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Lay Summary
In most pregnancies, there is a delicate balance between foetal demands and
the maternal supply of nutrients; however, in some instances, abnormal
foetal–maternal interactions can lead to pregnancy complications. These
abnormal interactions can occur at the uteroplacental interface, in the pla-
cental vascular system and at the level of foetal–maternal signalling. Some of
the consequences of abnormal foetal–maternal interactions include pregnancy
complications such as foetal growth restriction, pre-eclampsia, gestational
diabetes, preterm parturition and in extreme cases foetal death. We propose
that an absolute reduction in the blood flow to the uteroplacental unit may
participate in the mechanisms of disease in foetal growth restriction,
early-onset pre-eclampsia and maternal thrombophilias, whereas a relative
reduction in the supply line due to an excessive foetal demands for nutrients
may be more relevant in the mechanism of injury in late-onset pre-eclampsia
and gestational diabetes. It is possible that some of these pregnancy com-
plications may have evolved as survival strategies for the foetus or the
mother. In this context, interventions aimed at modulating the maternal blood
pressure during pregnancy or delaying preterm parturition should be tailored
to maximize both maternal and perinatal outcomes.
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2.1 Introduction

The placenta appears to be a ruthless parasitic organ existing solely for the maintenance and
protection of the fetus, perhaps too often to the disregard of the maternal organism.
Ernest W. Page AJOG 1939.

Successful pregnancies depend on a balance between increasing foetal demand for
nutrients and a measured maternal investment to safeguard her reproductive future
[1]. Failure of the well-orchestrated maternal foetal interaction may lead to a
conflict of interests between the mother and her foetus and subsequent pregnancy
complications [2]. The term “foetal–maternal conflict” refers to a conceptual
framework whereby foetal growth and development can happen sometimes at the
expense of the maternal well-being [1–5]. This term has being used to describe
clinical situations in which evolutionary adaptations of the mother appear to be in
conflict with those of her foetus [1, 2, 4, 5]. At the histological level, foetal–
maternal conflicts have been implicated in the mechanisms by which abnormal
trophoblast invasion leads to the failure of physiologic transformation of the spiral
arteries [2, 6–9], chronic uteroplacental ischaemia [10] and pregnancy complica-
tions including pre-eclampsia [1–13], preterm parturition [14, 15], foetal growth
restriction [11, 13, 16, 17] and foetal death [18]. The conventional obstetrical view
is to compartmentalize and treat pregnancy complications as if problems arising
during pregnancy have either foetal or maternal origin. In contrast, the evolutionary
approach to pregnancy complications is to consider them as a result of abnormal
foetal–maternal interactions. This chapter reviews the evidence supporting the
notion that foetal growth restriction, early- and late-onset pre-eclampsia, preterm
parturition and gestational diabetes may result from inadequate foetal–maternal
interactions.

2.2 Research Findings

2.2.1 Foetal Growth Restriction and Abnormal
Foetal–Maternal Interactions

One of the most common expressions of the “foetal–maternal conflict” is mani-
fested in abnormalities of foetal growth. Paternally derived imprinted genes tend to
maximize foetal growth; in contrast, maternally derived imprinted genes tend to do
the opposite [5] presumably as an evolutionary strategy to protect the maternal
well-being. A remarkable example of this view is the observation that human
triploidic foetuses, for which the extra set of chromosomes (a total of 69 rather than
the normal 46 chromosomes) is derived from the mother (dyginic triploidy), are
associated with early-onset foetal growth restriction even in the first trimester of
pregnancy (Fig. 2.1). These foetuses not only have very small bodies and dispro-
portionably large heads but also very thin and small placentas. Moreover, there is
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sonographic evidence that dyginic triploidic foetuses show blood redistribution to
the foetal brain in the first and early second trimester of pregnancy [19].
Asymmetric early-onset foetal growth restriction in triploidic foetuses may be due
to the chromosomal anomaly, but it is possible that blood redistribution starting
very early in pregnancy may contribute to the phenotype seen in dyginic triploidy.
In contrast, triploidic foetuses for which the extra set of chromosomes is derived
from the father (dyandric triploidy) are associated with partial mole pregnancies.
These foetuses tend to be of normal size but have large molar placentas and are
often associated with early-onset pre-eclampsia before 20 weeks of gestation. It is
noteworthy that pregnancy complications that are normally seen in the second or
third trimester, including foetal growth restriction and pre-eclampsia, can be seen as
early as the first or early second trimester in dyginic or dyandric triploidic preg-
nancies, respectively.

