Chapter 2
Summary of Equilibrium Statistical Ensembles

In this chapter a summary of the main equilibrium ensembles is presented,
essentially to fix part of the notation that will be needed later on. The phase-space
probability density associated with each ensemble is derived by maximization of
the Gibbs entropy under the appropriate constraints. For simplicity, most of this
chapter is restricted to one-component systems, although the extension to mixtures
is straightforward and is presented in the last section.

2.1 Phase Space

Let us consider a classical system made of N identical (and hence indistinguishable)
point particles enclosed in a volume V in d dimensions. In classical mechanics,
the dynamical state of the system is characterized by the N position vectors
{ry,rz,...,ry} and the N momentum vectors {p1, pz2, . . . , py}. In what follows, we
will employ the following short-hand notation

© I‘N={l’1,l‘2,...,l’N}, dl‘N=dl‘1dl’2"'dl’N,
N

s PV ={pi,p2,....pn}, dp" =dpidp>---dpy,
{r", p"}, dxV = dr¥dp" .

Thus, the whole microscopic state of the system (microstate) is represented by
a single point x" in the (2d x N)-dimensional phase space (see Fig.2.1). The time
evolution of the microstate x" is governed by the Hamiltonian of the system Hy (x")
through the classical Hamilton’s equations [1].

Henceforth, and in order to make contact with thermodynamics, we will gener-
ally assume that the number of particles N and the volume V are so large that specific
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Fig. 2.1 Sketch of the phase

space of a system of N dXN:dl‘Nde
identical particles. The N Y
horizontal axis represents the P &

d X N position variables (d
components for each
particle), while the vertical
axis represents the d X N r
momentum variables. A
differential phase-space
volume dx" around a point

xV is represented

quantities (i.e., extensive quantities per particle or per unit volume) are independent
of N or V. This is equivalent to formally taking the so-called thermodynamic limit,
whereby

N'= 00l ith a finite ratio N/V . @2.1)
V— o0

Given the practical impossibility of describing the system at a microscopic level,
a statistical description is needed. Thus, we define the phase-space probability
density py(x") such that py(x")dx" is the probability that the microstate of the
system lies inside an infinitesimal (hyper)volume dx" around the phase-space point
x". The ensemble average of a certain dynamical variable Ay (x") is

(A) = / dx" Ay (x") oy (x") . 2.2)

Here, it is understood that the total number of particles () is fixed and the position
integral for each particle runs over a fixed volume (V) of the system. Otherwise, the
expression for the ensemble average may involve summation over the number of
particles and/or integration over the system volume [see (2.30) and (2.44) below].

2.2 Gibbs Entropy Functional

The concept of a phase-space probability density is valid both out of equilibrium
(where, in general, it changes with time according to the Liouville theorem [2, 3])
and in equilibrium (where it is stationary). In the latter case py(x") can be obtained
for isolated, closed, open, ...systems by following logical steps and starting from
the equal a priori probability postulate for isolated systems [4]. Here we follow an
alternative (but equivalent) method based on information-theory arguments [3, 5, 6].
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Let us define the Gibbs entropy functional

Slow) =~ [ @ (") In[enpy ()] 23)

where
cy = NN (2.4)

is the quantum of phase-space volume. In (2.4) & is the Planck constant, the
coefficient 2%V being introduced to comply with Heisenberg’s uncertainty principle
and also to preserve the non-dimensional character of the argument of the logarithm.
Moreover, the factorial N! accounts for the fact that two apparently different
microstates which only differ on the particle labels are physically the same
microstate, thus avoiding the Gibbs paradox [7]. The factorial N! must be removed
from Cy if the particles are distinguishable.

Equation (2.3) applies to systems with a fixed number of particles N. On the
other hand, if the system is allowed to exchange particles with the environment,
microstates with different N exist, so that one needs to define a phase-space
probability density py(x") for each N > 0. In that case, the entropy functional
becomes

Sond =~y [ " pux)n enpn(x")] @.5)
N=0

Analogously, if the number of particles N is fixed but the volume V occupied by
the particles can vary (formally) from zero to infinity, the phase-space probability
density py(x") depends on V. It is defined such that py (x¥)dx¥dV is the probability
that the particles occupy a volume between V and V + dV and the microstate lies
inside an infinitesimal (hyper)volume dx" around the phase-space point x". The
corresponding entropy functional is then

Sl =~k [ 4 [ ¥ pu) n[envipnx)] 2.6)

where V) is an arbitrary volume scale factor (needed to keep the correct dimensions).

