-) such that the following is true:

Zkelumu [Tuk — f (o) <U
|I, N I,| -

Here, U is another algorithm parameter. It is noteworthy that the distance
Zke]uml,u ‘Tuk_f(rvk)l
|L,NT,|
variant of the Manhattan distance on their common specified ratings. The main difference

from the Manhattan distance is that the distance is normalized by the number of mutually
specified ratings between the two users. This distance is also referred to as the Manhattan
segmental distance.

between the ratings of user v and the transformed ratings of user v is a
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The directions of horting and predictability are opposite one another. In other words,
for user v to predict user u, u must hort v. A directed graph G is defined, in which an edge
exists from u to v, if v predicts u. This graph is referred to as the user-user predictability
graph. Each edge in this graph corresponds to a linear transformation, as discussed in
Definition 2.7.3. The linear transformation defines a prediction, where the rating at the
head of the edge can be used to predict the rating at the tail of the edge. Furthermore,
it is assumed that one can apply these linear transformations in a transitive way over a
directed path in order to predict the rating of the source of the path from the rating at the
destination of the path.

Then, the rating of a target user u for an item k is computed by determining all the
directed shortest paths from user u to all other users who have rated item k. Consider a
directed path of length r from user u to a user v who has rated item k. Let f; ... f, represent
the sequence of linear transformations along the directed path starting from node w to this
user v. Then, the rating prediction 723,? of the rating of target user u for item % (based only
on user v) is given by applying the composition of the r linear mappings along this path
from user u to v, to the rating 7, of user v on item k:

P = (f10 fan0 fr)(rok) (2.36)
The rating prediction 727&1,? contains the superscript v because it is based only on the rating
of user v. Therefore, the final rating prediction 7, is computing by averaging the value of
ffﬁc) over all users v that have rated item &, within a threshold distance D of the target
user u.

Given a target user (node) u, one only needs to determine directed paths from this user
to other users, who have rated the item at hand. The shortest path can be determined with
the use of a breadth-first algorithm, which is quite efficient. Another important detail is that
a threshold is imposed on the maximum path length that is usable for prediction. If no user,
who has rated item £ is found within a threshold length D of the target node u, then the
algorithm terminates with failure. In other words, the rating of the target user u for item
k simply cannot be determined robustly with the available ratings matrix. It is important
to impose such thresholds to improve efficiency and also because the linear transformation
along very long path lengths might lead to increasing distortion in the rating prediction.
The overall approach is illustrated in Figure 2.4. Note that a directed edge exists from u to
v in the horting graph if u horts v. On the other hand, an edge exists in the predictability
graph if u horts v and v predicts u. Therefore, the predictability graph is obtained from
the horting graph by dropping a few edges. This graph is set up in an offline phase and it
is repeatedly queried for recommendations. In addition, a number of index data structures
are set up from the ratings matrix during the offline setup phase. These data structures
are used along with the predictability graph in order to resolve the queries efficiently. More
details on the horting approach may be found in [33].

This approach can work for very sparse matrices because it uses transitivity to predict
ratings. An important challenge in neighborhood methods is the lack of coverage of rating
prediction. For example, if none of John’s immediate neighbors have rated Terminator, it is
impossible to provide a rating prediction for John. However, structural transitivity allows us
to check whether the indirect neighbors of John have rated Terminator. Therefore, the main
advantage of this approach is that it has better coverage compared to competing methods.
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Figure 2.5: A ratings matrix and its correlation graphs

2.7.3 Item-Item Graphs

It is also possible to leverage item-item graphs to perform the recommendations. Such a
graph is also referred to as the correlation graph [232]. In this case, a weighted and directed
network G = (N, A) is constructed, in which each node in N corresponds to an item, and
each edge in A corresponds to a relationship between items. The weight w;; is associated
with each edge (i, 7). If items 4 and j have both been rated by at least one common user,
then both the directed edges (i, j) and (j,7) exist in the network. Otherwise, no edges exist
between nodes ¢ and j. The directed network is, however, asymmetric because the weight
of edge (i, 7) is not necessarily the same as that of edge (j,4). Let U; be the set of users that
have specified ratings for item i and U; be the set of users that have specified ratings for
item j. Then, the weight of the edge (i, j) is computed using the following simple algorithm.

First, we initialize the weight w;; of each edge (4, j) to |U; NU;|. At this point, the edge
weights are symmetric because w;; = wj;. Then, the weights of the edges are normalized,
so that the sum of the weights of the outgoing edges of a node is equal to 1. This normal-
ization is achieved by dividing w;; with the sum of the outgoing weights from node i. The
normalization step results in asymmetric weights, because each of the weights w;; and wy;
are divided by different quantities. This results in a graph in which the weights on edges
correspond to random-walk probabilities. An example of the correlation graph for a ratings
matrix is illustrated in Figure 2.5. It is clear that the weights on the normalized correlation
graph are not symmetric because of the scaling of the weights to transition probabilities.
Furthermore, it is noteworthy that the rating values are not used in the construction of
the correlation graph. Only the number of observed ratings in common between two items
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is used. This is sometimes not desirable. It is, of course, possible to define the correlation
graph in other ways, such as with the use of the cosine function between the rating vectors
of the two items.