Genomic imprinting is the process by which one copy of a gene is silenced due
to its parental origin. New high-throughput molecular techniques indicate that
several hundred genes are imprinted. Experimental studies provide additional evi-
dence that foetal growth is regulated by paternally or maternally derived imprinted

Fig. 2.1 Ultrasonographic findings in a foetus with dyginic triploidy in the first trimester of
pregnancy note the significant disproportion between the foetal head and the body
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genes. The insulin-like growth factor II gene is paternally expressed in the foetus
and the placenta; deletion of a transcript of this gene in mice leads to reduced
placental growth and foetal growth restriction [4]. Grb10 is an adapter signalling
protein that appears to control foetal growth independently from insulin-like growth
factor 2 [20]. Grb10 is a potent growth inhibitor, and the majority of its gene
expression arises from the maternally derived allele which is located on chromo-
some 7 [20]. In mice, disruption of this allele results in overgrowth of both the
embryo and placenta, such that the mutant mice at birth are 30 % larger than normal
[20]. In humans, about 10 % of individuals affected by Silver–Russell syndrome,
characterized by severe foetal growth restrictions, inherit both copies of chromo-
somes 7 from their mother, and it has been proposed that an overexpression of the
GRB10 gene accounts for these restrictions in growth [20].

2.2.2 Chronic Ischaemia of the Uteroplacental Unit:
Early-Onset Pre-eclampsia and Foetal Growth
Restriction

During pregnancy, the uterus and placenta form an anatomic and functional utero-
placental unit. An absolute uteroplacental ischaemia may result from (i) placental
bed disorders; (ii) vascular insults to the placenta; or (iii) abnormal foetal placental
circulation. Abnormalities in the placental bed and subsequent failure of physiologic
transformation of the spiral arteries in the first or early second trimester [6, 7] limit
the blood flow to the uteroplacental unit. Indeed, high impedance to blood flow in
both uterine arteries, a surrogate marker of chronic reduction of the blood flow to the
uteroplacental unit [21, 22], is associated with the failure of the normal physiologic
transformation of the spiral arteries in placental bed biopsies from patients with
pre-eclampsia [11, 13, 16, 23] and those with foetal growth restriction [11, 13, 16,
17]. However, not all patients with these pregnancy complications have evidence of
failure of physiologic transformation of the spiral arteries [11–13, 16, 17, 23].
Moreover, this pathological finding is not limited to patients with pre-eclampsia or
foetal growth restriction because it has also been described in a subset of patients
with preterm parturition [14, 15] and foetal death [18].

Additional mechanisms leading to absolute uteroplacental ischaemia include
insults to the placental vasculature during pregnancy. Recent reports indicate not
only that pre-eclampsia is associated with placental vascular lesions consistent with
“underperfusion”, but also that the earlier the gestational age at which pre-eclampsia
develops, the higher the prevalence of lesions consistent with placental ischaemia
[24, 25]. Indeed, the frequency of placental histological lesions consistent with
“maternal underperfusion” is as high as 75 % in pre-eclampsia that develop between
25 and 27 weeks and as low as 13 % in pre-eclampsia that develop at more than
41 weeks [25]. These observations suggest that there may be a dose response between
the magnitude of uteroplacental ischaemia and the timing of onset of pre-eclampsia.
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A remarkable example of the latter is the development of pre-eclampsia before
20 weeks of gestation in patients with mole or partial mole. These pregnancy com-
plications are characterized by the presence of “avascular placental villi” or placental
villi with capillary remnants [26]. Thus, by definition, mole and partial mole may
represent an extreme in the spectrum of ischaemic disease of the trophoblast [27]. The
dose response between the magnitude of uteroplacental ischaemia and the timing of
the development of pre-eclampsia suggests that there is an absolute or relative
“trophoblast ischaemic threshold” beyond which pre-eclampsia develops as a foetal
adaptive strategy in an attempt to improve the blood perfusion to the foetal and
placental tissues. It is possible that the response to this threshold may be modified by
gene–environment interaction [28], the magnitude of angiogenic imbalances [27, 29]
and foetal signalling in response to absolute or relative uteroplacental ischaemia
[30, 31].