Now, the basic postulate consists in asserting that, out of all possible phase-
space probability distribution functions py consistent with given constraints (which
define the ensemble of accessible microstates), the equilibrium function p;? is the
one that maximizes the entropy functional .%[py]. Once py' is known, connection
with thermodynamics is made through the identification of S = .#[p,] as the
equilibrium entropy.
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2.3 Microcanonical Ensemble: Isolated Systems

The microcanical ensemble describes an isolated system and thus it is characterized
by fixed values of V, N, E (the latter with a tolerance AE, in accordance with the
uncertainty principle). Therefore, the basic constraint is the normalization condition

/ dx" py(xV) = 1. 2.7
E<Hy(xN)<E+AE

Maximization of the entropy functional (2.3) just says that py(x") = const for all
the accessible microstates E < Hy(x") < E + AE. Thus,

v Vlevoar(E.V.N)]T' | E<Hy(x") <E+ AE,
pn(x") =

0, otherwise ,

Mg piae (Hv(xY))
- Cywag(E, V,N)

: 2.8)

where I1,,(x) is the boxcar function, which is equal to 1 fora < x < b and 0
otherwise. The normalization function

1
wpap(E,V,N) = — dx" (2.9)

Cn /ESHN(XN)gE+ AE

is the phase-space volume comprised between the hyper-surfaces Hy(x") = E and
Hy(x") = E + AE, in units of Cy. We will refer to the dimensionless quantity wag
as the microcanonical partition function. It is interesting to note that, taking into
account the representation

S(x—a)= lim Haa+sa) (2.10)

a—0 Aa
of the Dirac delta function, the microcanonical partition function can be rewritten as

wap(E,V,N) ~ é—f/deS(HN(XN) —E). (2.11)

By insertion of (2.8) into (2.3) one immediately sees that wag(E, V, N) is directly
related to the equilibrium entropy as

|S(E.V.N) = kynwsr(E.V.N) .| (2.12)

In this expression, the specific value of AE becomes irrelevant in the thermody-
namic limit (as long as AE < E).
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Equation (2.12) means that entropy is proportional to the logarithm of the number
of microstates with energy E (within an allowance AE). This is usually referred to
as the Boltzmann entropy. An alternative definition of entropy in the microcanonical
ensemble is [8]

S(E,V,N) = kgln@(E,V,N) , (2.13a)
1

&(E,V,N) = — / dxV , (2.13b)
Cn Jo<Hy(xN)<E

where now the so-called Gibbs entropy is proportional to the logarithm of the
number of microstates with an energy smaller than or equal to E. For “normal”
systems, like classical liquids, energy does not have an upper bound and the function
wap(E) grows so rapidly with E that In@(E) ~ Inwag(E) in the thermodynamic
limit, and hence both definitions (2.12) and (2.13) become fully equivalent in
that limit [8]. Such an equivalence, however, does not hold for small systems
or for systems where energy has an upper bound E,,. In the latter case, the
function wap(E) decreases with increasing energy as En,x is approached from
below, while the cumulative function @(E) monotonically increases with E. As a
consequence, the thermodynamic relation (1.4a) can give rise to negative absolute
temperatures [9, 10] if the Boltzmann entropy is used, while the Gibbs entropy
always predicts positive-definite temperatures. The question of which definition of
entropy (Boltzmann’s versus Gibbs’s) is more adequate for small systems or when
the energy is bounded is still open [11-17]. On the other hand, since we will always
deal here with classical normal liquids in the thermodynamic limit, (2.12) can be
safely adopted for the microcanonical entropy.

