
Chapter 2
Solution of Homogeneous
and Inhomogeneous Linear Equations

Although we are concerned primarily with equations (differential and difference) of
first and second order, the analysis of these equations applies equally to equations of
higher order. Themethods for dealingwith these equations is in fact best elucidated by
considering the nth order equations and then giving the results for the first and second
order equations as specific examples. We first present the analysis for differential
equations and then follow with the analysis for difference equations.

The idea essential to most of the methods for solving an inhomogeneous equation
of nth order is that if one knows a number, m, (1 ≤ m ≤ n) of linearly independent
solutions of the homogeneous equation, then one can derive a linear equation of order
n − m. For the case in which one knows one solution of the homogeneous equation
(m = 1), the method is referred to as “reduction of order”. This is particularly
useful if one starts with a second order homogeneous or inhomogeneous equation,
resulting in a first order equation which can then be solved directly in closed form.
For the case in which one knows all n linearly independent solutions of the nth order
homogeneous equation, the method (discussed earlier by Lagrange) is referred to as
“variation of parameters” or “variation of constants”—a characterization that will
become clear shortly. One then obtains the solution to the inhomogeneous equation
in terms of the n linearly independent solutions of the homogeneous equation. The
case of an intermediate m, 1 < m < n, has been treated succinctly in a short article
by Locke [31], linking the particular cases m = 1 (reduction of order) and m = n
(variation of parameters). An alternative approach is given in [18]. An analysis for
arbitrary m, 1 ≤ m ≤ n, in which the nth order equation is transformed into a first
order matrix equation, is given in [20].

The nth order linear homogeneous differential equation has the form

Ly(x) ≡ an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · · + a0(x)y(x)

=
n∑

i=0

ai (x)y(i)(x) = 0 (2.1)
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and the corresponding inhomogeneous equation is

n∑

i=0

ai (x)y(i)(x) = f (x) (2.2)

where

y(i)(x) ≡ di y(x)

dxi
. (2.3)

The corresponding N th order linear homogeneous and inhomogeneous difference
equations are

Ly(n) ≡ pN (n)y(n + N ) + pN−1(n)y(n + N − 1) + · · · + p0(n)y(n)

=
N∑

i=0

pi (n)y(n + i) = 0 (2.4)

and
N∑

i=0

pi (n)y(n + i) = qn (2.5)

respectively. Here the coefficients pi (n) are often also functions of independent
parameters. We note that these two N th order difference equations can be written
in a form similar to that for the differential equations using the difference operator
�y(n) = y(n + 1) − y(n). From (1.9) we have

N∑

i=0

pi (n)y(n + i) =
N∑

i=0

pi (n)

i∑

j=0

(
i

j

)
� j y(n)

=
N∑

j=0

� j y(n)

N∑

i= j

(
i

j

)
pi (n). (2.6)

We can then write the homogeneous and inhomogeneous difference equations in
the form

N∑

j=0

r j (n)� j y(n) = 0 (2.7)

and
N∑

j=0

r j (n)� j y(n) = qn (2.8)
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respectively, where

r j (n) =
N∑

i= j

(
i

j

)
pi (n). (2.9)

2.1 Variation of Constants

We start with an analysis of the method of variation of constants since it provides
the clearest understanding of the essential aspects of the method.

2.1.1 Inhomogeneous Differential Equations

As given above, the nth order homogeneous differential equation is

n∑

j=0

a j (x)y( j)(x) = 0 (2.10)

and the corresponding inhomogeneous equation is

n∑

j=0

a j (x)y( j)(x) = f (x). (2.11)

We assume that the solution to the inhomogeneous equation, y(x), and its n − 1
derivatives, can be given in terms of the n linearly independent solutions of the
homogeneous equation, uk(x), (k = 1, 2, . . . , n) by

y( j)(x) =
n∑

k=1

ck(x)u( j)
k (x) j = 0, 1, . . . , n − 1. (2.12)

