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Abstract. The computations over RAM are preferred over computa-
tions with circuits or Turing machines. Secure and private RAM execu-
tions become more and more important in the scope avoiding information
leakage when executing programs over a single computer as well as over
the clouds. In this paper, we propose a distributed scheme for evaluating
RAM programs without revealing any information on the computation
including the program, the data and the result. We use the Shamir secret
sharing to share all the program instructions and private string match-
ing technique to ensure the correct instruction execution. We stress that
our scheme obtains information theoretic security and does not rely on
any computational hardness assumptions, therefore, gaining indefinite
private and secure RAM execution of perfectly unrevealed programs.

Keywords: Shamir secret sharing · Random access machine · Informa-
tion theoretic secure

1 Introduction

Cloud computing provides cost-efficient and flexible shared infrastructure and
computational services on demand for various customers who need to store and
operate on a huge amount of data. Until now, there are various services providers
such as Amazon [1] and Google [13] offering platforms, software, and storage
outsourcing applications. Much attention has been paid to them due to the
potential benefits and business opportunities that clouds could bring [9].

However, cloud computing also introduces security and privacy risks for the
clients. For example, some of the cloud providers are not perfectly reliable and
are vulnerable to network attacks and data leakage. Furthermore, even a single
computer with the same cloud organization is untrustworthy. There are possible
attacks on a single computer during which information is copied from the bus
of the computer and sent to an adversary.

Several techniques are applied to address data storage privacy [18–20,26]
and security computation on clouds [17,29]. Among these studies, security
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in evaluating random access machine (RAM) program is an important task
[2,23], since many modern algorithms are operating on the von Neumann RAM
architecture. Until now, there are mainly two ways, the first is to convert a
RAM program into circuits and the second is to use oblivious RAM, introduced
by Goldreich and Ostrovsky [19]. Oblivious RAM schemes are preferred as there
is no need to convert the program into a binary circuit which leads to a huge
blowup in program size and its running time.

Even though the propositions for secure RAM evaluation can address various
privacy challenges including two-party [22,23], multiparty [5,10] or large-scale
computation [6] against semi-honest or malicious adversaries, they all assume
that the processors used by clouds are trustworthy. Thus, in these proposals,
the CPU has to decrypt the input data before processing and then encrypt
the output data again. In fact, an adversary can introduce a special hardware
Trojan [28] designed to disable or destroy a system in the future, or leak confi-
dential information. Similar attack has already been demonstrated in [3], where
a specially designed Trojan in the CPU revealed sensitive information to the
adversary.

Threat Model. We assume that there is a client that wants to run a program on
the clouds. But the client does not want to reveal any information about both
the program and the data. The adversary, has deployed the untrusted hardware
to the clouds. That is to say, the adversary can listen to the bus, may extract
information on the internal activity of the processor. All the clouds are not
necessarily semi-honest.

Unfortunately, none of the above protocols can avoid information leakage
under such threat model. Thus, one may wish to execute an encrypted program
on encrypted data without decrypting neither the program nor the data. A
straightforward approach is to execute the encrypted instructions in the clouds
processors directly. Fully homomorphic encryption [14,15] (FHE) is a way to
achieve this goal. Several schemes are proposed to implemented secret pro-
gram execution over FHE (e.g., [7,8,31]). However, the main problem is that
the proposed schemes have high overhead of computation [16] which make FHE
more theoretical result than practical. Moreover, Gentry’s scheme and later FHE
schemes relied on the hardness assumptions such that of the ideal lattices, which
are only computationally secure, rather than key-less information theoretical
secure.

Our Contribution. In this paper, an alternative architecture is proposed with
security and privacy that are based on theoretically security promises. The main
technique is a combination of Shamir Secret Sharing [25] and the recently pro-
posed Accumulating Automata [12].