Making use of (1.4) (see also Table 1.1), the thermodynamic variables conjugate
to E, V, and N can be obtained from wag as

1 ad

B = BT a_ElnwAE(Ev V,.N), (2.14a)
d

Bp = v Inwag(E.V.N) , (2.14b)
ad

a=—fu= WIHCUAE(E7 V,N) . (2.14¢)

The inverse temperature parameter § has dimensions of inverse energy and is
usually employed in statistical-mechanical formulas more frequently than the
temperature 7T itself [see (1.35)]. Analogously, o is a dimensionless parameter
defined as the opposite of the chemical potential scaled with the thermal energy
kpT. The parameter « is usually preferred over p in statistical-mechanical formal
expressions. Its exponential defines the fugacity

z=e Y =efr. (2.15)
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2.4 Canonical Ensemble: Closed Systems

Now the system can have any value of the total energy E. However, we are free to
prescribe a given value of the average energy (E) = (Hy). Therefore, the constraints
in the canonical ensemble are

/ dxV py(x") =1, (2.16a)
/ dx" Hy(x")pny(x") = (E) . (2.16b)

The maximization of the entropy functional (2.3) subject to the constraints (2.16)
can be carried out through the Lagrange multiplier method with the result

e~ BHN(Y)

_ 2.17
CN‘gN(,BsV) ( )

ov(x") =

where B is the Lagrange multiplier associated with the constraint on (E) and the
canonical partition function %y is determined from the normalization condition as

1
Zy(B,V) = o / dxV e PHNGY) (2.18)

Multiplying both sides of (2.18) by 1 = [ dE§(Hy(x") — E) and using (2.11), the
partition function can alternatively be written as

1
B V) = E / dEe PEwpp(E,V.N) . (2.19)
Substitution of (2.17) into (2.3) and use of (2.16) yields
S =kp(nZy + B(E)) . (2.20)

Comparison with (1.10) (where now the internal energy corresponds to (E)) allows
one to identify § = 1/kpT and

|F(T.V.N) = —kgTIn Z3(B.V) .| (2.21)

Thus, the Lagrange multiplier § acquires a physical meaning as the inverse tem-
perature parameter already defined in (1.35) and (2.14a). Besides, in the canonical
ensemble the connection with thermodynamics is conveniently established via the
Helmbholtz free energy rather than via the entropy.
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As an average of a phase-space dynamical variable, the internal energy can be
directly obtained from In Zy as

dln ff[\/
E) = — . 2.22
(B) = -5 2.22)
More in general, the energy moments are
(=Dk ok 2y
EYy =2 2.2
) Zy 0Bk (2:23)

In particular, energy fluctuations in a closed system are measured by the variance

_ 32 In ff[\/
= —8'82

where in the last step use has been made of (1.20a). Since both the internal energy
(E) and the heat capacity Cy are extensive quantities (i.e., (E) o« N, Cy o N),

(E%)— (E)? = ksT°Cy (2.24)

(2.24) implies that the relative standard deviation / (E2) — (E)Z/ (E) scales with

N~1/2_ Therefore, in the thermodynamic limit (2.1) the energy fluctuations become
negligible and the canonical ensemble becomes equivalent to the microcanonical
one.
Using (2.23), it is possible to generalize (2.24) as

8" In ff[\/

(k) __ k
Ay = (D

(2.25)

where Ji{((k) denotes the kth cumulant of a random variable x. The first few
cumulants 2 < k < 6) are 42 = (6x)?), 4D = (6x)3), Y =
(%) = 3(E02)% 47 = ((0)°) — 10((60))((6x)?), and 4 = ((80)°) ~
15((8x)*) ((8x)2) — 10((8x)*) 4 30((8x)?)?, where 8x = x — (x).

The microcanonical<>canonical ensemble equivalence can be further explored
by considering the energy probability density function in the canonical ensemble,

“PEwap(E. V,N)
Zn(B.V) ’

PN(E; B, V) = / dx" 8(Hy(x") — E)py (x") = = (2.26)

where (2.11) has been used again. While wag(E,V,N) is a rapidly increasing
function of E (in classical systems with no upper bound for energy), e #F is a
rapidly decreasing function. Thus, &y (E) presents an extremely sharp peak at a
certain value £ = E. The extremal condition dIn Py (E)/0E|z_7 = 0 implies that
E is implicitly given by

_ dlnwag(E,V,N)

B 5 e (2.27)
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Comparison with (2.14a) shows that, at given T, N, and V, the most probable energy
E in a closed system coincides with the unique (except for the energy tolerance AE)
energy value in an isolated system.

