
Chapter 2
Plasma Modelling for Magnetic Control

The aim of this chapter is to derive a linearized mathematical model describing the
interaction between the plasma ring and the voltages applied to the poloidal field
coils. This model will be of fundamental importance in the design of the plasma
magnetic control system. To start with, the equations of the ideal magnetohydro-
dynamics theory will be presented; these equations will be used to characterize the
equilibrium configurations of a plasma in a tokamak machine, and to derive a non-
linear dynamical model. Then, it is shown how to obtain a finite dimensional linear
time-invariant model. This model will be completed in the next chapter including
the output equations describing the parameters used to characterize the plasma shape
and position.

2.1 The Ideal Magnetohydrodynamics Theory

Magnetohydrodynamics (MHD) [10, 44, 45] describes the basic behaviour of a mag-
netically confined plasma. In this theory, the plasma is considered as a single fluid,
that is, no distinction is made among the various particles constituting the plasma.
The plasma is completely described once the local mass density ρ and the fluid
velocity v vector are assigned.

The fundamental laws that link these quantities are the mass conservation law

∂

∂t
ρ + ∇· (ρv) = 0, (2.1)

the adiabatic state equation
d

dt

(
pρ−γ

) = 0 , (2.2)
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and Newton’s law applied to an infinitesimal plasma element

ρ
d

dt
v = J × B − ∇ p , (2.3)

where J is the current density field, B is the magnetic induction field, p is the kinetic
pressure inside the plasma, and γ = 5/3 is the ratio of specific heat. The coupling
between the plasma and the electromagnetic field is given by the Lorentz force term
J × B in Eq.2.3.

Moreover, the electromagnetic fields have to satisfy Maxwell’s equations

∇· B = 0 (2.4a)

∇× H = J (2.4b)

∇× E = − ∂

∂t
B. (2.4c)

Equation2.4a is Gauss’s law for the magnetic induction field, Eq.2.4b is Ampere’s
law, which gives the relationship between the current density and the magnetic field
intensity H , andEq.2.4c is Faraday’s law; in Faraday’s law E represents the electrical
field. In Ampere’s law the time derivative of the displacement electric field (usually
denoted by D) is neglected; this corresponds to neglecting parasitic capacitive effects.
This assumption is consistent with the time scale of the phenomena involved.

Finally the constitutive relations

B = μ0H (2.5a)

η J = E + v × B (2.5b)

complete the set of ideal magnetohydrodynamic equations. These equations are sum-
marized in Table2.1.

Table 2.1 The ideal magnetohydrodynamical equations
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2.2 Magnetohydrodynamics in Axisymmetric Toroidal
Geometry: the Poloidal Flux Function

Since a tokamak is an axisymmetric toroidal machine, it is convenient to write
the magnetohydrodynamics equations in a three-dimensional cylindrical coordinates
system (r,ϕ, z), where the axis r = 0 is the rotational axis of the tokamak.

In what follows:

• r will denote a generic point with cylindrical coordinate (r,ϕ, z), where r is the
radial coordinate, ϕ is the toroidal angle, and z is the height; i r , iϕ and i z will
denote the axis unit vectors;

• Γ (r) will denote the circumference given by the rotation of the point r around the
r = 0 axis;

• S(r) will denote a surface having Γ (r) as edge (see also Fig. 2.1).

Given a generic vector A, its components along the unit vectors will be denoted
by Ar , Aϕ, and Az , respectively, so as to have

A = Ar ir + Aϕ iϕ + Az i z .

In each point the direction parallel to the unit vector iϕ is called toroidal, while the
plane perpendicular to this direction is called poloidal; this plane is characterized by
a constant toroidal angle ϕ.

Moreover, due to the toroidal axisymmetric geometry of a tokamak machine, it
is possible to assume that all the quantities involved do not depend on the toroidal

Fig. 2.1 The cylindrical
coordinate system
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angle; as a consequence, again with reference to a generic vector A, it is possible to
assume

∂

∂ϕ
A = 0.

