Chapter 2

Applications of Transient Signal Analysis
Using the Concept of Recurrence

Plot Analysis

Angela Digulescu, Irina Murgan, Cornel Ioana, Ion Candel
and Alexandru Serbanescu

Abstract Transient signals are universally characterized by a short duration and a
broad spectrum which are often present in various phenomena such as sudden
acoustic pressure changes, seismic waves, electrical discharges, etc. In order to
efficiently monitor the systems where they happen, it is very important that the
signals generated by transient phenomena be detected, located and characterized.
This significantly helps to better understand their effects in the given application
context. This chapter presents new tools derived from the concept of Recurrence
Plot Analysis (RPA) and applied on three real applications. Two of the applications
concern the detection, localization and characterization of the electrical partial
discharges (measured from photovoltaic panels and on electrical cables, respec-
tively). Another application refers to the quantification of the water hammer effect
using two acoustic sensors placed on a pipe line.

2.1 Introduction

Complex systems are often met in real life and they usually present highly nonlinear
(and sometimes linear) deterministic, stochastic and random characteristics [1].
These systems comprise different subparts which are strongly interconnected, hereby
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the interdependence of their characteristics is difficult to depict, and, therefore, the
system has to be characterized as a whole and not individually. This is the reason
why for most real applications, the measurements are very well suited to reveal the
resultant effect of the processes that describe a phenomenon under study [2].

Hereby, the choice of the RPA concept for the analysis of transient signals is
based on the fact that it is a data-driven method which does not require a priori
information about the system, knowing that such information is not always avail-
able [3].

Our applications under study concern the transient signals that appear in
hydraulic and power systems. The major issue is that these signals reflect a sudden
change of the dynamical system which can cause, in an unpredictable laps of time, a
breakdown of the system.

The recurrence information is very important, offering us new insights in the
analysis of transient signals which represent totally different states of the systems.
In our work, we are interested in the system’s state changes that are not determined
by random causes, but they are the results of a nonlinear input that causes them to
change their state suddenly, exposing the system to major collapse.

The first application relates to the electrical partial discharge (PD) detection and
characterization [4]. The PDs indicate that some changes have occurred in the
insulation due to chemical and/or mechanical transformations [5], which, in time,
can lead to the failure of the equipment. Hereby, the PD measurement is a routine
procedure for testing important components from the power system (high-voltage
cables, transformers, etc.).

The second application concerns the detection, localization and characterization
of electrical arcs generated in photovoltaic panels [6, 7]. The need of detection,
localization and characterization of the electrical arcs is a growing demand as these
systems continue to develop and the environmental conditions still unexpectedly
change.

Next, our application refers to the water hammer effect which appears in
pipelines when a valve is suddenly closed, so it forces the fluid to change its
direction or to stop its flow. This translates to a pipe pressure sudden
increase/decrease which causes from vibrations of the pipe to system collapse.
Thus, this phenomenon must be supervised and characterized in order to control its
damaging effects to the hydraulic system.

Through these specific applications, our chapter shows the interest of RPA
approaches for the analysis of the transient signals in various applications of
nowadays interest.

The chapter is organized as follows: the second section presents some relative
new signal analysis tools based on the RPA concept. Next, each section presents the
applications mentioned above and discusses on the subject. The last section illus-
trates the conclusions and perspectives of our work.
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2.2 Signal Analysis Tools Based on the RPA Concept

In this section, starting from the concept of recurrence plot analysis, two new
analysis tools derived from RPA concept are presented.

Firstly, there will be highlighted the measure used for the detection of a
transient signal, namely the time-distributed recurrence (TDR) measure. Then, the
multi-lag phase-space analysis will be introduced. This concept is very useful for
the characterization of transient signals.

2.2.1 The Time-Distributed Recurrence Measure

The basis of this measure starts from the idea that a sudden change in a time series
represents a new state of the dynamical system [3, 8—14], namely there is no
recurrence with the previous states. Therefore, when an appropriate distance is
used, the recurrence matrix presents a horizontal/vertical band with much fewer
recurrences. When the sum of the lines/columns of the recurrence matrix is com-
puted, we actually obtain the column average [3], which, in the case of transient
signals, significantly changes.
Considering a measured signal as the following time series [15-21]:

sln) = {s[1], s[2], ... s[N]} 2.1)

where N is the length of the signal, then the phase-space points of the system are
obtained from the available time series:

7= éls[w(k—nd] & (2.2)

where m is the embedding dimension of the phase-space, d is the delay (lag) chosen
between the samples of the time series and e; are the axis unit vectors corre-
sponding to each dimension of the phase-space.