Accumulating evidence indicates that chronic reduction of blood flow to the
uterus and placenta is associated with imbalances between circulating angiogenic
and anti-angiogenic factors characterized by an excess of the soluble form of
vascular endothelial growth factor (VEGF) receptor 1 (sFlt-1) and the soluble
endoglin (s-Eng) as well as low circulating maternal concentrations of both VEGF
and placental growth factor (PlGF) [27]. Clinical and experimental evidence indi-
cates that angiogenic imbalances are associated with the maternal manifestations of
pre-eclampsia, eclampsia and HELLP syndrome [27]. Teleologically, it is difficult
to believe that natural selection did not select against pre-eclampsia, which can
endanger the survival of both the mother and the foetus. From the evolutionary
point of view, it is possible that in preeclamptic patients, the foetus may stimulate
the placental release of anti-angiogenic factors to increase the maternal blood
pressure in an attempt to increase the blood flow to the placental and foetal tissues.
The magnitude of the angiogenic imbalances, gene–environment interaction (Subtle
differences in genetic factors that cause some people to possess a low risk for
developing a disease through an environmental insult, while others are much more
vulnerable) and other factors may determine whether a patient with chronic tro-
phoblast ischaemia will develop pre-eclampsia, foetal growth restriction, both or
any of the other intermediate phenotypes including gestational hypertension and
gestational proteinuria [27].

Recent reports suggest that among patients with pre-eclampsia, the foetus may
use adenosine among other signalling mechanisms in order to increase the maternal
blood pressure in an attempt to compensate for limited blood flow to the foetal and
placental tissues [27, 30, 32]. In one study [32], the authors compared the foetal
plasma concentrations of adenosine from normal pregnancies with those from
pre-eclampsia; patients with pre-eclampsia were sub-classified into patients with
and without abnormal uterine artery Doppler velocimetry. The results of the study
indicated that foetal plasma concentrations of adenosine were significantly higher in
patients with pre-eclampsia with abnormal uterine artery Doppler velocimetry than
in normal pregnancies. The authors concluded that patients with pre-eclampsia and
sonographic evidence of chronic uteroplacental ischaemia have high foetal plasma
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concentrations of adenosine and proposed that in these patients the foetus may use
the adenosine system and/or other signalling mechanisms to increase the maternal
blood pressure in an attempt to increase uteroplacental blood flow. An elegant
in vitro study provided additional evidence in support of this view [33]. In this
study, the authors determined the adenosine concentrations in foetal venous per-
fusates using isolated dual-perfused human placental cotyledons. In the latter
experimental setting, both the foetal and maternal compartments of the placenta are
perfused under controlled conditions. The authors reported that a substantial
reduction in the perfusion of the maternal compartment of the placenta was asso-
ciated with a significant increase in foetal venous perfusate concentrations of
adenosine and a concomitant increase in foetoplacental perfusion pressure.
Furthermore, perfusate pressure and the concentration of adenosine in the foetal
compartment returned to baseline levels on reperfusion of the “maternal” circuit
[33]. A more recent study using cultures of placental cells indicates that the
administration of adenosine to the cultures significantly increases the concentration
of the anti-angiogenic factor sFlt-1 in the cell culture media under normoxic con-
ditions and that the addition of dipyridamole (an adenosine transporter antagonist
which increases extracellular adenosine concentration) to cell cultures leads to a
significant increase in the concentrations of sFlt-1 in the culture media [34].
Moreover, although hypoxia was associated with a twofold increase in the con-
centrations of sFlt-1 in the cell culture media, blockade of adenosine signalling
(using a non-specific adenosine receptor antagonist) blunted the hypoxic effect on
the concentrations of sFlt-1 and VEGF to a level similar to normoxic conditions
[34]. These results indicate that adenosine signalling is important for placental
overexpression and release of sFlt-1 under both normoxic and hypoxic conditions.
An excess of sFlt-1 is associated with endothelial dysfunction, maternal hyper-
tension and the liver and renal injury described in pre-eclampsia. Collectively, this
evidence suggests that foetal signalling may play an important role in the devel-
opment of pre-eclampsia in the context of chronic reduction of blood flow to the
uteroplacental unit.