Making use of the axisymmetric assumption, Gauss’s law (Eq.2.4a) in cylindrical
coordinates can be written as

1

r

∂

∂r
r Br + ∂

∂z
Bz = 0. (2.6)

Now it is convenient to introduce the poloidal flux function

ψ(r) = 1

2π

∫

S(r)
B · dS. (2.7)

Since the surface integral in (2.7) does not depend on the particular surface S(r),
but only on its edge Γ (r), choosing S(r) perpendicular at each point to i z (as in
Fig. 2.1), one obtains

ψ(r) = 1

2π

∫ r

0

∫ 2π

0
Bz(ρ, z)ρ dρ dϕ =

∫ r

0
ρBz(ρ, z) dρ. (2.8)

Differentiation of Eq.2.8 with respect to r gives

∂

∂r
ψ = r Bz,

while differentiating the same equation with respect to z, and taking into account
Eq.2.6, results in

∂

∂z
ψ = −r Br .

Hence the poloidal flux function and the magnetic inductance field are linked by the
following equations

Br = 1

r

∂

∂z
ψ (2.9a)

Bz = −1

r

∂

∂r
ψ. (2.9b)

Equation2.9, taking into account that ∇ ϕ = r−1 iϕ, can be written in vectorial
notation

B p = Br ir + Bz i z = ∇ ψ × ∇ ϕ, (2.10)
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where B p represents the projection of the magnetic induction field on the poloidal
plane.

Note that the existence of a scalar function ψ satisfying Eq.2.9 is a consequence
only of the divergenceless of the magnetic induction field. Now, applying the diver-
gence operator to Ampere’s law (2.4b), it is simple (taking into account that the
divergence of a rotor is zero) to show that also the current density vector J is diver-
genceless. Hence there will exist a scalar function f satisfying the relations

Jr = −1

r

∂

∂z
f (2.11a)

Jz = 1

r

∂

∂r
f. (2.11b)

Ampere’s law (2.4b), combined with the constitutive relation (2.5a) and the axisym-
metric assumption, is written in cylindrical coordinates as

− ∂

∂z
Bϕ = μ0 Jr (2.12a)

∂

∂z
Br − ∂

∂r
Bz = μ0 Jϕ (2.12b)

1

r

∂

∂r
r Bϕ = μ0 Jz . (2.12c)

Combining Eq.2.11 with Eqs. 2.12a and 2.12c gives

Bϕ = μ0
f

r
.

Letting F(r, z) = μ0 f (r, z), the toroidal component of the magnetic induction field
can be written as

Bϕ = F∇ ϕ · iϕ. (2.13)

Finally themagnetic induction field can be expressed through the two scalar functions
ψ and F as

B = ∇ ψ × ∇ ϕ + F∇ ϕ. (2.14)

As already said, the first term on the right-hand side of Eq.2.14 gives the projection of
themagnetic induction field on the poloidal plane (poloidalmagnetic induction field),
while the second term gives the toroidal component (toroidal magnetic inductance
field). Substituting Eq.2.14 in Ampere’s law (2.4b) gives

J = μ−1
0 ∇× (∇ ψ × ∇ ϕ + F∇ ϕ)

= −μ−1
0 �∗ ψ∇ ϕ + μ−1

0 ∇ F × ∇ ϕ, (2.15)
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where �∗ is the differential elliptic operator defined by the relation

�∗ χ = r2∇· (r−2∇ χ) = r
∂

∂r

(
1

r

∂

∂r
χ

)
+ ∂2

∂z2
χ.