We then have n linear equations for the n functions ck(x). They do not define the
functions ck(x), but merely relate them to the derivatives y( j)(x), which is possible
given the linear independence of the functions uk(x). We note that if the ck(x) are
constants, then y(x) as defined by this equation is a solution of the homogeneous
equation. By allowing the ck(x) to vary (i.e., to be functions of x), we can determine
them so that y(x) is a solution of the inhomogeneous equation, whence the name
variation of constants, or variation of parameters. An equation for the ck is obtained
by substituting (2.12) into (2.2); still required is y(n)(x). Differentiating (2.12) for
j = n − 1 we have
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y(n)(x) =
n∑

k=1

ck(x)u(n)
k (x) +

n∑

k=1

c′
k(x)u(n−1)

k (x). (2.13)

Substituting (2.12) and (2.13) in (2.2) then gives

f (x) =
n−1∑

j=0

a j (x)

n∑

k=1

ck(x)u( j)
k (x) + an(x)

[
n∑

k=1

ck(x)u(n)
k (x) +

n∑

k=1

c′
k(x)u(n−1)

k (x)

]

=
n∑

j=0

a j (x)

n∑

k=1

ck(x)u( j)
k (x) + an(x)

n∑

k=1

c′
k(x)u(n−1)

k (x). (2.14)

Interchanging the order of summation in the first term here we have

n∑

j=0

a j (x)

n∑

k=1

ck(x)u( j)
k (x) =

n∑

k=1

ck(x)

n∑

j=0

a j (x)u( j)
k (x) = 0 (2.15)

since the uk(x) are solutions of the homogeneous equation (2.1). We now have one
equation for the first derivative of the n functions ck(x):

n∑

k=1

c′
k(x)u(n−1)

k (x) = f (x)

an(x)
≡ gn(x). (2.16)

The remaining n − 1 equations defining the functions c′
k follow from (2.12): Differ-

entiation of (2.12) gives

y( j+1)(x) =
n∑

k=1

ck(x)u( j+1)
k (x) +

n∑

k=1

c′
k(x)u( j)

k (x). (2.17)

Here, from (2.12), for j = 0, 1, . . . , n − 2, the first sum on the right hand side is
y( j+1)(x), from which

n∑

k=1

c′
k(x)u( j)

k (x) = 0, j = 0, 1, . . . , n − 2. (2.18)

Equations (2.16) and (2.18) now give n equations for the n functions c′
k(x) which

can then be integrated to give ck(x).
All of the results just given can be obtained more succinctly by formulating the

matrix equivalent of these equations, giving a first order matrix differential equation.
To that end, we define the Wronskian matrix, W(x),
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W(x) =

⎛

⎜⎜⎜⎝

u1(x) u2(x) · · · un(x)

u(1)
1 (x) u(1)

2 (x) · · · u(1)
n (x)

...
...

...
...

u(n−1)
1 (x) u(n−1)

2 (x) · · · u(n−1)
n (x)

⎞

⎟⎟⎟⎠ (2.19)

and the column vectors c(x), g(x)

c(x) =

⎛

⎜⎜⎜⎝

c1(x)

c2(x)
...

cn(x)

⎞

⎟⎟⎟⎠ (2.20)

g(x) =

⎛

⎜⎜⎜⎝

0
0
...

gn(x)

⎞

⎟⎟⎟⎠ (2.21)

and

y(x) =

⎛

⎜⎜⎜⎝

y1(x)

y2(x)
...

yn(x)

⎞

⎟⎟⎟⎠ (2.22)

in which the components y j (x) are given in terms of the derivatives of the solution
to the inhomogeneous equation (2.11) by

y1(x) = y(x), y2(x) = y(1)(x), . . . , yn(x) = y(n−1)(x) (2.23)

from which
y′

j (x) = y j+1(x), j = 1, 2, . . . , n − 1 (2.24)