Secret sharing is used to utilize perfect privacy of the client’s program and
processor states and secret string matching [12] is used to facilitate instruction
execution. We note that the modern instruction set, for example, CISC and
RISC, originally designed for efficiency and performance [21], are too complicated
when there is a need to hide their nature of operation and the sequence of
operations they form. Thus we apply One Instruction Set Computer (OISC) to
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our model. We simulate the OISC instruction subtract and branch if less than
or equal to zero (Subleq) that is proven complete and for which there exists a
compiler from high-level programming languages to Subleq [24]. As a result, our
scheme has the following significant characteristics

– Information theoretic security. We use Shamir secret sharing which could
provide information theoretic security for clients. In our scheme, the user’s
program is secret shared and run on independent machines and clouds. Each
cloud only needs to perform computation without communicating with other
clouds. Moreover, note that we use the instruction Subleq proven to be com-
plete in terms of Turing-complete computation. Thus, our model can execute
any RAM programs privately and securely.

– Program protection. During the whole execution of the program, for every
instruction, the processors have to “touch” all the instructions in the memory.
Moreover, for every data access, the processors also have to access all of the
data items. The execution mode and access pattern make the client program
“oblivious” to the clouds, thus ensuring both data and program privacy. Still,
the operations can be delegated by the users to powerful machines in the
clouds, which perform these linear access to all items for executing operations
without revealing their nature and sequence.

– Error correcting. Notice that the clients run their programs in E independent
machines/clouds. According to the conclusion of Ben-Or et al. [4], as long as
less than one-third of clouds are malicious (do not follow the protocol possibly
returning wrong results), the client can detect their actions by reconstructing
the final result using Lagrange interpolation.

The rest of the paper is organized as follows: in Sect. 2, we briefly introduce
the settings used in our paper. Section 3 describes the basic primitives we use
in our construction. Explicit application and its security analysis are given in
Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Preliminary

In this section, we briefly introduce the basic ingredients used in the sequel.

Shamir Secret Sharing. Shamir secret sharing (SSS) is an information the-
oretic secure protocol, which allows a dealer to secret share a values s among
E players. There is a threshold δ for the scheme, such that, the knowledge of
δ or fewer player secrets make the adversary learn no information about s, but
if more than δ players communicate their shares to each other, they can easily
recover the secret.

Distribution: The dealer picks a random polynomial f ∈ Fp[x] of degree δ < E
such that f(0) = s ∈ Fp. The dealer also chooses E arbitrary non-zero indices
α1, · · · , αE , computes f(αi) for 1 ≤ i ≤ E and send (αi, f(αi)) to each corre-
sponding players.
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Reconstruction: Any δ + 1 players can reconstruct the polynomial f by apply-
ing Lagrange interpolation to the tuples (αi, f(αi)). They recover the secret by
computing f(0) mod p = s.

Shamir secret sharing is additively homomorphic but is not multiplicatively
homomorphic. Namely, if we want to perform multiplication using Shamir secret
shares, a special “degree reduction step” is required. We will discuss this problem
more explicitly in the following section.

Private String Matching. Recently, Dolev et al. proposed a secret string
matching algorithm using Accumulating Automata [12]. The algorithm runs on
several cloud servers. The strings to be compared are originally secret shared
using Shamir secret sharing and therefore stay unknown to the processing
servers. Note that the comparison of two strings represented in secret shares
is different from the comparison of strings in a plaintext format, as each partic-
ipant cannot judge the compare result independently.

Unary representation: The authors of [12] demonstrated their scheme over unary
letter representation, where each letter is represented by a binary number with
hamming weight 1. For example, letter a–z are expressed by the binary strings:
a = [100 · · · 00], b = [010 · · · 00], c = [001 · · · 00], · · · , z = [000 · · · 01] with each
representation consists of 26 bits. We use the expression S =

∑r
i=0 ui × vi, to

compare two letters, where [u0u1 · · · ur] and [v0v1 · · · vr] are two unary represen-
tations. It is clear that whenever the two representations are identical, S is equal
to 1, otherwise S is equal to 0. Assume that each cloud has the secret shares of
these two representations, i.e., (α, fi(α)) and (α, gi(α)), where fi(0) = ui and
gi(0) = vi. Similarly, it can compute the following equation to identify whether
the two letters are identical:

r∑

i=1

(fi(α) × gi(α)). (1)

We have following lemma.