As discussed in Chapter 10, random-walk methods can be used to determine the neigh-
borhood of a given item. The resulting neighborhood can be used for item-based collabora-
tive filtering methods. Furthermore, personalized PageRank methods can be used to directly
determine the ratings on the item-item graph. This method is referred to as ItemRank, and
it is discussed in section 10.2.3.3 of Chapter 10.

2.8 Summary

Because collaborative filtering can be viewed as a generalization of classification and re-
gression problems, the methodologies for the latter classes of problems can also be applied
to the former. Neighborhood-based methods derive their inspiration from nearest neighbor
classification and regression methods. In user-based methods, the first step is to determine
the neighborhood of the target user. In order to compute the neighborhood, a variety of
similarity functions, such as the Pearson correlation coefficient or the cosine, are used. The
neighborhood is used in order to extrapolate the unknown ratings of a record. In item-
based methods, the most similar items are computed with respect to a target item. Then,
the user’s own ratings on these similar items are used in order to make a rating prediction.
Item-based methods are likely to have more relevant recommendations, but they are less
likely to yield diverse recommendations. In order to speed up neighborhood-based methods,
clustering is often used.

Neighborhood-based methods can be viewed as linear models, in which the weights
are chosen in a heuristic way with the use of similarity values. One can also learn these
weights with the use of linear regression models. Such methods have the advantage that
they can be combined with other optimization models, such as matrix factorization, for
better prediction. Such methods are discussed in the next chapter.

Neighborhood-based methods face numerous challenges because of data sparsity. Users
often specify only a small number of ratings. As a result, a pair of users may often have spec-
ified only a small number of ratings. Such situations can be addressed effectively with the
use of both dimensionality reduction and graph-based models. While dimensionality reduc-
tion methods are often used as standalone methods for collaborative filtering, they can also
be combined with neighborhood-based methods to improve the effectiveness and efficiency
of collaborative filtering. Various types of graphs can be extracted from rating patterns,
such as user-item graphs, user-user graphs, or item-item graphs. Typically, random-walk or
shortest-path methods are used in these cases.

2.9 Bibliographic Notes

Neighborhood-based methods were among the earliest techniques used in the field of rec-
ommender systems. The earliest user-based collaborative filtering models were studied
in [33, 98, 501, 540]. A comprehensive survey of neighborhood-based recommender sys-
tems may be found in [183]. Sparsity is a major problem in such systems, and various
graph-based systems have been designed to alleviate the problem of sparsity [33, 204, 647].
Methods that are specifically designed for the long tail in recommender algorithms are
discussed in [173, 463, 648].
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User-based methods utilize the ratings of similar users on the same item in order to make
predictions. While such methods were initially quite popular, they are not easily scalable
and sometimes inaccurate. Subsequently, item-based methods [181, 360, 524] were proposed,
which compute predicted ratings as a function of the ratings of the same user on similar
items. Item-based methods provide more accurate but less diverse recommendations.

The notion of mean-centering for improving recommendation algorithms was proposed
in [98, 501]. A comparison of the use of the Z-score with mean-centering is studied in [245,
258], and these two studies provide somewhat conflicting results. A number of methods
which do not use the absolute ratings, but instead focus on ordering the ratings in terms
of preference weights, are discussed in [163, 281, 282]. The significance-weighting methods
of de-emphasizing the neighbors who have too few common ratings with a given neighbor
are discussed in [71, 245, 247, 380]. Many different variants of the similarity function are
used for computing the neighbor. Two such examples are the mean-squared distance [540]
and the Spearman rank correlation [299]. The specific advantage of these distance measures
is not quite clear because conflicting results have been presented in the literature [247,
258]. Nevertheless, the consensus seems to be that the Pearson rank correlation provides
the most accurate results [247]. Techniques for adjusting for the impact of very popular
items are discussed in [98, 280]. The use of exponentiated amplification for prediction in
neighborhood-based methods is discussed in [98]. A discussion of the use of voting techniques
in nearest neighbor methods may be found in [183]. Voting methods can be viewed as a
direct generalization of the nearest neighbor classifier, as opposed to a generalization of
nearest neighbor regression modeling.

Methods for item-based collaborative filtering were proposed in [181, 524, 526]. A de-
tailed study of different variations of item-based collaborative filtering algorithms is pro-
vided in [526], along with a comparison with respect to user-based methods. The item-based
method in [360] is notable because it describes one of Amazon.com’s collaborative filter-
ing methods. The user-based and item-based collaborative filtering methods have also been
unified with the notion of similarity fusion [622]. A more generic unification framework
may be found in [613]. Clustering methods are used frequently to improve the efficiency of
neighborhood-based collaborative filtering. A number of clustering methods are described
in [146, 167, 528, 643, 644, 647]. The extension of neighborhood methods to very large-scale
data sets has been studied in [51].