The inhomogeneous equation (2.11) may then be written in the form

an(x)y′
n(x) +

n−1∑

j=0

a j (x)y j+1(x) = f (x) (2.25)

or

y′
n(x) = −

n−1∑

j=0

b j y j+1(x) + gn(x) (2.26)

where
b j = b j (x) = a j (x)/an(x), gn(x) = f (x)/an(x). (2.27)
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Taken together, Eqs. (2.24) and (2.26) then give y′
j (x) in terms of y j (x) for j =

1, 2, . . . n and can be written in matrix form:

y′ = By + g (2.28)

where

B(x) =

⎛

⎜⎜⎜⎝

0 1 · · · 0
...

...
...

...

0 0 · · · 1
−b0 −b1 · · · −bn−1

⎞

⎟⎟⎟⎠ (2.29)

Equation (2.12), defining the n − 1 derivatives of y(x), then takes the simple form

y = Wc (2.30)

when written in terms of the Wronskian matrix W(x). Substituting this in the matrix
form of the inhomogeneous equation, (2.28), then gives

(Wc)′ = W′c + Wc′ = BWc + g (2.31)

From the homogeneous equation satisfied by uk(x):

u(n)
k = −

n−1∑

j=0

b j u
( j)
k , k = 1, 2, . . . , n (2.32)

we have
B(x)W(x) = W′(x), (2.33)

which, when substituted in (2.31), gives

Wc′ = g, (2.34)

which is equivalent to Eqs. (2.16) and (2.18). Integration of this equation gives

c(x) =
∫ x

W−1(x ′)g(x ′)dx ′, (2.35)

and from (2.30),

y(x) = W(x)

∫ x

W−1(x ′)g(x ′)dx ′ (2.36)

If we have an initial value problem in which y(x) and its n derivatives are specified
at a point x = x0, then integration of equation (2.34) gives
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c(x) = c(x0) +
∫ x

x0

W−1(x ′)g(x ′)dx ′ (2.37)

Multiplying both sides of this equation by W(x) and using c(x0) = W−1(x0)y(x0)
from (2.30) we have the solution to the inhomogeneous equation (2.11) in matrix
form:

y(x) = W(x)

(
W−1(x0)y(x0) +

∫ x

x0

W−1(x ′)g(x ′)dx ′
)

. (2.38)

We note that the three essential equations in this analysis are (2.28), y′ = By +g,
which defines the inhomogeneous equation and is equivalent to Eq. (2.2); (2.30),
y = Wc, which relates the functions ck(x) to the derivatives of y(x) and is equivalent
to Eq. (2.12); and (2.33),BW = W′, which gives the homogeneous equation satisfied
by its solutions uk(x) and is equivalent to Eq. (2.32). With only minor notational
modifications, these three equations form the basis of the analysis for difference
equations (note Eqs. (2.64), (2.66) and (2.69)).

An alternate but completely equivalent approach to the solution of the nth order
linear inhomogeneous equation, (2.28),

y′ = By + g, (2.39)

is provided by consideration of theWronskian (in the case of the differential equation)
and the Casoratian (in the case of the difference equation). We start from Eq. (2.34),

Wc′ = g, (2.40)

The solution to this set of equations is given by Cramer’s rule (see Appendix E),
by which the column vector g(x), (2.21), replaces the j th column in the Wronskian
matrix W(x), (2.19). The elements c′

j (x) are then given by

c′
j (x) = 1

W (x)

∣∣∣∣∣∣∣∣∣∣∣∣

u1 · · · u j−1 0 u j+1 · · · un

u(1)
1 · · · u(1)

j−1 0 u(1)
j+1 · · · u(1)

n
...

...
...

...
...