Lemma 1. If the two letters are identical, then the result of Eq. (1) is the secret
share of 1, otherwise the result of this equation is a secret share of 0.

Proof. Note that ui, vi are the secret bit and would be either 1 or 0. Let f ′
i(α)

and g′
i(α) denote the evaluation of f(x) and g(x) at point α without the constant

term ui, vi, respectively. We can see

fi(α) × gi(α)
= (f ′

i(α) + ui) × (g′
i(α) + vi)

= f ′
i(α)g′

i(α) + uig
′
i(α) + vif

′
i(α) + uivi

= F (α) + uivi,

where F (α) = f ′
i(α)g′

i(α)+uig
′
i(α)+vif

′
i(α). Therefore, fi(α)×gi(α) can be seen

as a secret share of uivi. It is clear that only when ui = vi = 1, fi(α) × gi(α)
is a secret share of 1, and otherwise it is a secret share of 0. Note that the
hamming weight of unary representation is only 1, one can directly find the
finial summation is at most 1 which conclude the result.
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Based on this observation, it is easy to compare a string using Accumulating
Automata, which is a type of finite automata. Only when the string letters are
exactly the same, the last node will be set to 1, otherwise this node will stay
0. One can reconstruct the values of this node to identify whether the string
matching is successful or not.

Binary representation: The main drawback of unary representation is that it
has too many redundant bits. For example if we want to represent the numbers
1 to 1000, we have to use 1000 bits. An alternative method is to use binary
representation.

Assume that there are two letters represented as [u0u1 · · · ur]2 and
[v0v1 · · · vr]2, where ui, vi ∈ {0, 1}. We compare these letters using the
Algorithm 1.

Algorithm 1. Secret comparison using
binary representation
1: for i = 1 to r do
2: si = [ui − vi]

2

3: end for
4: S = 0
5: for i = 1 to r do
6: S = S + si − S × si
7: end for
8: return 1 − S

As a simple example, we consider
two binary strings [1010]2 and [1101]2.
According to previous description, we
perform the following computations:

– Bitwise subtraction,
[1, 0, 1, 0] − [1, 1, 0, 1] = [1 − 1, 0 −
1, 1 − 0, 0 − 1] = [0,−1, 1,−1];

– Bitwise squaring,
[02, (−1)2, 12, (−1)2] = [0, 1, 1, 1];

– Bitwise OR, S = 0|1|1|1 = 1;1

It is easy to check that if the two strings are equal, S is equal to 0 and otherwise
to 1. In this example, the value of S is 1. In order to return the same value as the
unary representation, we prefer to return 1−S rather than S. Note that we only
use the subtraction/addition and multiplication in the above algorithm, similarly
to the unary case, these operations can also be implemented using Shamir secret
sharing. However, compared with unary representation, it requires either more
participants or (more) degree reduction operations.

One Instruction Computer Set. OISC is an abstract machine that uses
only one instruction. It is proven that OISC is capable of being a universal
computer in the same manner as traditional computers with multiple instructions
[24]. This indicates that one instruction set computers are very powerful despite
the simplicity of the design, and can achieve high throughput under certain
configurations.

Since there is only one instruction in the system, it needs no identification to
determine which instruction to execute. Thus, we only need to design the imple-
mentation of one instruction. Actually, there are several options for choosing
the OISC instruction, such as subtract and branch if not equal to zero (SBNZ),
subtract and branch if less than or equal to zero (Subleq), add and branch unless
positive (Addleq). Among these instructions, Subleq is the most commonly used.
Nowadays, there are Subleq compiler and Subleq-based processor [27] which

1 One can check that Step 6 in Algorithm 1 is equivalent to the bitwise OR operation.
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make Subleq a practical and efficient choice. Therefore, in this paper, we focus
on how to simulate Subleq privately and secretly. Comparing the values of two
memory words that are represented by secret shares, is hard to implement, hence
we secret share the words bit by bit, perform the arithmetic over secret shared
bits and then branch according to the sign bit of the result. This leads to a novel
scheme for executing secret shared Subleq (SSS-Subleq) programs. The details
are presented in Sect. 3.