Projection of Eq.2.15 along the toroidal direction gives

�∗ ψ = −μ0r Jϕ, (2.16)

where Jϕ is the toroidal current density.
Another useful relation can be found between the toroidal component of the

electrical field and the time derivative of the poloidal flux function. Starting from
Faraday’s law (2.4c) and applying the Kelvin–Stokes theorem, one obtains

∮

Γ (r)
E · dl = − ∂

∂t

∫

S(r)
B · dS

= −2π
∂

∂t
ψ,

from which it can be easily obtained that

Eϕ = −1

r

∂

∂t
ψ. (2.17)

2.3 A Plasmaless Model

In this section, an electromagnetic model of a tokamak in the absence of the plasma
will be derived. This model will enable one to evaluate the poloidal flux function
at each point in space, given the voltages applied to the poloidal field coils. With
reference to Fig. 2.2 the poloidal plane can be divided into two types of region: the
air and vacuum region (Ωa ∪ Ωv), and the region Ωm = Ωc ∪ Ω1 ∪ Ω2 ∪ · · · ∪ ΩN

occupied by conductingmaterials. The setL = Ωp ∪Ωv is the vacuum vessel region,
that is the space inside the tokamak that the plasma can occupy.

In Ωm Ohm’s law takes the form

J = σ(E + Em), (2.18)

where σ is the conductivity (the inverse of the resistivity η) of the materials involved,
and Em is the electromotive field supplying the electromotive force to the poloidal
field coils (Em = 0 in Ωc).
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z − axis

Ωi, i = 1 . . . N

Ωc

Ωa and Ωv

Ωp

Fig. 2.2 The poloidal cross-section of a tokamak machine can be partitioned into regions occupied
by the plasma (Ωp), by the conducting structure (Ωc), by the poloidal field coils (Ωi , i = 1 . . . N ),
by the air (Ωa) and by the vacuum (Ωv)

Integrating Eq.2.18 along the circuit individuated by the closed line Γ (r) gives

∮

Γ (r)
J · dl = σ

(∮

Γ (r)
E · dl +

∮

Γ (r)
Em · dl

)
,

from which, invoking again the axisymmetric assumption, and taking into account
Eq.2.17, can be obtained

2πr Jϕ = −2πσ
∂

∂t
ψ + σV, (2.19)

where

V =
∮

Γ (r)
Em · dl,

represents the electromotive force on the Γ (r) circuit. It is evident that the elec-
tromotive force is different from zero only in the regions where the active poloidal
field coils are located; moreover, in each of these regions, V can be assumed to be
constant, and so it is possible to write
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V (r, t) =
N∑

i=1

Vi (t)gi (r), (2.20)

where gi is the characteristic function of the Ωi set, that is

gi (r) =
{
1, if r ∈ Ωi

0, if r /∈ Ωi .

Combining Eqs. 2.16 and 2.19, and considering that Jϕ = 0 inL andΩa , one obtains
that the poloidal flux function in the absence of the plasmamust satisfy the following
partial differential equation

�∗ ψ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if vecr ∈ Ωv ∪ Ωa

μ0σ
∂

∂t
ψ, if r ∈ Ωc

μ0σ
∂

∂t
ψ − μ0σ

2π
Vi , if r ∈ Ωi , i = 1 . . . N .

(2.21)

To find a unique solution to this equation, initial and boundary conditions must
be provided

ψ(r, z, t)|t=0 = ψ0(r, z) (2.22a)

ψ(r, z, t)|r=0 = 0 (2.22b)

lim
r→∞ ψ(r, z, t) = 0. (2.22c)

The initial condition (2.22a) provides the flux distribution at the starting time; if it
is assumed that at this time there is no current distribution in the conducting region,
then this initial distribution can be assumed to be zero everywhere. The boundary
condition (2.22b) is a consequence of the poloidal flux definition, whereas (2.22c)
is a regularity assumption of the magnetic induction field as r → ∞.