...
...

u(n−2)
1 · · · u(n−2)

j−1 0 u(n−2)
j+1 · · · u(n−2)

n

u(n−1)
1 · · · u(n−1)

j−1 gn u(n−1)
j+1 · · · u(n−1)

n

∣∣∣∣∣∣∣∣∣∣∣∣

(2.41)

where uk = uk(x), (k = 1, 2, . . . , n), are the n linearly independent solutions of
(2.1) and W is the determinant of the Wronskian matrix (2.19). (See Appendix B
for j = 1 and j = n.) Expanding the determinant (2.41) in the elements of the j th
column, c′

j (x) can be expressed in terms of an (n − 1) × (n − 1) determinant:
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c′
j (x) = (−1)n+ j gn(x)

W (x)

∣∣∣∣∣∣∣∣∣

u1 · · · u j−1 u j+1 · · · un

u(1)
1 · · · u(1)

j−1 u(1)
j+1 · · · u(1)

n
...

...
...

...
...

...

u(n−2)
1 · · · u(n−2)

j−1 u(n−2)
j+1 · · · u(n−2)

n

∣∣∣∣∣∣∣∣∣

(2.42)

(See Appendix B for j = 1 and j = n.)
The matrix solution to the inhomogeneous equation may then be written if one

constructs a column vector c′(x) whose elements are the c′
j (x) for j = 1, 2, . . . , n.

Equation (2.30), y(x) = W(x)c(x), then gives

y(x) = W(x)

∫ x

x0

c′(x ′)dx ′ (2.43)

The first element in the column vector y(x) gives the function y(x):

y(x) =
n∑

j=1

u j (x)

∫ x

x0

c′
j (x ′)dx ′ (2.44)

with c′
j (x) given in (2.42). This provides a particular solution, to which an arbitrary

solution to the homogeneous equation may be added to satisfy boundary conditions.

2.1.2 Inhomogeneous Difference Equations

We now look at the equivalent analysis for the N th order inhomogeneous difference
equation

pN (n)y(N +n)+ pN−1(n)y(N +n −1)+· · ·+ p0(n)y(n) =
N∑

j=0

p j (n)y(n + j) = qN (n)

(2.45)
The N th order homogeneous equation is

N∑

j=0

p j (n)y(n + j) = 0, (2.46)

for which the N linearly independent solutions are denoted by uk(n), (k =
1, 2, . . . , N ), that is,

N∑

j=0

p j (n)uk(n + j) = 0, k = 1, 2, . . . , N (2.47)
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As with the differential equation, we assume that the solution to the inhomogeneous
equation, y(n), and the succeeding N − 1 terms y(n + 1), y(n + 2), . . . , y(n +
N − 1) can be given in terms of the N linearly independent solutions uk(n) of the
homogeneous equation by

y(n + j) =
N∑

k=1

ck(n)uk(n + j) j = 0, 1, . . . , N − 1 (2.48)

We thus have N linear equations determining the N functions, ck(n),which is possible
given the linear independence of the functions uk(n). We note that if the ck are
constants, then y(n) as defined by this equation is a solution of the homogeneous
equation. By allowing the ck to vary (i.e., to be functions of n), we can determine
them so that y(n) is a solution of the inhomogeneous equation. From (2.48) we can
thus write

y(n + j + 1) =
N∑

k=1

ck(n)uk(n + j + 1) for j = 0, 1, . . . , N − 2 (2.49)

as well as

y(n + j + 1) =
N∑

k=1

ck(n + 1)uk(n + j + 1) for j = 0, 1, . . . , N − 2 (2.50)

from which we have the N − 1 equations

N∑

k=1

�ck(n)uk(n + j + 1) = 0, j = 0, 1, . . . , N − 2 (2.51)

From (2.48) for j = N − 1 we have

y(n + N − 1) =
N∑

k=1

ck(n)uk(n + N − 1) (2.52)

from which

y(n + N ) =
N∑

k=1

ck(n + 1)uk(n + N )

=
N∑

k=1

ck(n)uk(n + N ) +
N∑

k=1

�ck(n)uk(n + N ) (2.53)
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Substituting (2.48) and (2.53) in (2.45) we then have

N∑

j=0

p j (n)