3 SSS-Subleq Programs and Their Execution

Since our architecture is built on Subleq, for any client programs written by
high-level languages, it needs to be compiled into Subleq codes at first [27].
Then the client executes the set of Subleqs over the system. In the following,
we will investigate the implementation details of Subleq using Shamir secret
sharing.

The SSS-Subleq Format and Architecture Overview. According to the
definition of Subleq, it has three parameters A,B,C where the contents at
address B are subtracted from the contents at address A, and the result is
stored at address B, and then, if the result is not greater than 0, the execution
jumps to the memory address C, otherwise it continues to the next instruction
in the sequence. The pseudo code is given in the procedure Subleq(A,B,C).
Here, the PC (program counter) is a pointer that indicates the address of next
instruction.

Procedure. Subleq(A,B,C)
1: Mem[B] = Mem[B]−Mem[A]
2: if Mem[B]≤ 0 then
3: goto C
4: else
5: goto PC + 1
6: end if

Note that the Subleq contains
some important operations: load,
store, subtraction and conditional
branch. Thus, in order to execute Sub-
leq using Shamir secret sharing, we
have to simulate the following oper-
ations using secret shares:

– Load(H): Load the instruction in address H to the processor.
– Jump(C): Transfers control to index C, implement the branching operation.
– Read(X): Read the data at address X.
– Write(X,Y ): Write the data Y in address X.

Please note that the operation goto PC + 1 and goto C can be implemented
by the operation Jump with different parameters. Among all these operations,
a critical problem is how to find the right address secretly. Fortunately, secret
string matching allows us to implement these operations without revealing any
information. According to the description in Sect. 2, we use unary representation
to represent the addresses including memory addresses and instruction indices
where each bit of the unary representation is encoded as a secret shared value.
The format of the SSS-Subleq instruction has five parts which are shown in
Fig. 1.
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index A B C PC + 1

Fig. 1. Format of SSS-Subleq

The first block stores the instruc-
tion index number which is equiva-
lent to the instruction address, the sec-
ond and third blocks store the operand
addresses and the fourth to fifth blocks
store the branch index C and the index of next instruction, respectively.

Besides the former operations, there is a need to implement the subtraction
between two operands and determine the next instruction address according to
the subtraction result. Therefore, we choose to represent every operand as a
signed number. In order to perform subtraction in an easy way, we use two’s
complement representation where subtraction can be transformed into addition.
The most significant bit (MSB) is the sign bit. Analogous with the address,
each bit of the operands is secret shared. The outline of our RAM architecture
is presented Fig. 2. In our architecture, we use a modified Harvard architecture
which not only physically separates storage and signal pathways for instructions
and data, but also separates the read-only and read/write part of data. Note
that since Shamir secret sharing is not multiplicatively homomorphic, degree
reduction is needed after several multiplications. This special structure allows
us to implement read and write operations in relatively efficient manner. In
particular, the degree of the polynomials used for the read-only part (possibly
big-data corpus) is unchanged throughout the execution(s).

Fig. 2. Architecture
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Table 1. The parameters of a program

Parameter Description

m The number of instructions of the user program

n The number of data items that can be accessed for read and write

k The number of data items that can be accessed for read only

t The bit length of the data stored in the memory

The parameters of our architecture are presented in Table 1. Here, we assume
that the client program reads a large number of data items compared with the
data items the program writes to, thus we have k � n. In the following, we
will show how to simulate the four basic operations using the Accumulating
Automata technique.

Operation Details. We start describing the implementation of a function
called: compare(U, V, r), where U and V are secret shares of the unary address
consisting of r elements. For example, let U = u1, u2, · · · , ur, V = v1, v2, · · · , vr
denote the secret shares of two such parameters, we compute

compare(U, V, r) =
r∑

i=1

(ui × vi) (2)

According to Sect. 2, the above expression testifies whether U, V are identical or
not. It is easy to check that the result of compare(U, V, r) is a secret share of 1
if U = V , and otherwise, if U �= V , is 0.