Once the time behaviour of the voltages Vi applied to the poloidal field coils
is assigned, it is possible in principle to integrate the partial differential Eq.2.21
with the conditions (2.22) to evaluate the poloidal flux function at each point of
the poloidal plane. The difficulties in finding an analytical solution to this problem
justify the use of a numerical approach based on finite element andGalerkinmethods.
Following [46], let

Jϕ(r, t) =
nc∑

h=1

Ih(t)qh(r), (2.23)

in such a way as to approximate the toroidal current density with the sum of nc

base functions qh , weighted by unknown coefficients Ih . Each base function qh has
a compact support Dh (i.e., it is zero outside Dh), and satisfies the conditions
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∇· (qh iϕ) = 0 (2.24a)

∂

∂ϕ
qh = 0 (2.24b)

∫

Dh

qhdS = 1. (2.24c)

In this way the region Ωm is discretized in a finite number of circuits, having Dh as
cross-section on the poloidal plane. The subsets Dh satisfy the properties

nc⋃

h=1

Dh = Ωm (2.25)

Dh ∩ Dk = Ø when h �= k (2.26)

∃k ∈ {c, 1, . . . , N } : Dh ∩ Ωk �= ∅ ⇒ Dh ⊆ Ωk . (2.27)

Therefore, the subsets Dh completely cover the Ωm region, the intersection between
two of these subsets is empty, and finally each domain Dh can have a no empty
intersection with at most one of the regions Ωc, Ω1, . . . ,ΩN .

In Sect.A.1 it is shown that a general solution of Eq.2.16 can be written as

ψ(r, t) =
∫

R2
Jϕ(r ′, t)G0(r, r ′)dS′, (2.28)

where G0(r, r ′) is the free space Green’s function defined in (A.4). Equation2.28
enables one to write

ψ(r, t) =
nc∑

h=1

Ih(t)q̃h(r), (2.29)

where

q̃h(r) =
∫

Ωm

qh(r ′)G0(r, r ′) dS′.

Equation2.19 can be written as

1

σ
Jϕ = −1

r

∂

∂t
ψ + 1

2πr
V . (2.30)
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Multiplying both sides of (2.30) by qh , and integrating over the volume Vm obtained
by rotating the domain Ωm around the z-axis, the following equality is obtained

∫

Vm

1

σ
Jϕqh dτ = −

∫

Vm

1

r
qh

∂

∂t
ψ dτ + 1

2π

∫

Vm

1

r
V qh dτ . (2.31)

Now

∫

Vm

1

σ
Jϕqhdτ =

nc∑

k=1

Ik

∫

Vm

qkqh

σ
dτ

=
nc∑

k=1

Ik

∫ 2π

0

∫

Ωm

qkqh

σ
r dϕ dS

=
nc∑

k=1

Ik2π
∫

Ωm

r
qkqh

σ
dS

=
nc∑

k=1

Rhk Ik ;

similarly

∫

Vm

1

r
qh

∂

∂t
ψ dτ =

nc∑

k=1

İk

∫

Vm

q̃kqh

r
dτ

=
nc∑

k=1

İk2π
∫

Ωm

q̃kqh dS

=
nc∑

k=1

Lhk İk,

and finally

1

2π

∫

Vm

1

r
V qh dτ = 1

2π

N∑

l=1

Vl

∫

Vm

glqh

r
dτ

=
N∑

l=1

Vl

∫

Ωm

glqh dS

=
N∑

l=1

Bhl Vl ,
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where the dot over a time-varying function denotes its time derivative, and

Rhk = 2π
∫

Ωm

r
qkqh

σ
dS (2.32a)

Lhk = 2π
∫

Ωm

q̃kqh dS (2.32b)

Bhl =
∫

Ωm

glqh dS, (2.32c)

with h = 1, . . . , nc, k = 1, . . . , nc, and l = 1, . . . , N . Equation2.31 can be written
in the form

nc∑

k=1

Lhk İk +
nc∑

k=1

Rhk Ik =
N∑

l=1

Bhl Vl . (2.33)