Then, the distance/recurrence matrix is obtained:

Rij=0(e—[|v - ¥/

), ij={12,....M} (2.3)

where || - || is a certain chosen distance (Euclidean distance [8, 21], angular distance
[3, 8], L1 norm [22], etc.) and the ©( ) is the Heaviside step function. For our
applications, the threshold ¢ is considered constant and M =N — (m—1)d.
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Hereby, the time-distributed recurrence (TDR) measure is defines as [3, 8]:

1
M;

Mx

TDR[n]= — ¥ Ry, (2.4)

1

This measure can be interpreted as the column average recurrence of a given
point i or the recurrence density heterogeneity in the point i. Hereby, a solitary
position of a phase space vector changes significantly its average recurrence and
can be highlighted through the use of the complementary version of the measure
from (2.4):

TDR[n]

TR ] =1 = DRI

(2.5)

Moreover, in order to detect only the transient signal from the analyzed obser-
vation, the signal-to-noise ratio (SNR) must be computed.

The SNR is computed as follows: the last part of the acquired signal (when no
phenomena is happening) is considered as noise, z[i], (unwanted signal recording
environmental noise, cable noise, noise caused by imperfect connections, etc.),
whereas the part that has a different behavior is considered as the interest signal, s[i].
Both parts of the signal, s[i] and z[i] have the same length, N. The SNR is computed
as:

M=[1M=

Il
—

Accordingly, the threshold ¢ of the recurrence matrix is chosen so that it includes
the a percentage, o, of the maximum value of the equivalent noise which has the
same power as the interest signal:

8=(x‘max(’SNRS,-gm1-noiseD (2.7)

where o is a constant that is chosen to nonlinearly filter the noise. In our appli-
cations, o varies from 0.4 to 0.95.

Considering the (2.7), the components of the noise (undesired parts of the signal)
are considered as recurrences, therefore the transient signal (useful part of the
signal) is highlighted by the proposed measure.

Figure 2.1 emphasizes the advantage brought by the TDR measure, namely that
the detection provided by the detection curve is more robust to noise the actual
recorded signal (electrical arc acquisition). In the examples above, the detection
curve exhibits a SNR improvement of 30 dB.



2 Applications of Transient Signal Analysis ... 23

(a) (b)
0.8
s = 06
© (0]
s S o4
= -
g £ 0.2
< < 0
-0.2
0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1
Time[s] Time[s]
—Transient signal - - -TDR detection curve ——Transient signal - - -TDR detection curve
(o 1 Y (d 1
> > 05
T 03 o)
° °
S 2
= = 0
=) [
g 0 3
< <
-0.5
-0.5 i i i i i ; ; ; ; ;
0.02 0.04 0.06 0.08 0.1 0.02 004 006 0.08 0.1
Time[s] Timel[s]
——Transient signal - - -TDR detection curve — Transient signal - - - TDR detection curve

Fig. 2.1 Transient signal detection using the TDR measure for a transition of only 11 samples
where m=3, d=2 and a=0.8. a Transient signal detection for signal with SNR = 20 dB.
b Transient signal detection for signal with SNR = 15 dB. ¢ Transient signal detection for signal
with SNR = 9 dB. d Transient signal detection for signal with SNR = 5 dB

The major advantage of this method, is that, in applications where the SNR level
of the acquired signal varies a lot, the TDR detection curve approach improves the
SNR level after filtering the acquired signal with the detection curve. Through this
approach, the signal’s power after filtering is significantly increased (in our appli-
cations, at least 10 dB), which is very helpful for the part of signal classification
(Sects. 2.3 and 2.4). Moreover, this provides the robustness to the TDOA (time
difference of arrival) estimation. This comes from the measure’s invariance to the
group velocity effect (thanks to the concept of recurrence), whereas the peak
detection or the correlation function is very sensitive to this effect (Sect. 2.5).

2.2.2 Multi-lag Phase-Space Analysis

The RPA method stands, as its name suggests it, on the concept of recurrences.
Still, for our applications, a step backward has been made and a closer attention is
given to the phase-space in order to achieve richer characterization of similar
signals coming from the same source and having the same propagation and
acquisition conditions.
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The phase-space representation is very rich in information regarding the evolution
of a dynamical system [22, 23], therefore the analysis can be made in any dimension,
but our approach restrains, for the moment, to a bi-dimensional representation.