Procedure. Load(H)
1: for i = 1 to m do
2: Numi ← compare(H, ηi, m)
3: S1 ← S1 + Numi × Ai

4: S2 ← S2 + Numi × Bi

5: S3 ← S3 + Numi × Ci

6: S4 ← S4 + Numi × (PCi + 1)
7: end for
8: return S1‖S2‖S3‖S4

Now we describe the details of the
four operations:

Description of Load: The initial val-
ues of Si are set to 0, and the sym-
bol ‖ means concatenation of all values
from S1 to S4. H represents the secret
shares of the instruction address which
we want to load and ηi represents secret
shares of the i-th instruction address. It
is clear that the value returned is the
right instruction we want to load.

Procedure. Read(X)
1: for i = 1 to n + k do
2: Numi ← compare(X, εi, n + k)
3: S ← S + Numi × θi
4: end for
5: return S

Description of Read: According to
Fig. 2, the format of memory table con-
sists of two parts: the address number
εi and data θi. Analogous to the corre-
sponding analysis for the Load opera-
tion, we can easily check that S is the
data whose index number is equal to X.
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Procedure. Write(X,Y )
1: for i = 1 to n do
2: Numi ← compare(X, εi, n + k)
3: θi ← θi + Numi × (Y − θi)
4: end for

Description of Write: The operation
implements writing the data Y in the
address X using secret shares. Note
that only when εi equals X, the Numi

is the secret shares of 1, and then the
data Y can substitute the former data
item, otherwise the data will not be
changed.

Procedure. Jump(C)
1: PC ← C
2: Load(PC)

Description of Jump: The operation
Jump is nearly the same as the oper-
ation Load. If the program needs to
execute the C-th instruction in the pro-
gram table, it just assigns the last part of current instruction to the PC. Then
the program will “jump” to the destination.

Implementation of SSS-Subleq. We then investigate the conditional branch
that required in Subleq in secret shares form. It is difficult to compare two
numbers directly since all the numbers are secret shared and the clouds never
know the secrets. Here, we use two’s complement to represent the operands and
using the sign bit to implement the comparison. In two’s complement, the sign bit
of positive integer is 0 and negative integer is 1. Therefore, when implementing
Subleq(A,B,C), we can use the sign bit of Mem[B] − Mem[A] to (blindly)
decide whether to branch or not. The only problem is that the integer 0, for which
the sign bit in its representation is also 0, while it should imply branching. This
problem can be fixed by a slight modification: using the sign bit of Mem[B] −
Mem[A] − 1 instead of sign bit of Mem[B] − Mem[A]. Moreover, we will show
that this sign bit can be obtained during the computation of Mem[B]−Mem[A]
in the following paragraphs.

Two’s Complement Subtraction. The advantage of using two’s complement is the
elimination of examining the signs of the operands to determine if addition or
subtraction is needed. Therefore, to compute subtraction β − α, it only need to
perform following steps:

– Convert α: Invert every bit of α and add one, denoted by ᾱ + 1.
– Addition: Perform binary addition and discard any overflowing bit, denoted

by β + ᾱ + 1.

Note that we also need the sign bit of β − α − 1. As described above, using
two’s complement representation, the subtraction β−α is converted to β+ ᾱ+1.
Similarly, the subtraction β − α − 1 is implemented as

β − α − 1 = β + ᾱ + 1 − 1 = β + ᾱ.

The similarity allows us to implement these two subtractions together.
The algorithm for two’s complement subtraction using Shamir secret sharing

is given in Algorithm 2. According to previous description in Sect. 2, we know
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Algorithm 2. The two’s complement subtraction using Shamir secret sharing
1: procedure SSS-SUB(A, B)
2: Input: A = [at−1at−2 · · · a1a0], B = [bt−1bt−2 · · · b1b0] where ai, bi are secret

shares of bits of two’s complement represented number.
3: Output: R = [rt−1rt−2 · · · r1r0] where R = B−A, and the sign bit of B−A−1
4: a0 = 1 − a0 � Invert of the least significant bit
5: carry[0] = a0 · b0
6: r0 = a0 + b0 − 2 · carry[0] � Addition of the least significant bit
7: for i = 1 to t − 1 do
8: ai = 1 − ai � invert each bit A → Ā
9: ri = ai + bi − 2aibi