Note that

Bhl =
{
1, if Dh ⊆ Ωl

0, if Dh � Ωl
(2.34)

Rhk = 0 if h �= k. (2.35)

Now defining the matrices Lc ∈ Rnc×nc , Rc ∈ Rnc×nc , and Bc ∈ Rnc×N , whose
elements are the scalars Lhk , Rhk , and Bhl , respectively, and the vectors x̃ =(
I1 I2 . . . Inc

)T ∈ Rnc , u = (V1 V2 . . . VN )T ∈ RN , the nc Eq.2.33 can be writ-
ten in matrix form as

Lc
˙̃x + Rc x̃ = Bc u. (2.36)

As can be noted, Eq.2.36 is in the same form as a system consisting of nc circuits
with inductors, resistors, and voltage sources. The generic element Lhk of the Lc

matrix corresponds to the mutual inductance between the circuit h and the circuit
k, while the diagonal element Lhh corresponds to the self-inductance of the circuit
h; it is a basic property of circuit theory that the inductance matrix L is symmetric,
diagonal dominant and invertible. Similarly, Rhh corresponds to the resistance of the
circuit h; therefore, the diagonal matrix Rc is called the resistance matrix. A voltage
source is present only on the circuits contained in one of the Ωk regions. To simplify
the notation, it can be assumed that Dh = Ωh for h = 1, 2, . . . N ; in such a way the
first N subsets Dh are equal to the N regions Ωk containing the poloidal field coils,
and these regions are discretized in only one circuit. If this is the case, the Lc, Rc

and Bc matrices, and the vector x̃ can be decomposed as

Lc =
(

La Lab

LT
ab Lb

)
(2.37a)

Rc =
(

Ra 0
0 Rb

)
(2.37b)
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Bc =
(

I
0

)
(2.37c)

x̃ =
(

xa

xe

)
, (2.37d)

where the matrices Laa and Raa are of dimension nc, and I denotes the identity
matrix. In this way (2.36) can be divided into two equations: one related to the
currents flowing in the poloidal field coils (the active circuits), and one related to the
currents flowing in the other conducting structures (the passive circuits)

La ẋa + Lab ẋe + Ra xa = u (2.38a)

LT
ab ẋa + Le ẋe + Re xe = 0. (2.38b)

Equation2.38 show that the active circuits currents can be controlled using the input
voltages vector u; the time variations of these currents are opposed by the eddy
currents induced in the conducting structures. Note that once the vector x̃ is assigned,
which is equivalent to assigning the distribution of the toroidal current density, using
Eq.2.29 it is possible to evaluate the poloidal flux function at each point of the
poloidal plane.

2.4 The Plasma Equilibrium

In the previous section, a model describing the electromagnetic behaviour of a toka-
mak machine in the absence of the plasma, has been derived. As Eq.2.36 shows, this
model is linear; in the next sections of this chapter it will be shown that the presence
of the plasma makes the model nonlinear, and that the added complexity can be
overcome by resorting to a linearized model valid in the neighbourhood of an equi-
librium point. The first step, therefore, aims at characterizing the plasma equilibrium
configurations.

The balance between the plasma pressure and the magnetic confinement forces
can be studied with the aid of the equations written in Sects. 2.1 and 2.2. The basic
condition for equilibrium is that the overall force acting on an infinitesimal plasma
volume is zero; this is expressed by the equation

∇ p = J × B, (2.39)

from which it can be obtained that

B · ∇ p = 0 (2.40a)

J · ∇ p = 0. (2.40b)
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Fig. 2.3 Isobaric surfaces in
a plasma equilibrium
configuration Magnetic axis

Equation2.40 show that the field lines of themagnetic induction and of the current
density lie on isobaric surfaces (surfaces where the pressure is constant). For most
plasma equilibria the pressure is maximum near the centre of the poloidal cross-
section of the plasma, and the isobaric surfaces are toroidally nested as shown in
Fig. 2.3 (see [10] for a detailed explanation). As a consequence of the fact that the
magnetic field lines lie on the isobaric surfaces, these surfaces are also calledmagnetic
surfaces. The limiting magnetic surface, which approaches a single magnetic line
where the pressure is maximum, is called the magnetic axis.