Therefore, considering the Cartesian coordinate system, the phase-space repre-
sentation is given by:

{ X = s{n] (2.8)

yn=Ss[n+d]

where n is the nth sample of the recorded time series. It goes that (2.2) can be
rewritten as: v, =s[n]- i +s[n+d]- .

Firstly, the main attributes of this representation are recalled. Considering three
signals 51, 5o and s3 defined as:

s1[n] =s[n+ 5]
s$2[n] = s[an] (2.9)

where o, p and d are constant which modify the signal s through translation in time,
scale and or amplitude, the phase-space points present the following attributes [20,
24, 25]:

— —
V1li] = V[i+8]

= 2.10)
— —

V3 =P vy

The phase-space trajectory is invariant to translation and it points out the scale
and amplitude change.

In order to introduce the concept of multi-lag phase-space analysis, three tran-
sient signals with similar characteristics are considered. These signals are given by
the generic signal:

St = { @i .fa. -niii:]l,][’(l)]t)h,efwzis{el’ 2ot (2.11)

where N = B—ff} and f; = 10 MHz is the sampling frequency.

The considered signals sy, £, 5,)» 52 b,) and s3(a,, 5, p,) have the following

az, fa,
relationships between their parameters: a; /a; =1 /0.6 =1.66,a, /a3 =1 /0.3=3.33,
fi/h=2x10°) /(1.9%x10%)=1.05, f; /5 =(2x10°) /(1.6 X 103) =1.25, by =b, =b;
and SNR; =20dB, i={1, 2, 3}.
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The chosen signals from Fig. 2.2 seem to be quite similar, but, at a closer look,
slight differences appear. Firstly, these signals are studied using the wavelet anal-
ysis [26-28].

From Fig. 2.3, it can be observed that the slight differences between the signals
cannot be highlighted by the wavelet transform: their presence is detected, by their
shape does not present any discriminating element.

In order to distinguish between these transient signals, the multi-lag phase space
analysis is considered. The study of the representation of the trajectory for multiple
lags is done by two approaches: the elliptic modeling of the trajectory for the area
estimation in the phase-space, respectively, the polar coordinate representation.

The elliptic modeling supposes to determine the ellipse that circumscribes the
phase-space trajectory and, therefore, to estimate the area of the trajectory through
the ellipse’s area computation. The area of the modeling ellipse is a new descriptor
of the transient signal.

The trajectory is modeled by considering the solution that minimizes the fol-
lowing system [29]:
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@) 1F 9 (b) Zoomed transient signals
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Fig. 2.2 Transient signals considered for the multi-lag phase-space analysis
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Fig. 2.3 The continuous wavelet transform (with the Mexican Hat mother-function) applied on
the three transient signals
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S= [F(xi,}’i)]z (2.12)

™=

i=1

where F(x,y) =x? + Ay* + 1. The least mean square estimation of (2.12) gives the
couple (I', A). It goes that the major semi axes a=1/I" and the minor semi axes
b=1/A.

The next step after the elliptic modeling is the area estimation and the estimation
of the optimal delay. The delay is considered to be optimal for the value that
provides an average value of the area and provides an adequate representation of the
trajectory. This average value area assures a suitable phase-space representation
where the trajectory does not evolve too close to the main diagonal (case of
redundancy) or its evolution is too complicated (case of irrelevance) [30].

From Fig. 2.4, it can be noticed that the area of the signals has a similar trend
with some differences for the normalized signals. Hereby, considering the average
value of the area, A =3, the optimal delay for s; is T; =5, for 55, T, =5 and for s3,
T3 = 6.

With the chosen lags, the next step is to plot the phase-space trajectory into polar

coordinates:
pln]=/x;+y;

O[n] = arctan "
X

(2.13)

This representation is very useful for signals with different amplitudes, because it
shows the evolution of the position vector regardless of its length.

Figure 2.5 shows the evolution of the transient signals on the phase diagram. It
can be observed that the noise is concentrated in a small region of the phase space
which is translated in a small points conglomeration around the peak corresponding
to the angle —3m/A.