From (1.12b) and (1.12c) (see also Table 1.1), we note that the pressure and the
chemical potential are obtained from the partition function as

9
Bp = 3V In Zy(B,V) , (2.28a)

3
w=—fu= oI 2 (B.V). (2.28b)

2.5 Grand Canonical Ensemble: Open Systems

In an open system neither the energy nor the number of particles are determined but
we can choose to fix their average values. As a consequence, the constraints are

> / axN py(x") =1, (2.292)
N=0
3 / ax" Hy (") pw(x") = (E) . (2.29b)
N=0
>N / dx" py(xV) = (N) . (2.29¢)
N=0

In general, given a dynamical variable Ay(x"), its grand canonical ensemble
average is

W = [ ax av o 2.30)
N=0

The solution to the maximization problem of the entropy functional (2.5) with
the constraints (2.29) is

—aN o—BHN(x")

N e
X')=——F—, 2.31
pn(x™) BB V.0 (2.31)
where o and § are Lagrange multipliers and the grand partition function is
2, el N
EB,V.,a) = Z / dx" e PENGT) (2.32)
N=o N
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From (2.18), the grand partition function can be rewritten as

EB.V.a)=) eV (B.V). (2.33)

N=0

Inserting (2.31) into (2.5), it is straightforward to check that the equilibrium entropy
becomes

S=kg(InE + B(E) +a (N)) . (2.34)

From comparison with the first equality of (1.17) we can identify § = 1/kpT,
a = —Bu, and

|Q2(T.V. ) = —ksTl E(B.V.0) .| (2.35)

As happened in the canonical ensemble, the Lagrange multiplier 8 coincides with
the inverse temperature parameter defined by (1.35) and (2.14a). Analogously, the
multiplier « is not but the scaled chemical potential defined by (2.14c).

The average energy and number of particles can be obtained from the grand
partition function as

(E) = — alanﬂ: . (2.362)
(N) =— ! g:x: (2.36b)

As for the pressure, according to (1.17) or (1.19b), we simply have
BpV =mmEZB,V,a). (2.37)

Similarly to (2.23), the moments associated with the energy and the number of
particles are

w_ (=DFokE
(EY) = R (2.38a)
_1)k gk =
(N*) = SV (2.38b)

g ok’
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Consequently, the fluctuation relations become

2 e PIE
(E%)—(E)" = g = ke Cv (2.39)
?In= 3 (N)
2\ 2 _ —
(N?) = (N) 5o S (2.39b)

Recalling that « = —fu and taking into account the thermodynamic identity (1.30),
we can write

(N?) — (N)* = nksT (N) k1 . (2.40)

Since the isothermal compressibility is an intensive quantity, the relative standard

deviation y/(N2) — (N)?/ (N) scales with (N )_1/ 2 and thus decays in the thermo-
dynamic limit. In that limit the microcanonical, canonical, and grand canonical
ensembles become equivalent. On the other hand, as one approaches the vapor—
liquid critical point the isothermal compressibility diverges (critical opalescence
phenomenon) and so do the density fluctuations in a finite-volume cell.

As in (2.25), the cumulants of energy and number of particles in the grand
canonical ensemble are

*InE&

A = (_l)kW , (2.41a)
*In=
AP = (=D 2o (2.41b)

This generalizes (2.39) to k > 3.
In analogy with (2.26), we can define the number probability distribution
function

P(N:B.V.a) = / dx" py(x") = % . (2.42)

This function is the product of a rapidly increasing function (Zy) and a rapidly
decreasing function (e™*N) of N, what gives rise to a sharp maximum at a value
N = N given by the implicit condition

dln Zy(B.V)
o = =g, V)

N (2.43)

N=N

The agreement with (2.28b) reinforces the canonical<«>grand canonical ensemble
equivalence for large systems (thermodynamic limit).
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2.6 Isothermal-Isobaric Ensemble: Isothermal-Isobaric
Systems

In this ensemble, the volume is a fluctuating quantity and only its average value is
fixed. Thus, similarly to the grand canonical ensemble, the constraints are

/ - dv / dxV py(x) =1, (2.44a)
0
/ - dv / dx" Hy(x")py(x") = (E) , (2.44b)
0
/ - dvv / dx" py(xV) = (V) . (2.44c¢)
0

Not surprisingly, the solution to the maximization problem of the Gibbs entropy
functional (2.6) is

N e_yve_ﬂHN(xN)
My=>"°" " (2.45)
) = e A By

where y and B are again Lagrange multipliers, and the isothermal—isobaric partition
function is

o0
An(B.y) = /0 dve / dx" e PV (2.46)

VoCn

Again, use of (2.18) allows us to write

1 o0
An(B.y) = 70/0 dve "V (B, V) . (2.47)