Now, it follows from Eq.2.9 that

B · ∇ ψ = 0,

so the magnetic (or isobaric) surfaces also coincide with the constant poloidal flux
surfaces. Hence on the poloidal plane the current density, the magnetic induction and
the pressure are constant on each line level of the ψ function. As a consequence, it
is possible to consider these quantities (and the others related to them) as dependent
only on the poloidal flux

B = B(ψ)

J = J(ψ)

p = p(ψ).

Starting from the force equilibriumEq.2.39, using the equalities (2.14) and (2.15),
and taking into account that p and F are functions only of ψ, it is possible to obtain
that

∇ p = −1

r
Jϕ∇ ψ − 1

μ0r2
F∇ F. (2.41)
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Considering that

∇ p = d

dψ
p∇ ψ (2.42)

∇ F = d

dψ
F∇ ψ , (2.43)

then

Jϕ = −r
d

dψ
p − 1

μ0r
F

d

dψ
F . (2.44)

Putting together Eqs. 2.16 and 2.44 the celebrated Grad–Shafranov equation is
obtained

�∗ ψ = −μ0r
2 d

dψ
p − F

d

dψ
F . (2.45)

The plasma equilibrium is then completely characterized by the following nonlinear
partial differential problem

�∗ ψ =

⎧
⎪⎪⎨

⎪⎪⎩

0, if r ∈ Ωv ∪ Ωa

μ0r Jϕ, if r ∈ Ωm

−μ0r
2 d

dψ
p − F

d

dψ
F, if r ∈ Ωp .

(2.46)

ψ(r, z)|r=0 = 0 (2.47a)

lim
r→∞ ψ(r, z) = 0. (2.47b)

This problem can be solvedwhen the current density external to the plasma region,
and the functions p(ψ) and F(ψ) have been assigned.Note that this is a free boundary
problem, the boundary ∂Ωp of Ωp being one of the unknowns to be determined.

Several numerical codes [47, 48, 49, 50] have been developed to solve this prob-
lem. The choice of the functions p(ψ) and F(ψ) determine the toroidal current
density inside the plasma (see Eq.2.44). Although the problem of determining this
current density could be, in principle, included in Eqs. 2.46 and 2.47 adding a certain
number of equations related to the diffusion and to the transport of the plasma par-
ticles, it is simpler to adopt here an approach based on experimental evidence [52]
and assign Jϕ inside the plasma as a parameterized function. The parameters used to
characterize the toroidal current density are the total plasma current Ip, the poloidal
beta βp, and the internal inductance li ; these quantities are defined as

Ip =
∫

Ωp

Jϕ dS (2.48a)
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βp = 4

μ0rc I 2p

∫

Vp

p dτ (2.48b)

li = 4

μ0rc I 2p

∫

Vp

‖Bp‖2
2μ0

dτ , (2.48c)

where rc is the horizontal coordinate of the plasma current centroid (rc, zc) defined
as

rc =
(

1

Ip

∫

Ωp

r2 Jϕ dS

) 1
2

(2.49a)

zc = 1

Ip

∫

Ωp

z Jϕ dS. (2.49b)

The total plasma current is the current flowing through the poloidal plane in the
plasma region. The poloidal beta is a measure of the efficiency of the plasma con-
finement: indeed, it is a measure of the ratio between the pressure energy and the
magnetic energy in the plasma. The internal inductance is a dimensionless quantity
and it is linked to the magnetic energy in the plasma region. The plasma current
centroid is a sort of geometrical centre for the plasma region.