Estimated area of the trajectory Estimated area of the trajectory
e e .
4
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1
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Lag Lag
+S1 +82+33 +s1n+52n +33n

Fig. 2.4 The evolution of the area according to the lag (delay) for the signals presented in Fig. 2.2
(left figure) and for the normalized signals (right figure)
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Fig. 2.5 The polar Phase diagram of the transient signals
coordinates representation for w w w \ \ ‘ ‘
the transient signals S o ’ ’ :
$1:T1 =5, $2:T> =5 and
§3:T3=6

p V]

In this way, through the isolation of this region, the noise can be eliminated in
the process of signal characterization. Moreover, the evolution of the trajectories is
different for the peaks corresponding to the angle & /4. Measuring the values of the
maximum length of the vector corresponding to the n/4 angle, it goes: p, p, =1.67
and p,/p; =3.43. So, the ratio of the amplitude of the transient signals is then
conserved in the phase diagram.

Furthermore, the number of points between the two angles —3n/4 and n/4 (after
excluding the points corresponding to the noise) is directly related to the funda-
mental frequency of the signal. Let ng be this number of points from the phase
diagram. The fundamental period of the signal, T is:

27’!0

3

From (2.14), it goes that: f; /f, =1.04 and f; /fz =1.24.
This results allow us to discriminate between the proposed signals although their
characteristics are very close.

To (2.14)

2.3 Characterization of Partial Discharges in High
Voltage Cables

In high voltage systems the presence of partial discharges (PD) are an indication of
insulation weakness which, in time, may lead to total damage of the equipments [5].
Therefore, is it absolutely necessary to monitor such systems (power cables, trans-
formers, etc.) in order to detect and localize the PD source, namely the position of the
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insulation troubles. Moreover, the characterization of these signals provides extra
information regarding the long terms effects that they have upon the system [5].

The experiment was made on the grounding connection of the cable in order to
record signals of 20 ms using high current inductive sensors and high speed data
acquisition. It goes that each recorded signal has 2 million samples and a prelim-
inary detection of the potential harmful zones is achieved using the spectrogram
(Fig. 2.6).

Then, the TDR measure is applied on partial discharges that have different SNRs.

The PDs presented in Fig. 2.7 are detected with the TDR measure so that the
noise has no impact upon the detection curve. Hereby, after the filtering of these
signals, the filtered PDs have a SNR improved with at least 20 dB.

Next, these PDs are characterized using the multi-lag phase-space analysis.
Firstly, the signals were normalized in order to eliminate the drawbacks that the
different PDs amplitudes would involve. Then, on these signals, the area estimation
is performed after the elliptic modeling. Figure 2.8 presents the obtained results.

It can be observed that, even if the signals are normalized, their area evolution is
different. The choice of the lag is done so that the area of the trajectory on the phase
space has the same average value (A=1.5): dpp, =3, dpp, =4 and dpp, =6.

Using these lags, in Fig. 2.9 the phase diagram representation is presented.

The evolution of the trajectory is better pointed out in the /4 angle region than
in the —3nA angle region. Moreover, the noise in distributed all along the peak
corresponding to the —3n/4 angle depending on the SNR.

Recalling the fact that the amplitude ratio is conserved in the ratio between the
lengths of the vectors corresponding to the n 4 angle, means that: app, /app, =1.53
and app, /app, =2.87. Moreover, according to (2.14), the frequency ratio are
Jep, /fep, =1.15 and fpp, /fpp, =1.37.

Hereby, the results show that the signals PD, and PD; suffer not only an
attenuation, but also a frequency shift with respect to PD; which helps to establish
their source characteristics.

Fig. 2.6 The experimental Junction S
configuration for the PD | 7

measurements Ll. : _ J !
\ \

Y
penzor 1 -Trmaswnr source Senzor

Signal Analysis :
> détection and
localisation

(]
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(a) Partial discharge detection (b) Partial discharge detection
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Fig. 2.7 Recorded partial discharges with different SNRs and ratios a for & (2.7)
a SNR=19.7dB, m=3,d=3,a=04; b SNR=14dB, m=3,d=4, a=0.7; ¢ SNR=8dB,
m=3,d=6, a=0.95
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Fig. 2.9 The phase space Phase diagram of partial discharges
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2.4 Electrical Arcs in Photovoltaic Panels

Photovoltaic panels are very important in the landscape of renewal energy sources
of strategic interest, for both ecological reasons and the worldwide growing energy
demand. The electrical arcs (EA) that appear in these systems can be a major
problem, so it is necessary to supervise such phenomena in the system in order to
keep it safe [7].