Dimensionality reduction techniques have a rich history of being used in missing-value
estimation [24, 472] and recommender systems [71, 72, 228, 252, 309, 313, 500, 517, 525].
In fact, most of these techniques directly use such latent models to predict the ratings
without relying on neighborhood models. However, some of these dimensionality reduction
techniques [71, 72, 309, 525] are specifically designed to improve the effectiveness and effi-
ciency of neighborhood-based techniques. A key contribution of [72] is to provide an insight
about the relationship between neighborhood methods and regression-based methods. This
relationship is important because it shows how one can formulate neighborhood-based meth-
ods as model-based methods with a crisp optimization formulation. Note that many other
model-based methods, such as latent factor models, can also be expressed as optimization
formulations. This observation paves the way for combining neighborhood methods with
latent factor models in a unified framework [309] because one can now combine the two
objective functions. Other regression-based models for recommender systems, such as slope-
one predictors and ordinary least-squares methods, are proposed in [342, 620]. Methods for
learning pairwise preferences over itemsets are discussed in [469]. Item-item regression mod-
els have also been studied in the context of Sparse Linear Models (SLIM) [455], where an
elastic-net regularizer is used on the linear model without restricting the coefficients to the
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neighborhood of the item. Higher-order sparse learning methods, which model the effects
of using combinations of items, are discussed in [159]. Efficient methods for training lin-
ear models and tuning regularization parameters are discussed in [347]. Constrained linear
regression methods are discussed in [430].

A general examination of linear classifiers, such as least-squares regression and support
vector machines, is provided in [669]. However, the approach is designed for implicit feedback
data sets in which only positive preferences are specified. It was observed that collaborative
filtering, in such cases, is similar to text categorization. However, because of the noise in
the data and the imbalanced nature of the class distribution, a direct use of SVM methods
is sometimes not effective. Changes to the loss function are suggested in [669] in order to
provide more accurate results.

Many graph-based methods have been proposed for improving collaborative filtering al-
gorithms. Most of these methods are based on either user-item graphs, but a few are also
based on user-user graphs. An important observation from the perspective of graph-based
methods is that they show an interesting relationship between the problems of ranking,
recommendation, and link-prediction. The use of random walks for determining the neigh-
borhood in recommendation systems is discussed in [204, 647]. A method, which uses the
number of discounted paths between a pair of nodes in a user-item graph for recommenda-
tions, was proposed in [262]. This approach is equivalent to using the Katz measure between
user-user pairs in order to determine whether they reside in each other’s neighborhoods.
This approach is related to link-prediction [354], because the Katz measure is often used to
determine the linkage affinity between a pair of nodes. A survey on link prediction meth-
ods may be found in [17]. Some graph-based methods do not directly use neighborhoods.
For example, the ItemRank method proposed in [232] shows how to use ranking directly
to make predictions, and the method in [261] shows how to use link-prediction methods
directly for collaborative filtering. These methods are also discussed in Chapter 10 of this
book. Techniques for leveraging user-user graphs are discussed in [33]. These methods have
the advantage that they directly encode the user-user similarity relationships in the edges
of the graph. As a result, the approach provides better coverage than competing methods.

2.10 Exercises

1. Consider the ratings matrix of Table 2.1. Predict the absolute rating of item 3 for user
2 using:

(a) User-based collaborative filtering with Pearson correlation and mean-centering
(b) Item-based collaborative filtering with adjusted cosine similarity

Use a neighborhood of size 2 in each case.

2. Consider the following ratings table between five users and six items:

Item-Id= 1 2 3 4 5 6
1 5 6 7 4 3 7
2 4 7 3 7 5 4
3 ?7 3 4 1 1 7
4 7 4 3 6 7 4
5 1?7 3 2 2 5
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(a) Predict the values of unspecified ratings of user 2 using user-based collaborative
filtering algorithms. Use the Pearson correlation with mean-centering.

(b) Predict the values of unspecified ratings of user 2 using item-based collaborative
filtering algorithms. Use the adjusted cosine similarity.

Assume that a peer group of size at most 2 is used in each case, and negative corre-
lations are filtered out.

3. Discuss the similarity between a k-nearest neighbor classifier in traditional machine
learning and the user-based collaborative filtering algorithm. Describe an analogous
classifier to item-based collaborative filtering.

4. Consider an algorithm that performs clustering of users based on their ratings matrix
and reports the average ratings within a cluster as the predicted items ratings for
every user within a cluster. Discuss the effectiveness and efficiency trade-offs of such
an approach compared to a neighborhood model.

5. Propose an algorithm that uses random walks on a user-user graph to perform
neighborhood-based collaborative filtering. [This question requires a background in
ranking methods.]

6. Discuss various ways in which graph clustering algorithms can be used to perform
neighborhood-based collaborative filtering.

7. Implement the user-based and item-based collaborative filtering algorithms.

8. Suppose you had content-based profiles associated with users indicating their interests
and profiles associated with items corresponding to their descriptions. At the same
time, you had a ratings matrix between users and items. Discuss how you can incorpo-
rate the content-based information within the framework of graph-based algorithms.

9. Suppose that you had a unary ratings matrix. Show how collaborative filtering algo-
rithms can be solved using content-based methods by treating the ratings of an item
as its features. Refer to Chapter 1 for a description of content-based methods. What
type of a content-based classifier does an item-based collaborative filtering algorithm
correspond to?
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