Coming back to the problem of characterizing the toroidal current density inside
the plasma region, in [52] the following expression is proposed

Jϕ = λ

[
β0

r

r0
+ (1 − β0)

r0
r

]
(1 − ψ̃m)n, (2.50)

where

ψ̃ = ψ − ψa

ψb − ψa

is the so-called normalized flux, ψb and ψa being the flux values at the plasma
boundary and at the magnetic axis, respectively, r0 the horizontal coordinate of a
characteristic point inside the vacuum vessel (typically, the centre of the chamber),
andλ,β0,m andn parameterswhich are related toβp, li and Ip.Once these parameters
are assigned, it is possible to solve the problem given by Eqs. 2.46 and 2.47, evaluate
the poloidal flux function, and hence characterize the plasma equilibrium.

As seen in Sect. 2.3 the toroidal current density Jϕ outside the plasma region is
completely defined by the vector x̃ , whose components represent the current flowing
in each region Dh ; while inside the plasma the toroidal current density is completely
defined by the two-dimensional vector w = (

βp li
)T

and by Ip. Therefore at each
point r of the poloidal plane it is possible to write

ψ(r) = γ1(r, x̃, w, Ip), (2.51)
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Fig. 2.4 Constant level
curves of the poloidal flux
function for a plasma
equilibrium as determined by
the CREATE-L numerical
code [51]. The thicker line
corresponds to the value of
the poloidal flux at the
plasma boundary
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where the function γ1 is not given analytically, but can be computed numerically
by a solver of the problem (2.46) and (2.47). A typical result obtained using the
equilibrium solver of the CREATE-L code [51] is shown in Fig. 2.4.

2.5 A Linearized Model for Plasma Behaviour

In this section, a linearizedmodel of the plasmawill be derived. Thismodel describes
the plasma behaviour, in a neighbourhood of an equilibrium configuration, from an
electromagnetic point of view. This model will be used for the plasma shape and
position control systemdesign in later chapters. The fundamental assumptionmade to
derive this model is that the mass density of the plasma can be considered very small,
so that the inertial term in Eq.2.3 becomes negligible. This assumption is certainly
satisfied on the typical time scale considered in the shape and position control design
problem. If this is the case, the plasma equilibrium Eq.2.39 is satisfied at each time
instant. In other words the plasma evolves through a sequence of static equilibria.
The only dynamic behaviour is in the time evolution of the currents flowing in the
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conducting structures, for which it is possible to obtain a finite-dimensional model
using the approach of Sect. 2.3.

Since Eq.2.16 continues to hold, it is possible to use again the free space Green’s
function defined in (A.4) to express the poloidal flux function

ψ(r, t) =
∫

R2
Jϕ(r ′, t)G0(r, r ′)dS′

=
∫

Ωm

Jϕ(r ′, t)G0(r, r ′)dS′ +
∫

Ωp

Jϕ(r ′, t)G0(r, r ′)dS′

= ψm(r, t) + ψp(r, t). (2.52)

The first term in (2.52) gives the flux produced by the current flowing in the con-
ducting structures, while the second term gives the flux produced by the current
distribution in the plasma. Now,

Eϕ = −1

r

∂

∂t
ψ = −1

r

∂

∂t
ψm − 1

r

∂

∂t
ψp, (2.53)

therefore, starting again from Eq.2.31 and repeating the same mathematical deriva-
tions of Sect. 2.3, it is possible to arrive at the equation

nc∑

k=1

Lhk İk +
nc∑

k=1

Rhk Ik + Ψ̇ph =
N∑

l=1

Bhl Vl , (2.54)

where Lhk , Rhk , Bhl have been introduced in Eq.2.32, and

Ψph = 2π
∫

Ωm

ψpqh dS. (2.55)

The term Ψ̇ph in Eq.2.54 represents the electromotive force which appears on the cir-
cuit h as a consequence of the time variations of the current density inside the plasma.
These variations are due to changes in the plasma current internal profile, or also to the
movements of the plasma ring. Defining the vectorΨp = (