N∑

k=1

ck(n)uk(n + j) + pN (n)

N∑

k=1

�ck(n)uk(n + N ) = qN (n) (2.54)

Inverting the order of summation in the first term here, we see that this term vanishes
since the uk(n) satisfy the homogeneous equation (2.46). We thus have

N∑

k=1

�ck(n)uk(n + N ) = qN (n)

pN (n)
≡ hN (n) (2.55)

Equation (2.55) together with (2.51) for j = 0, 1, . . . , N − 2 then give N equations
for the N differences �ck(n) which can then be summed to give the functions ck(n).

We can now formulate the entire analysis for difference equations in terms of
matrices, in a manner quite similar to that for differential equations, giving a first
order matrix difference equation. To that end we define the Casoratian matrix:

K(n) =

⎛

⎜⎜⎜⎝

u1(n) u2(n) · · · uN (n)

u1(n + 1) u2(n + 1) · · · uN (n + 1)
...

...
...

...

u1(n + N − 1) u2(n + N − 1) · · · uN (n + N − 1)

⎞

⎟⎟⎟⎠ (2.56)

and the column vectors c(n), h(n)

c(n) =

⎛

⎜⎜⎜⎝

c1(n)

c2(n)
...

cN (n)

⎞

⎟⎟⎟⎠ (2.57)

h(n) =

⎛

⎜⎜⎜⎝

0
0
...

hN (n)

⎞

⎟⎟⎟⎠ (2.58)

and

y(n) =

⎛

⎜⎜⎜⎝

y1(n)

y2(n)
...

yN (n)

⎞

⎟⎟⎟⎠ (2.59)

in which the components y j (n) are given in terms of the solution of the inhomoge-
neous equation (2.45) for successive indices by

y j (n) = y( j + n − 1), j = 1, 2, . . . , N (2.60)
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We can then write the inhomogeneous equation (2.45) in the form

y(N + n) + bN−1y(N + n − 1) + · · · + b0y(n) = hN (n) (2.61)

or

y(N + n) = −
N−1∑

j=0

b j y j+1(n) + hN (n) (2.62)

where
b j = b j (n) = p j (n)/pN (n), hN (n) = qN (n)/pN (n) (2.63)

Thismay then bewritten inmatrix form (cf. Eq. (2.28) for differential equations) as

y(n + 1) = B(n)y(n) + h(n) (2.64)

where

B(n) =

⎛

⎜⎜⎜⎝

0 1 · · · 0
...

...
...

...

0 0 · · · 1
−b0 −b1 · · · −bN−1

⎞

⎟⎟⎟⎠ (2.65)

Equation (2.48) giving the N terms y(n + j) for j = 0, 1, . . . , N − 1 then takes
the simple matrix form (cf. Eq. (2.30) for differential equations)

y(n) = K(n)c(n) (2.66)

Substituting (2.66) in (2.64) we then have

y(n + 1) = B(n)K(n)c(n) + h(n) (2.67)

Here

B(n)K(n) =

⎛

⎜⎜⎜⎝

0 1 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 · · · 1
−b0 −b1 · · · −bn−1

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

u1(n) u2(n) · · · uN (n)

u1(n + 1) u2(n + 1) · · · uN (n + 1)
.
.
.

.

.

.
.
.
.

.

.

.

u1(n + N − 1) u2(n + N − 1) · · · uN (n + N − 1)

⎞

⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎝

u1(n + 1) u2(n + 1) · · · uN (n + 1)
u1(n + 2) u2(n + 2) · · · uN (n + 2)
.
.
.

.

.

.
.
.
.

.

.