Taking into account (2.6), the entropy becomes
S=kpg(nAy+ BE)+y(V)) . (2.48)
From comparison with (1.13) we conclude that 8 = 1/kgT,

y=~8p, (2.49)

and

|G(T.p.N) = —ksTIn Ax(B.y) .| (2.50)
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As before, the Lagrange multipliers are related to thermodynamic quantities: § is
the inverse temperature parameter and y is the pressure p divided by the thermal

energy kpT.
The average energy and volume are
dln A N
E) =— ,
() = -3
dln A N
<V> = - a *
4

From here one can get the Maxwell relation

I(E) _a(V)
Iy P
Equations (2.51) are complemented by
. In AN
a = ﬂl"[‘ - N ’

which follows from the property 4 = G/N for one-component systems.

The energy and volume fluctuations are characterized by

82 In AN

(E?) = (E)* = e = ksT*Cy
) ,  PlAy 1wV
W= =5 =5 (), e

(2.51a)

(2.51b)

(2.52)

(2.53)

(2.54a)

(2.54b)

Equations (2.40) and (2.54b) are equivalent. Both show that the density fluctuations
are proportional to the isothermal compressibility and decrease as the size of the
system increases. In (2.40) the volume is constant, so that the density fluctuations
are due to fluctuations in the number of particles, while the opposite happens in

(2.54D).
Again, the cumulants can be obtained as
o In A

(k) __ k N

A = D
k

k) _ k d*1n AN

A = D

The volume probability distribution function is

e_VV,f»}FN(,B, V)

Py, B,y) = /dXN ovx) = VoAn(B.y)

(2.55a)

(2.55b)

(2.56)
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Table 2.1 Summary of statistical ensembles
Statistical ensembles
Quantity | Microcanonical Canonical Grand canonical Isothermal—isobaric
Hepiar (HN(XN )) e BHNGY) e N —BHN (") e~ VVe—BHNGY)
NWWINwap(E, V,N) | NhiN 2y(B,V) NWWNE(B,V,a) | VoNWIN AN (B, y)
Partition fcn.

on(xY)

Symbol | wap(E, V,N) 2Zv(B. V) E(B.V.a) An(B.y)
Hy=EFAE - qyN dxV v | % gy

Expressi —PHNGT) N (B V / —eY

Xpression /HN:E NN NN € NZ:OC (B, V) A €

X2 (B, V)
Potential | S = kglnwag F=—kgTInZ%y |2 =—kgTlh& G = —kgTIn Ay
1 al
= — |18 v v v
ksT oE
dlnwag dln Zy In&

= - TAE — v

v ="pp oV v v
dlnwag dln %y In Ay

= — - - v jumn—

e T N N
d1n 2, dln & dln A
E, (E) \/ _ nzy _ n _ nAdy
B ap B
dln &
N, (N) v v — v
Jo
a
V, (V) v v v ~3 In Ay
14

The check marks denote the control variables in each ensemble

As expected, Py (V) has a sharp peak at V = V, where

I1n Zw(B. V)
V - -

. 2.57
| (2.57)

Now, comparison with (2.28a) shows the canonical<«-isothermal—isobaric ensemble
equivalence in the thermodynamic limit.

A summary of the main relations for the four ensembles considered in this
chapter can be found in Table 2.1.

2.7 Ideal Gas

The exact evaluation of the partition functions (2.9), (2.18), (2.33), and (2.47) is in
general a formidable task due to the involved dependence of the Hamiltonian on the
coordinates of the particles. However, in the case of non-interacting particles (ideal
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gas), the Hamiltonian depends only on the momenta:

N 2
Hy(x") - Hy(p") =) g—m : (2.58)

i=1

where m is the mass of a particle. In this case the N-body Hamiltonian is just the sum
over all the particles of the one-body Hamiltonian p?/2m and the exact statistical-
mechanical results can be easily obtained.