The experiment was performed with an electrical arc locator system composed
of three acoustical microphones place in a 3D configuration and an wide band
antenna placed in the center of the system (Fig. 2.10).

The detection and estimation of times of arrival of the transient signals generated
by electrical arc at each sensor has been done using the 7TDR measure, the spec-
trogram and the wavelet transform. Figure 2.11 presents the recorded signals and
their detection curves obtained with the TDR measure.

The recording is done at a sampling frequency of f; =5MHz for a period of
10ms (50000 samples). In terms of location accuracy, the TDR measure is com-
pared with the classical time-scale approaches. The spatial localization is achieved
by solving the geometrical system (2.15) based on the time-of-arrival (TOA) of the
electrical arc at each microphone. The TOA is obtained by imposing the same
threshold (0.5) at the normalized detection curves based on each method.

dps, —dps, =V - 131
dP53 _dPsl =V-13 (215)
dps, —dps, =V - t41
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Fig. 2.10 The experimental configuration of the EA locator system
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Fig. 2.11 The electrical arc locator system, the recorded AEs and the detection curve obtained
with the TDR measure m=3; d=8; a=0.7
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Tabl.e Zjl The spatial Method Relative error (%)
localization accuracy for the
. TDR measure 6.2
electrical arcs
Wavelet 11.2
Spectrogram 9.4

where dps, = \/(xsi —xp)" + (v —yp)’ + (2, —2p)°,i=1,4, each position of the
acoustic microphone and antenna (S;) is known S;(xs,, ys;, zs,). f(i+1)i is the time of
arrival of the electrical arc at each microphone triggered by the S; wide band
antenna.

The precision accuracy using each method is presented in Table 2.1.

In this application, the signal is propagated on multiple paths, because the
experiment is performed in a closed facility: a 75 m? laboratory sustained by 6
columns and equipped with test tables, desktops and test boards.

Although, the classical techniques detect and localize the electrical arc source in
an effective manner, when it comes to multi-path signal discrimination, these
methods are limited.

But, the multi-lag phase space analysis provides better results. Using one of the
signals arrived at S, microphone, the reflections s;, s3 of the electrical arc are
compared with the direct path signal s;.

Therefore, for the signals highlighted in Fig. 2.12, the elliptic modeling is
applied and the area of the estimated ellipse is determined. Previously, the signals
are normalized in order to bring the signals at the same amplitude level (Fig. 2.13).

The estimated ellipses evolve in a different manner, but they have the same
trend. After an average value of the area is chosen, A=1, an optimal lag is
determined: d; =11, d, =12 and d3 =8. The results of the phase diagram repre-
sentation are shown in Fig. 2.14.

In terms of attenuation, the phase diagram points out the same information as the
time evolution of the signals. Moreover, the reflections present fewer curves that
the direct path signal. This means that the reflections contain fewer oscillations than
the direct signal, hereby, the reflections are dispersed.

Fig. 2.12 The electrical arc Multi-path acoustic signal
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Fig. 2.13 The areas of the Estimated areas of the phase
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Fig. 2.14 The polar coordinates representation for the multi-path acoustic signals s1:d; =11,
sy:dy=12 and s3:d3; =8

Using (2.14), it goes that: f;, /f,, =0.94 and f;, /f;, =0.92, meaning that the
reflections suffer a time dilatation. Because the frequency ratios are close to 1, it
leads to the idea that the signals have the same source, but on their propagation
path, the reflections are affected by multiple phenomena: diffusion, dispersion,
attenuation, etc.

Concluding this part, the RPA approach provides a better localization accuracy
than the time-scale methods and with the use of multi-lag phase-space analysis, it
highlights new information regarding the characterization of transient signals and

the changes that they suffer.
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2.5 Water Hammer Effect Quantification

The water hammer is a phenomenon that take place in a closed pipeline when a
vane is suddenly closed while the water is flowing. The effect is that the liquid is
forced to change its direction or to stop its motion. The risks of this operation vary
from pipeline vibration to pipe collapse.

Usually, in industrial applications, this phenomenon is quantified using either
intrusive pressure sensors, either a hydraulic formula (2.16) with the condition that
the characteristics of the system are well known [31-33].

= (2.16)

ol +2%)

where c is the pressure wave speed, €, is the bulk modulus of the fluid, D is the pipe
diameter, e is the pipe wall thickness and E is the Young modulus of the pipe.