10: carry[i] = aibi + carry[i − 1] · ri � The carry bit
11: ri = ri + carry[i − 1] − 2 · carry[i − 1] · ri � The result bit
12: end for
13: sign = rt−1 � The sign bit of B − A − 1, used for branch
14: carry[0] = r0 � Add 1 to the result obtain B − A
15: r0 = 1 − r0
16: for i = 1 to t − 1 do
17: carry[i] = ri · carry[i − 1]
18: ri = ri + carry[i − 1] − 2 · carry[i]
19: end for
20: return (R‖sign)
21: end procedure

Algorithm 3. The Shamir secret sharing based Subleq
1: procedure SSS-Subleq(A, B, C)
2: R1 ← Read(A)
3: R2 ← Read(B)
4: R‖Num = SSS-SUB(R1, R2)
5: Write(B, R)
6: Jump(Num · C + (1 − Num) · (PC + 1))
7: end procedure

the multiplications and additions/subtractions of the shares correspond to those
of the secrets. Thus one can easily check that Algorithm 2 implements the two’s
complement subtraction.

Therefore, Subleq can be implemented with secret shares by Algorithm 3. In
step 6, we can check that if the value represented by R2 is less than R1, then
Num = 1, PC = C, else Num = 0, PC = PC + 1. Therefore, this expression
implement the conditional branch of Subleq.

Degree Reduction. The main bottleneck of our scheme is the multiplication
with shares used in the basic operations, as the Shamir secret sharing is not mul-
tiplication homomorphic. Note that multiplying two polynomials gives a poly-
nomial with a degree that is equal to the sum of the degrees of the source poly-
nomials. We observe that the Read, Jump and Load increase the polynomial
degrees related to each secret shared bit stored in the registers, the subtraction
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and Write increase the degrees related to the data items stored in the memory.
Therefore, we have to process the degree reduction for these data items at a cer-
tain time. In [11], Dolev et al. proposed a method for reducing the polynomial
degree without revealing the original secret. In our model, we define a reducer
that is in charge of reducing the polynomial degrees and a randomizer in charge
of generating random polynomials for all the participants. Note that the codes
of the reducer and the randomizer should be executed independently in order to
protect the secret s, but either of them can be executed by the dealer machine.
The polynomial degree reduction algorithm appears in Algorithm4.2

Algorithm 4. Polynomial degree reduction for secret shares
1: procedure Decrease(P (x), d, d∗)
2: Let u1, · · · , uE be E participants, D be the randomizer and R be the reducer.
3: Let P (x) ∈ Fp[x] of degree d is the polynomial for secret s.
4: D randomly selects polynomial f(x) of degree d and g(x) of degree d∗, where

f(x) and g(x) have the same constant term.
5: for i = 1 to E do
6: D sends (f(ui), g(ui)) to ui.
7: ui computes P (ui) + f(ui) and sends it to R.
8: end for
9: R interpolates and computes a polynomial Q(x) = P (x) + f(x).

10: for i = 1 to E do
11: R sends to ui the coefficients qj of Q(x) with degree more than d∗.
12: ui computes S = P (ui) + f(ui) −∑d

j=d∗+1 qju
j − g(ui).

13: return S.
14: end for
15: end procedure

Different from the original algorithm presented in [11], we use the random
polynomials f(x) of degree d instead of d∗. It is clear that adding f(x) to P (x)
can hide all the coefficients of P (x) which prevent the reducer from obtaining
any information about the secret s. We also use another random polynomial
g(x) of degree d∗, where the constant term of f(x) and g(x) are identical. In the
end of Algorithm 4, each cloud subtracts g(ui) from the result which will keep
the secret s unchanged To protect the secrets, for every degree reduction, the
random polynomial f(x), g(x) should be updated. In practical implementation,
the dealer (with no randomizer) can secret share these polynomials to the clouds
in advance or let clouds interact with the randomizer, thus supplies on-line these
f(x) and g(x) pairs upon requests and the degree reduction process is performed
with no involvement of the dealer during the execution.