The expressions for the partition function, the thermodynamic potential, and the
first derivatives of the latter for each one of the four ensembles considered above are
listed in Table 2.2. In those expressions, I"(x) is the well-known gamma function,

\%
(BV)= —— (2.59)
[AB)]
Table 2.2 Physical quantities of an ideal gas
Statistical ensembles
Quantity | Microcanonical Canonical Grand canonical | Isothermal—isobaric
Partition fen.
Symbol | @S,(E. V. N) ZWB.V) | EYB. V) AN (B.v)
N
[V@amE/R)P]” AE | L.V y ™D
Expression| ———————— — —_— BV | —————
Xpression NIT@N/2) Z 0 exple™“¢(B, V)] VoA B
Potential
SY(E,V,N) FYT,V,N) | Q4T V,n) GYT,p.N)
Symbol _—
Nk NksT ksT NkyT
‘ V (4xmE\"? N _ PIAB))
Expression| In |:N (W) In m —1|—e7%¢(B,V) In kB—T
d+2
+ 2
2 E
T -— v v v
d Nkg
. 2E N —§B.V)
id e —kgT kgTe™™ v
P av v e Ty
. 2E | v (4xmE\"" N A(B))
i S| (2 ksT In v kpT1n AN
dN N \ dNR? (B, v) ksT
; d d d
E, (EYY |v >Nk T FksTe™¢(B. V) ZNkyT
N, (N) v v e (B, V) v
NkgT
v.v) |V v v .
p

The check marks denote the control variables in each ensemble
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is the one-particle partition function and

h

V2rm/B

is the thermal de Broglie wavelength. When obtaining the thermodynamic potentials
from the logarithm of the corresponding partition function, the thermodynamic limit
(N — 00) has been taken. This allows us to use the Stirling approximation In N! ~
N(InN — 1) and the limit N~' In(AE/E) — 0.

Note that the expressions for the thermodynamic potentials and the thermody-
namic variables (temperature, pressure, chemical potential, internal energy, number
of particles, and volume) in a given ensemble are fully equivalent to those in
any other ensemble. This a manifestation of the ensemble equivalence in the
thermodynamic limit, the only difference lying in the choice of independent and
dependent variables.

AB) = (2.60)

2.8 Interacting Systems

Of course, particles do interact in real systems, so the Hamiltonian has the generic
form

Hy(x") = Hy(p") + on ("), (2.61)
where @y denotes the total potential energy. Since the interactions among the
particles depend on the relative positions of the particles only, the potential energy
function is invariant under translations, i.e.,

@N(l'l +arp+a,...,ry+ a) = @N(I'l, ry,..., I‘N), (262)
for any arbitrary displacement vector a.
As a consequence of the decomposition (2.61), the canonical partition function
factorizes into its ideal and non-ideal parts:

Zv(B.V) = 23 (B.V)2n(B. V), (2.63)

where 24 can be found in Table 2.2 and the non-ideal part

(B, V)=V / drV e~ Aon ) (2.64)

is the configuration integral. We will refer to the exponential exp[—B®y(r")] in the
integrand of 2y as the Boltzmann factor.
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In the canonical ensemb}e, 9y is responsible for the excess contributions F* =
F—F4(E)™ = (E) — (E), p™ = p = p. p™ = pu — p'*:

FX(T,V.N) = —ksTn 2y(B.V) , (2.652)
(E)™ = —alg ﬁf@ x, (2.65b)

ex — kBTah;;@N , (2.65¢)

u = —kBTalg]fN . (2.65d)

In general, if A(r") is a dynamical variable that depends on the particle positions
only, its canonical-ensemble average is

y—N /
Ay = ——— [ diV AN )e FNED (2.66)
W= 5B )
The grand partition function does not factorize but can be written as
o0
- VNoy(B. V) .
E(B.V.a) =14~ (2.67)
N=1 )

where we have taken into account that 2y = 1 and have introduced the quantity

Z(B.a) = A (2.68)

[A@B]

z being the fugacity defined by (2.15). Thus, Z is a rescaled fugacity with dimensions
of a number density. According to (2.67), we observe that the configuration integrals
9y are directly related to the coefficients in the expansion of the grand partition
function in powers of the quantity 2.