The direct relation between the speed of the pressure wave and the pressure
variation Ap is given by Joukovski’s equation [31]:

Ap=p-c-v (2.17)

where p is the fluid density and vy is the steady flow velocity.

Our approach consists in placing a pair of ultrasonic sensors on the pipe and to
record the acoustical effect of the water hammer in order to compute the pressure
wave speed. This approach has the advantage to supervise the system as it is and
not to require any additional intrusive changes to the system as inserting a pressure
sensor inside the pipe (2.17) or determining the exact characteristics of the
hydraulic system (2.16).

The experiment is done on a horizontal pipe supplied by a tank (ST) of 200 I
volume. The pipe has a length of L=10.11m, it is made from Plexiglas with an
exterior section of 50X 50 mm? and a circular interior section of D =39 mm. The
water evacuation diaphragm has a diameter of d =20 mm.

Our ultrasonic transducers are placed on the pipe at a distance of 8cm (S7),
respectively 16cm (S;) from the closing vane (CV). Next to them, the pressure
sensor P is already installed in the pipe (Fig. 2.15).

The acquired signals, by both ultrasonic and pressure sensors are presented in
Fig. 2.16. The highlighted areas emphasize that the acoustical effect happens
simultaneously with the pressure variations.

The acoustic signal arrived at sensor S, is more clearer than the one arrived at S,
because the first one is closer than the second from the CV. This happens because
the wave starts to diffuse. The results obtained with the TDR measure are shown in
Fig. 2.17.

Although, the effect of the mechanical vibrations of the pipe are also recorded by
the sensors (especially sensor ), the transient detection is successfully obtained.
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Tgble 2..2 The relative error N ethod
using different approaches

Relative error

Experimental (c,.) -
TDR measure (¢7pg) 1.69 %

Maximum peak (cpz) 16.02 %
Theoretical (c;) 343 %

After imposing a threshold for the TDR measure of 80 % from its maximum value,
two times of arrival are determined. Hereby, the time difference of arrival obtained
is TDOA =82 ps. Therefore, the estimated wave speed is crpr =975 m4A.

Computing only the TDOA =99 ps for the maxima of the recorded signals, the
estimated wave speed is c,x =805 m4. The difference between these approaches is
explained by the diffusion.

With the use of (2.16) and considering p = 1000 kg/in3, e, =2.1GPa, e=10mm
and E =5.66 GPa, the theoretical value of the wave speed is ¢, =926 mj.

Still, the pressure variation recorded by the pressure sensor P is Ap =15.9 bar.
Knowing that the flow rate of the water inside the pipe before the closure is
0=19814, it goes that the speed of the water in steady state is vo=1.66 mz.
Making use of (2.17), the experimental pressure wave speed is ¢, =959 mj.

Relating the pressure wave speed the pressure variation using (2.17), the relative
error for the estimation of the pressure variation is performed, namely the water
hammer effect is quantified.

The results from Table 2.2 state that the TDR measure based on the RPA concept
is very efficient in the water hammer effect quantification with an error below 2 %.

2.6 Conclusions

The concepts of RPA and phase space bring new insights which together with
classical signal processing methods can help the analysis the transient signals.

The choice of the RPA concept has the advantage to be a data-driven method,
therefore, it is an alternative to the classical transient signal processing techniques
based on projection of analyzed signals on a given dictionary. Three applicative
contexts have been addressed in our work.

The first one is the electrical partial discharge analysis. The detection method is
based on the RPA method parameters using the TDR measure. Furthermore, the
signals are characterized and discriminated using the concept of multi-lag phase
space analysis. In addition, for the electrical arcs the detection and characterization
is similarly obtained. The localization precision accuracy outperforms the classical
non-stationary signals processing methods.

The third application, related to the water hammer phenomenon analysis, is
pointed out through our ultrasonic non-intrusive approach that proves to be the
closest to the reference method. The effect of the phenomenon is quantified using
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the TDR measure which is more robust to the effect of pressure wave diffusion that
takes place inside the pipe during the experiment.

Our future work foresees to correlate the information given by this new approach
with the physical parameters of the system. For this purpose, our main research
efforts will concentrate to the development of new descriptors of transients signals,
derived from multi-lag phase diagram analysis. The characteristics of such
descriptors that we look for are both the parsimony and the robustness to disturbing
factors.

In parallel, new applications domains will be addressed aiming to provide new
practically-oriented approaches for transient phenomena.
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