.

u1(n + N ) u2(n + N ) · · · uN (n + N )

⎞

⎟⎟⎟⎠ (2.68)
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Thus
B(n)K(n) = K(n + 1) (2.69)

(cf. Eq. (2.33) for differential equations.) The last line in K(n + 1) follows from the
homogeneous equation (2.47) satisfied by the functions uk(n):

uk(N +n) = −b0(n)uk(n)−b1(n)uk(n +1)−· · ·−bN (n)uk(n + N −1) (2.70)

We note that Eqs. (2.64), (2.66) and (2.69) for difference equations correspond
respectively to Eqs. (2.28), (2.30) and (2.33) for differential equations. Substituting
(2.69) in (2.64) then gives

y(n + 1) = K(n + 1)c(n) + h(n) (2.71)

However, from (2.66) we can also write

y(n + 1) = K(n + 1)c(n + 1) (2.72)

so that from the last two equations we have

K(n + 1)�c(n) = h(n), (2.73)

from which
�c(n) = K−1(n + 1) h(n) (2.74)

and

c(n + 1) = c(0) +
n∑

j=0

K−1( j + 1) h( j) (2.75)

(cf. (2.37) for differential equations.) Here, the term c(0) adds an arbitrary solu-
tion of the homogeneous equation and is determined by the initial conditions.
Equation (2.73) is the matrix form of Eq. (2.55) together with (2.51) for j =
0, 1, . . . , N −2. Equations (2.73), (2.74) and (2.75) given above for difference equa-
tions correspond to Eqs. (2.34) and (2.37) for differential equations. Writing (2.75)
with n + 1 replaced by n we have

c(n) = c(0) +
n∑

j=1

K−1( j) h( j − 1) (2.76)

Multiplying both sides of this equation by K(n) and using (2.66) (from which
c(0) = K−1(0)y(0)) we have the solution to the inhomogeneous equation (2.64)
in matrix form:

y(n) = K(n)

⎛

⎝K−1(0)y(0) +
n∑

j=1

K−1( j) h( j − 1)

⎞

⎠ (2.77)
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Similar to the case for differential equations, we note that the three essential
equations in the analysis for difference equations are (2.64), y(n +1) = B(n)y(n)+
h(n), which defines the inhomogeneous equation and is equivalent to Eq. (2.45);
(2.66), y(n) = K(n)c(n), which relates the N functions ck(n) to N successive
terms y(n + j) for j = 0, 1, . . . , N − 1 and is equivalent to Eq. (2.48); and (2.69),
B(n)K(n) = K(n + 1), which gives the homogeneous equation satisfied by its
solutions uk(n) and is equivalent to Eq. (2.47).

An alternate but completely equivalent approach to the solution of the N th order
linear inhomogeneous equation, (2.64),

y(n + 1) = B(n)y(n) + h(n) (2.78)

is provided by consideration of the Casoratian in the case of the difference equation.
We start from Eq. (2.73),

K(n + 1)�c(n) = h(n), (2.79)

Replacing n + 1 by n we have

K(n)�c(n − 1) = h(n − 1), (2.80)

The solution to this matrix equation is given by Cramer’s rule, from which the
elements �c j (n − 1) of the column vector �c(n − 1) for j = 1, 2, . . . , N are
given by

�c j (n − 1) = 1

K (n)

∣∣∣∣∣∣∣∣∣∣∣∣

u1(n) · · · u j−1(n) 0 u j+1(n) · · · uN (n)

u1(n + 1) · · · u j−1(n + 1) 0 u j+1(n + 1) ·, uN (n + 1)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

u1(n + N − 2) · · · u j−1(n + N − 2) 0 u j+1(n + N − 2) · · · uN (n + N − 2)
u1(n + N − 1) · · · u j−1(n + N − 1) hN (n − 1) u j+1(n + N − 1) · · · uN (n + N − 1),

∣∣∣∣∣∣∣∣∣∣∣∣
(2.81)

where u j = u j (n), j = 1, 2, . . . , N , are the N linearly independent solutions of
(2.4) and K (n) is the determinant of the Casoratian matrix (2.56). Expanding the
determinant (2.81) in the elements of the j th column, the elements �c j (n − 1) can
be expressed in terms of an (N − 1) × (N − 1) determinant:

�c j (n−1) = (−1)N+ j hN (n − 1)

K (n)

∣∣∣∣∣∣∣∣∣∣

u1(n) · · · u j−1(n) u j+1(n) · · · uN (n)

u1(n + 1) · · · u j−1(n + 1) u j+1(n + 1) · · · uN (n + 1)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

u1(n + N − 2) · · · u j−1(n + N − 2) u j+1(n + N − 2) · · · uN (n + N − 2)

∣∣∣∣∣∣∣∣∣∣

(2.82)

It is clear that the determinant as written in (2.82) is valid for j = 2, 3, . . . , N − 1.
For j = 1 and j = N (as well as for all 1 ≤ j ≤ N ) one must simply omit the
j th column. The matrix solution to the inhomogeneous equation may then be written
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from the column vector�c(n−1)whose elements are the�c j (n−1) given in (2.82)
for j = 1, 2, . . . , N . Equation (2.66), y(n) = K(n)c(n), then gives y(n), with

y(n) = K(n)

(
K−1(0)y(0) +

n∑

n′=1

�c(n′ − 1)

)
(2.83)

The first term in parentheses gives a solution of the homogeneous equation. Therefore
a particular matrix solution of the inhomogeneous equation is given by

y(n) = K(n)

n∑

n′=1

�c(n′ − 1) (2.84)

The first element of this matrix equation gives the function y(n):

y(n) =
N∑

j=1

u j (n)

n∑

n′=1

�c j (n
′ − 1) (2.85)

with �c j (n′ − 1) given by (2.82). This provides a particular solution to which an
arbitrary solution to the homogeneous equation may be added to satisfy boundary
conditions.

2.2 Reduction of the Order When One Solution
to the Homogeneous Equation Is Known

The present method reduces the order of an nth order linear operator, giving an
operator of order n − 1 when one solution to the homogeneous equation is known.
Thus, annth order homogeneous equation Ly = 0 is transformed into a homogeneous
equationL w = 0 of order n−1 inw; an nth order inhomogeneous equation Ly = f
is transformed into an inhomogeneous equation L w = f of order n − 1 in w. (In
particular, for a second order equation we obtain a first order equation, which is
then soluble in closed form.) The details in the analysis of differential and difference
equations are quite similar, and the approach is the same as that given earlier in
connection with the method of variation of constants (cf. (2.12)): By writing the
dependent variable (y(x) or y(n)) as the product of two functions,

y(x) = c(x)u(x) (2.86)

or
y(n) = c(n)u(n), (2.87)
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one of which satisfies the homogeneous equation (Lu(x) = 0 or Lu(n) = 0,
respectively), one can write the original equation in a form such that only deriv-
atives (or differences) of the unknown function (c(x) or c(n)) appear. Then, defining

w(x) = c′(x) (2.88)

and
w(n) = �c(n) = c(n + 1) − c(n), (2.89)

the order of the equation for w(x) or w(n) is less by one than that of the original
equation.

We start by considering the nth order differential operator given in (2.1), viz.,

Ly(x) ≡ an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · · + a0(x)y(x) =
n∑

j=0

a j (x)y( j)(x)

(2.90)
Writing

y(x) = c(x)u(x) (2.91)

where u(x) is assumed to be a known solution of

Lu(x) =
n∑

j=0

a j (x)u( j)(x) = 0, (2.92)

we have

y(k)(x) = dk(c(x)u(x))

dxk

=
k∑

j=0

(
k

j

)
c( j)(x)u(k− j)(x)

(2.93)

and from (2.1),

Ly(x) =
n∑

k=0

ak(x)y(k)(x)

=
n∑

k=0

ak(x)

k∑

j=0

(
k

j

)
c( j)(x)u(k− j)(x)

=
n∑

j=0

c( j)(x)

n∑

k= j

(
k

j

)
ak(x)u(k− j)(x)