As for the isothermal—isobaric partition function, it is easy to obtain

An(B.y) = e 7YVN Iy (B.V) . (2.69)

1 o0
VoNTA B [

This shows that Ay can be seen as proportional to the Laplace transform of V¥ 2y
with respect to volume.
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2.9 Generalization to Mixtures

While so far we have restricted ourselves to one-component systems, most of the
arguments and derivations can be easily generalized to mixtures. In particular, (2.8),
(2.9), (2.17), (2.18), (2.31), (2.32), (2.45), and (2.46) generalize to

Mg gt ae (Hp,y (xV))
(HV Nv!)thwAE(Es v, {Nv }) '
1
(Hu Ny YA /EsH{N,, y(xV)<E+AE

pov,y (xY) = (2.70a)

wap(E,V,{N,}) = dxV, (2.70b)

( N) e_ﬂH{Nu}(xN)
PN} (X)) = , (2.71a)
o (IT, N DN Z 3 (B.V)
7 V)= —— | dxN e PH ) 2.71b
BV = g | e @.71b)
e_auNue_ﬂH{Nu}(xN)
ppv,3(xY) = L. (2.72a)

(T, NDANE B,V {en})

oo oo 1—[ oMy
EB VA =3 Y gt / dxV e P (272
) N{=0N,=0 (IT, Ny Ha

e_yve_ﬁH{Nl, 3 (XN)

Vo(l_[v NV !)thA{N,,}(ﬁv J/) '

o0
/ ave ™V / dxV e PHw ") (2.73b)
0

P,y (xY) = (2.73a)

1
Aw,3(B.y) = W

respectively. For instance, from (2.72) it is easy to check that, in the grand canonical
ensemble, one has

(Ny) = L . (2.74a)
Jdo,
& 3 (Ny,)
Ny Ny,) — (N} (N,,) = =— ey 2.74b
(No,Ni,) = (Ny) (Vi) Sa dats, o, ( )

Equation (2.74b) is a generalization of (2.39b).
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Table 2.2 can be generalized to ideal-gas mixtures. In particular,

Aid y_WHON 575
thy(P7) = VoI, Nu! [AL(B™ @7
d
G(T.p,{N,}) = ksT ) N, In % : (2.75b)
d
1T, p,x,) = kpTIn xop (A (D (2.75¢)

kT '

where A, (B) is the thermal de Broglie wavelength of species v, which is given by
(2.60) with the replacement m — m,,, where m,, is the mass of a particle of species v.

Exercises

2.1 Use the Lagrange multiplier method to maximize the entropy functional (2.3)
with the constraint (2.7) and prove the microcanonical distribution (2.8). Derive
(2.12).

2.2 Use the Lagrange multiplier method to maximize the entropy functional (2.3)
with the constraints (2.16) and prove the canonical distribution (2.17). Derive (2.20).

2.3 Derive (2.23).
2.4 Check (2.25)for3 <k <6.

2.5 Use the Lagrange multiplier method to maximize the entropy functional (2.5)
with the constraints (2.29) and prove the grand canonical distribution (2.31). Derive
(2.34).

2.6 How should the derivative in (2.36a) be interpreted, at constant « = —fBu or at
constant i? Are both interpretations equivalent?

2.7 Derive (2.38b).

2.8 Use the Lagrange multiplier method to maximize the entropy functional (2.6)
with the constraints (2.44) and prove the isothermal—isobaric distribution (2.45).
Derive (2.48).

2.9 Derive (2.51b).

2.10 How should the derivative in (2.51a) be interpreted, at constant y = fp or at
constant p? Are both interpretations equivalent?
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2.11 Prove that the area and the volume of a hypersphere of radius R in k
dimensions are

g, " (2.76)
T2+ 1) ‘

27kl
I'(k/2)

respectively. Hint: Evaluate the multiple Gaussian integral | dre™ in both
Cartesian and spherical coordinates.

2.12 Making use of (2.76), prove that the microcanonical partition function for an
ideal gas, a)iAdE, is indeed given by the expression shown in Table 2.2.

2.13 Prove (2.59).
2.14 Check the expressions of Table 2.2.

2.15 Using Table 2.2, prove that for an ideal gas the energy, number, and volume
probability distribution functions (2.26), (2.42), and (2.56) reduce to

e—ﬁE (IBE)dN/Z—l

id _
PN(E) =B FaN2) (2.77a)
N
PYN) = e W) % , (2.77b)
—BpV N
wp) = ppS PV @770

respectively.

2.16 Define the scaled quantities E* = E/(E) = 2BE/dN, N* = N/ (N),
V* = V/(V) = BpV/N and obtain the corresponding distributions Z2¢(E*) =
(E) ZU(E), ZYUN*) = (N) ZUN), and 2 (V*) = (V) 24(V) from (2.77).
Explore the shape of those functions as N (or (N)) increases.

2.17 Justify (2.70)~(2.73).
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