In our proposed architecture, the read/write memory is separated from the
read-only memory. This design is more convenient for degree reduction com-
pared with the classic architecture. Compared with the whole memory space,
2 The original algorithm is designed for bivariate polynomial, we modified it accord-

ingly.
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Algorithm 5. The SSS-Subleq plus degree reduction
1: procedure SSS-Subleq-DR(A, B, C)
2: Decrease(A‖B‖C‖PC + 1, 3�, �)
3: R1 ← Read(A)
4: R2 ← Read(B)
5: R‖Num = SSS-SUB(R1, R2)
6: Decrease(R‖Num, ∗, �)
7: Write(B, R)
8: Jump(Num · C + (1 − Num) · (PC + 1))
9: end procedure

the read/write registers are very small, thus, the number of items for which we
need to reduce the degree is relatively small. Assume that both the addresses
and data items are secret shared using the polynomials of the same degree �,
plus degree reduction step, the Subleq can be implemented as in Algorithm 5. In
step 6, we use ∗ instead of the exact degree parameter, as each secret shared bit
of R has different polynomial degree.

4 Applications

In our model, assume that a client wants to outsource a program in clouds and
the program is compiled into Subleq-based program. The address is encoded
using unary representation and the data item is encoded using two’s comple-
ment representation. The dealer picks random polynomials of degree � to share
every bit of the address and data. Then the dealer sends the secret shared pro-
gram to E clouds. The integer E should be greater than the highest polynomial
degree generated during Algorithm 5. Note that the participating clouds do not
communicate with each other and are possibly not aware concerning the number
and identity of the other participants. Also note that all the clouds (including
reducer and randomizer) need not to be reliable.

Initial Stage. The PC of each cloud is initially set by the dealer. The values of
the PC are the secret shares of the first address of the client’s program. In case
there is no randomizer in the system, the dealer can guarantee that each cloud
has enough precomputed values of polynomials to be used for degree reductions.

Execution Stage. In this stage, the clouds have to perform the following works:

– Program Execution: Each cloud executes the secret shared program indepen-
dently and does not communicate with other clouds.

– Degree Reduction: Each cloud performs Algorithm 4 to reduce the polynomial
degree of the shares which increased during the Subleq procedure.

Memory Refresh. Although we decreased the polynomial degree of the shared
secret before write, the operation Write does increase the polynomial degree
by � each time. Thus, the read/write part of memory needs to be refreshed at
intervals (e.g., every ten Write operations). Note that this part of memory can
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be relatively small compared with the whole memory, so it will not lead to too
much bandwidth usage.

Dealer

Cloud 1

Cloud 2

Cloud E

Reducer 

Randomizer

Fig. 3. The outline of Our RAM model

In Fig. 3, we give the outline of
the program execution. The com-
munication between the clouds and
the dealer, and the communica-
tion between the clouds and the
reducer(s) are all bidirectional. The
dealer sends the secret shares of
the client program and receives
and reconstructs the program results
executed by clouds. Moreover, we
can use more than one reducer in
order to check the integrity of the results and identify which reducer is
malicious.

Storage and Bandwidth. The storage of each cloud consists of the secret
shares of the program instructions and the data. Notice that secret share of one
bit needs one or multi-word size storage which is denoted by ω(1).

Data Table. Each row of the data table consists of the index and data item, it
totally requires (n + k)(n + k + t)ω(1) words storage. As we previously assumed
that the size of read-only table is much bigger than that of the read/write table,
i.e., k � n, the storage requires roughly O(k2)ω(1) words.

Instruction Table. The cloud stores an instruction table of size m, and each
instruction consists of five parts. This requires O(m) blocks storage with each
block requires O(3m + 2n + 2k)ω(1) words.