Ψp1 Ψp2 . . . Ψpnc

)T ∈ Rnc ,
and considering Eq.2.54 for each circuit, the following matrix equation is obtained

Lc
˙̃x + Rc x̃ + Ψ̇p = Bc u. (2.56)

Equation2.56 defines the dynamic behaviour of the currents flowing in the conduct-
ing structures in the presence of the plasma. The Ψp vector depends only on the flux
produced by the plasma on these structures; it can be calculated solving an equi-
librium problem when the vectors x̃ and w, and the plasma current Ip have been
assigned. In other words it is possible to write

Ψp = γ2(x̃, w, Ip), (2.57)
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where the vectorial function γ2 is computed using one of the numerical codes cited
in Sect. 2.4.

Putting together Eqs. 2.56 and 2.57, the following finite-dimensional nonlinear
differential equation is obtained

Lc
˙̃x + Rc x̃ + d

dt
γ2(x̃, w, Ip) = Bc u . (2.58)

Equation2.58 can be linearized in the neighbourhood of an equilibrium point
(x̃0, w0, Ip0); indeed letting

x̃ = x̃0 + δx̃

w = w0 + δw

Ip = Ip0 + δ Ip

u = u0 + δu = Rcx̃0 + δu,

and using the standard linearization procedure, it is possible to write

(
Lc +

[
∂

∂ x̃
γ2

]

0

)
δ ˙̃x + Rcδx̃ +

[
∂

∂w
γ2

]

0

δẇ +
[

∂

∂ Ip
γ2

]

0

δ İ p = Bcδu, (2.59)

where the subscript 0 denotes that the Jacobian matrices have to be evaluated at the
considered equilibrium point. In Eq.2.59 the plasma current variation δ Ip appears
as an input parameter; in other words it cannot be determined by the equation itself,
but it has to be assigned. Since the plasma current is one of the parameters that
are controlled, this problem needs to be solved, since it is preferable to be able to
express δ Ip as an output of the model. Several methods can be used to overcome this
problem; most of them are based on neglecting the plasma resistivity and assuming
the conservation of some physical quantity: the plasma current itself, the poloidal
flux averaged on the plasma region, the poloidal flux at the magnetic axis, etc. These
approaches give for the plasma current variation an equation of the type

L pδ İ p + Mpcδ ˙̃x + Mpwδẇ = 0. (2.60)

Interestingly, Eq. 2.60 shows that, from the point of view of the total current, the
plasma can be seen as just another circuit which is added to the ones used to model
the conducting structures of the machine; the absence in Eq.2.60 of a resistive term
is a consequence of the assumption on plasma resistivity.

Now letting x = (
x̃ Ip

)T
, and defining

L∗ =
⎛

⎝Lc +
[

∂

∂ x̃
γ2

]

0

[
∂

∂ Ip
γ2

]

0
Mpc L p

⎞

⎠ (2.61)
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R =
(

Rc 0
0 0

)
(2.62)

E =
⎛

⎝

[
∂

∂w
γ2

]

0
0

⎞

⎠ (2.63)

B =
(

Bc

0

)
, (2.64)

one obtains the final linearized model

L∗ δẋ + R δx + E δẇ = B δu, (2.65)

where the L∗ matrix is often called the modified inductance matrix. This model gives
only the evolution of the currents in the conducting structures and of the total plasma
current. These variables play the role of state variables of the plant to be controlled;
Eq.2.65 has to be completed with the static equation relating the inputs (the u vector)
and the state variables to the output variables to be controlled. This equation will be
derived in Chap.3.

The matrices in Eq.2.65 are calculated by using numerical codes, for instance
those described in [51, 26]. The dimension of the state space vector x depends on
the number of finite elements used to discretize the tokamak structure; typical values
range from about 100–200 depending on the size of the machine.

http://dx.doi.org/10.1007/978-3-319-29890-0_3
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