2.2.3 Maternal Thrombophilias

Histological vascular lesions have been described in the foetal and/or maternal side
of the placenta in mothers with inherited and acquired maternal thrombophilias
[35–38], but not in foetal thrombophilias [39]. Thus, chronic placental ischaemia
may contribute to the increased rate of adverse pregnancy outcomes observed in
patients with thrombophilias [38, 40–42]. In the context of the foetal–maternal
conflict, it is possible that the evolutionary advantage of preserving thrombophilic
genes in a particular population is to favour the maternal well-being over that of her
foetus, in addition to reducing the risk of peripartum haemorrhage [43, 44].
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2.2.4 Late-Onset Pre-eclampsia

Absolute uteroplacental ischaemia appears to be less relevant in the pathophysi-
ology of late-onset pre-eclampsia, defined as the onset of pre-eclampsia beyond
34 weeks of gestation [45, 46]. Evidence in support of this view includes the recent
observation that more than half of patients with late-onset pre-eclampsia do not
have placental histological lesions consistent with “maternal underperfusion” [47].
Furthermore, late-onset pre-eclampsia is frequently associated with foetuses that are
adequate or large-for-gestational age [45, 48–53]. We proposed that in these cases,
an increased foetal demand for substrates that surpass the placental ability to sustain
foetal growth may induce foetal signalling for placental overproduction of
anti-angiogenic factors and subsequent “compensatory” maternal hypertension [27].
Thus, it is possible that a relative uteroplacental ischaemia due to a mismatch
between a limited uteroplacental blood flow and increased foetal demand for
nutrients may be central to the development of late-onset pre-eclampsia. It is
possible that in both early and late-onset pre-eclampsia, the foetus may signal for
the onset of pre-eclampsia. In early-onset pre-eclampsia, real reduction in blood
flow appears to be central to the disease; in contrast, in late-onset pre-eclampsia,
foetal over-demand may create a state of relative scarcity of nutrients, which in turn
would prompt foetal signalling to elevate the maternal blood pressure.

A large metanalysis demonstrated that overzealous attempts to control blood
pressure during pregnancy are associated with foetal growth restriction [54]. These
observations suggest that pre-eclampsia may have evolved as one of the foetal
strategies to compensate for a relative or absolute uteroplacental ischaemia.

2.2.5 Abnormal Foetal–Maternal Interactions and Preterm
Parturition

Foetal strategies to cope with chronic uteroplacental ischaemia may include growth
restriction, foetal signalling to increase the maternal systemic blood pressure leading
into pre-eclampsia [30, 31] or preterm parturition to exit an inadequate intrauterine
environment. The observation that the absence of physiological transformation of
spiral arteries is also present in a subset of patients with spontaneous preterm delivery
[14, 15] suggests that the clinical manifestations of “foetal–maternal conflict” may
also include preterm parturition. Smallness at birth may be the result of different
insults during pregnancy including chronic reduction of blood flow to the utero-
placental unit. In some growth-restricted foetuses, spontaneous preterm parturition
(Delivery before 37 weeks of gestation) may represent a survival strategy to exit an
inadequate intrauterine environment [55]; failure of this adaptive strategy may result
in foetal or neonatal death. Evidence in support of this view includes the observations
that spontaneous preterm parturition is associated with foetal growth abnormalities
[56–66]. Of note, the association of smallness at birth (less than 10th percentile for
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gestational age) and prematurity confers a higher risk of foetal [67] or neonatal death
[68] among other adverse perinatal outcomes [68–73]. To the extent that preterm
parturition is a survival strategy to exit an inadequate intrauterine environment, the
safety of tocolysis (interventions to stop uterine contractions) in the growth-restricted
premature foetus should be re-evaluated.

2.2.6 Gestational Diabetes

David Haig in a very insightful article proposed that gestational diabetes mellitus
(GDM), among other pregnancy complications, may also be the result of a foetal–
maternal conflict [1]. Dr. Haig proposed that a mother and her foetus compete after
every meal over the glucose share that each one receives in a way that

The longer the mother takes to reduce her blood sugar, the greater the share taken by her
fetus. [1]

In the last half of pregnancy, there is an increased tissue resistance to the action of
insulin; to compensate for this, the mother increases insulin production. According
to the foetal–maternal conflict hypothesis, this is caused by foetal signalling using
placental allocrine hormones including human placental lactogen (hPL) and human
placental growth hormone among others, to guaranty its adequate glucose supply,
whereas the increased production of insulin would be a maternal countermeasure [1].
Thus, the nutrient content in the maternal blood may be determined by the balance
between foetal signalling using placental-derived hormones and maternal counter-
measures. Human experimentation done in the late 1960s provides evidence sup-
porting the notion of the diabetogenic effect of hPL [74, 75]. Indeed, intravenous
infusion of physiological amounts of hPL to non-pregnant subjects is associated with
glucose intolerance despite increased insulin responses [74]. It is possible that failure
of a well-orchestrated maternal–foetal interaction, between foetal signalling
increasing the placental production of diabetogenic hormones and maternal coun-
termeasures increasing insulin production, may lead to GDM. Thus, gestational
diabetes would develop if a woman were unable to increase her insulin production
sufficiently to match the increased peripheral insulin resistance.