Degree Reduction Table. According to the corresponding description of Algo-
rithm4, if a randomizer (or several randomizers) are used to produce secret
shares of random polynomials on-line, no tables are needed. Otherwise every
cloud needs to store a certain amount of shares which are pre-computed and
dispatched by the dealer. These values could be generated and managed by a
special database. The size of this database is dependent on the execution length
of the program, i.e., about O(mt�)ω(1) words.

Bandwidth. For each Subleq, the clouds need to reduce the polynomial degrees of
their data twice via communication with the reducer (and the randomizer). For
each degree reduction from d to d∗, every cloud first obtains two shared evalua-
tions from the randomizer, and then sends the reducer one word and receive d−d∗

coefficients from it, resulting in a total of approximately O(k+m+ t)ω(1) words
bandwidth used per cloud for one Subleq. In addition, the read/write memory
needs to be refreshed at interval, it will result in O(kt)ω(1) words bandwidth
usage. Therefore, in the worst case, the bandwidth of each cloud is O(kt)ω(1).

Security Analysis Sketch. We note that during the whole procedure of our
model, all of the information are secret shared in E clouds and no original
information will be leaked to the cloud itself. Besides this, our model has two
characteristics:
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Security Against Adversary Eavesdropping. For every Load operation, we had
to compare the values stored in PC with all the indices in program table. It
“touches” every position in the program table. Even through the adversary could
eavesdrop on all the contents of PC, registers, etc., the adversary could not
know which instruction in the table was executed. The same thing also happens
in read/write operations. The characteristic is similar to the schemes that are
based on fully homomorphic encryption, but here is information-theoretically
secure.

Security Against Malicious Clouds. The malicious clouds include malicious par-
ticipants and malicious randomizer and reducer. Informally, a malicious server
can corrupt data in storage; and deviate from the prescribed protocol, particu-
larly, not performing execution correctly.

For the participants: note that the program is outsourced to E clouds. Even
if some of them output the wrong answers, the client can compare the results
interpolated from different set of answers and obtain the correct result, or better
off, use [30].

For the reducer and randomizer: every cloud may record the communication
with the randomizer and reducer for audit, revealing possible malicious reducers.
A possible strategy is to use several reducers simultaneously. After each cloud
received the answers from the reducers, they could compare these results and
notified the client/dealer whether the reducers were malicious or not. Similarly
the actions of the randomizer can be monitored, say by forwarding the values
sent by the randomizer to the reducer, requesting to the reducers to reveal all
coefficients, and not use these values, requesting new values from the randomizer.

Unary vs. Binary. In our scheme, we use the unary representation for the
instruction and data addresses. This type of representation is inappropriate if
the clients program is very large because of its redundant bits. In a secret shared
form, we have to use n words to represent these n bit which will lead to many
operations over Fp. As described in Sect. 2, we can use binary representation as
a substitution. Compared with unary representation, binary representation can
express exponentially more numbers with the same number of bits. However,
using binary representation to perform secret string matching is more compli-
cated and will require more degree reduction operations. In practical implemen-
tation, one can choose the representation based on the consideration of their
memory and computation capacity.

5 Conclusions

We discussed a novel model for outsourcing arbitrary computations that pro-
vide confidentiality, integrity, and verifiability. Unlike the former RAM-based
secure computation models, our scheme hides the client program and data all
the time and manipulates the secrets directly. Therefore, no confidential infor-
mation would be revealed. The setting is particularly interesting in the scope of
big data that is stored in secret sharing fashion over the clouds, and there is a
need to repeatedly compute functions over the data without reconstructing the
data from the shares.
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An important observation is that the dealer (and reducer(s)) may share com-
mon roots of all polynomials, unknown to the participating clouds, where addi-
tion and multiplications keep the roots unchanged. These unknown roots can
serve as additional keys, the number of possible roots grows exponentially with
the degree of the polynomials. Furthermore, implementation of interactive pro-
gram is possible by reading and writing specific memory locations during the
execution. Lastly, using several RISC instructions instead of OISC is possible
to implement the program obliviously. For every instruction execution, we can
perform each instruction once and using secret string match technique to ensure
the right execution.
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