=
n∑

j=1

c( j)(x)

n∑

k= j

(
k

j

)
ak(x)u(k− j)(x) + c(x)

n∑

k=0

ak(x)u(k)(x)

(2.94)
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The last sum here is zero from (2.92). Then, defining

w(x) ≡ c(1)(x), (2.95)

we obtain a differential operator of order n − 1 in w(x):

n∑

j=1

c( j)(x)

n∑

k= j

(
k

j

)
ak(x)u(k− j)(x) =

n∑

j=1

w( j−1)(x)

n∑

k= j

(
k

j

)
ak(x)u(k− j)(x)

=
n−1∑

j=0

w( j)(x)

n∑

k= j+1

(
k

j + 1

)
ak(x)u(k− j−1)(x)

=
n−1∑

j=0

w( j)(x)

n−1∑

k= j

(
k + 1

j + 1

)
ak+1(x)u(k− j)(x)

= L w (2.96)

We next look at the analogous procedure for an N th order linear homogeneous
difference operator, given in (2.4), viz.,

Ly(n) ≡ pN (n)y(n + N ) + pN−1(n)y(n + N − 1) + · · · + p0(n)y(n) (2.97)

Again, we write the solution of this equation as the product of two functions:

y(n) = c(n)u(n) (2.98)

where we assume u(n) to be a known solution of the homogeneous equation

Lu(n) = pN (n)u(n + N ) + pN−1(n)u(n + N − 1) + · · · + p0(n)u(n)

=
N∑

k=0

pk(n)u(n + k)

= 0 (2.99)

The operator (2.97) is then

Ly(n) = pN (n)c(n + N )u(n + N ) + pN−1(n)c(n + N − 1)u(n + N − 1)

+ · · · + p0(n)c(n)u(n)

(2.100)
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Applying (1.9) to the function c(n + k), this operator can be written in the form

N∑

k=0

pk(n)u(n + k)

k∑

j=0

(
k

j

)
� j c(n)

=
N∑

k=1

pk(n)u(n + k)

k∑

j=1

(
k

j

)
� j c(n) + c(n)

N∑

k=0

pk(n)u(n + k) (2.101)

As with the differential equation, the last sum in the above equation is zero in view
of (2.99), giving

Ly(n) =
N∑

k=1

pk(n)u(n + k)

k∑

j=1

(
k

j

)
� j c(n) (2.102)

Then, in analogy with (2.95), we define

w(n) = �c(n), (2.103)

giving

N∑

k=1

pk(n)u(n + k)

k∑

j=1

(
k

j

)
� j−1w(n) =

N∑

j=1

� j−1w(n)

N∑

k= j

(
k

j

)
pk(n)u(n + k)

=
N−1∑

j=0

� j w(n)

N∑

k= j+1

(
k

j + 1

)
pk(n)u(n + k)

=
N−1∑

j=0

� j w(n)

N−1∑

k= j

(
k + 1

j + 1

)
pk+1(n)u(n + k + 1)

= L w(n) (2.104)

which is a difference operator of order N − 1 in w(n).

2.2.1 Solution of Nth Order Inhomogeneous Equations
When m Linearly Independent Solutions
of the Homogeneous Equation are Known,
Where 1 < m < N

The two methods—reduction of order and variation of parameters—have been pre-
sented separately, since that is how they are generally found in the literature.However,
as has been shown in a succinct article by Phil Locke [31], each of these procedures

http://dx.doi.org/10.1007/978-3-319-29736-1_1
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can be viewed as particular limiting cases in the solution of an nth order linear non-
homogeneous equation when m ≤ n linearly independent solutions of the nth order
homogeneous equation are known: m = 1 corresponds to reduction of order, m = n
corresponds to variation of parameters. Related treatments may be found in [18,
Chap. IX, Sect. 3, pp. 319–322] and in [20, Chap. IV, Sect. 3, pp. 49–54].



http://www.springer.com/978-3-319-29735-4
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