A large population-based study indicated that GDM is an independent factor for
the development of pre-eclampsia after controlling for confounding factors
including maternal age, parity, BMI, smoking and chronic hypertension or renal
disease (Adjusted Odds-Ratio: 1.61, 95 % CI: 1.39–1.86) [76]. Moreover, a large
retrospective study in the USA involving 1813 women with GDM demonstrated
that the rates of pre-eclampsia among those with poor glycaemic control were about
twice as high as those with better glycaemic control (18 % vs. 9.8 %; OR: 2.56,
95 % CI: 1.5–4.3) [77]. However, there is limited literature in regard to the timing
of onset of pre-eclampsia among women with GDM.

In a study involving 45 patients with GDM demonstrated normal placental
histology in 80 % of them [76], thus, placental vascular lesions are not common in
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the foetal or maternal side of the placenta in women with GDM. Since this preg-
nancy complication is associated with large-for-gestational age neonates, it is
possible that in women with GDM who develop pre-eclampsia, an increased foetal
demand for substrates that surpass the placental ability to sustain foetal growth may
induce foetal signalling for placental overproduction of anti-angiogenic factors and
subsequent “compensatory” maternal hypertension. Additional studies are needed
to explore the role of angiogenic imbalances in these patients.

2.3 Implications for Policy and Practice

The recognition that some pregnancy complications may be due to abnormal foetal–
maternal interactions is important for the clinical management of these pregnancy
complications. In the context of a long-lasting reduction of blood flow to the foetal
and placental tissues, the foetus may signal the placental release of “pressor sub-
stances”, which could elevate the maternal blood pressure in an attempt to increase
the delivery of nutrients to the foetus. Any medical attempt to “normalize” the
blood pressure in the mother could be deleterious to the foetus by preventing the
beneficial effect of a compensatory mechanism. The use of medications to lower the
blood pressure should be aimed at reducing the blood pressure to a level that will
prevent cardiovascular accidents in the mother, but not at “normalizing” the blood
pressure. Similarly, the use of medications to stop the uterine contractions in
women with preterm labour should be judiciously used in foetuses that are
growth-restricted because it is possible that the foetus may have initiated the pro-
cess of premature labour in order to exit a hostile intrauterine environment.

Glossary

Pre-eclampsia Hypertensive disorder of pregnancy that typically starts
after the 20th week of pregnancy.

Genomic imprinting The process by which one copy of a gene is silenced
due to its parental origin.

Mole pregnancy Results from a genetic error during the fertilization
process that leads to growth of abnormal placenta
within the uterus.

Grb10 Growth factor receptor-bound protein 10 also known as
insulin receptor-binding protein.

Spiral arteries Small arteries that are remodelled into highly dilated
vessels during pregnancy to increase the blood supply
to foetal and placental tissues.
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Placental bed disorders Refers to defective placentation in the human which is
associated with pregnancy complications such
pre-eclampsia, foetal growth restriction, and foetal
death.

Uteroplacental
ischaemia

During pregnancy, the uterus and placenta form a
functional unit. This term refers to reduced blood flow
to this unit.

Angiogenic factors Promote the viability and growth of endothelial cells.
Foetal signalling: proposed pathways used by the foetus
to alter the maternal of placental physiology.

HELLP syndrome A severe form of pre-eclampsia characterized by
abnormal liver enzymes, low platelets and destruction
of red blood cells.

Adenosine Compound that plays an important role in energy
transfer signal transduction and regulation of blood
flow to various organs.

Uterine artery Doppler
velocimetry

Ultrasonographic technique to evaluate the character-
istics of blood flow in vessels.

VEGF Vascular endothelial growth factor is a signalling pro-
tein involved in the formation and growth of blood
vessels.

sFlt-1 Splice variant of VEGF receptor 1an excess of this
soluble form in the circulation can reduce the
bioavailability of VEGF (anti-angiogenic).

Thrombophilia Abnormality of blood coagulation that increases the risk
of thrombosis.

Tocolysis Medical interventions to reduce or stop uterine
contractions.

Allocrine hormones Foreign hormones being taken up and eliciting a
response in an organism.
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