
Chapter 2
Stability of Interconnected Systems

Consider the interconnection in Fig. 2.1 where each subsystem Gi, i = 1, . . . , N, is
described by

d

dt
xi(t) = fi(xi(t), ui(t)) (2.1)

yi(t) = hi(xi(t), ui(t)) (2.2)

with xi(t) ∈ R
ni , ui(t) ∈ R

mi , yi(t) ∈ R
pi , fi(0, 0) = 0, hi(0, 0) = 0.

The static matrix M defines the coupling of these subsystems: the input ui to Gi

depends on the outputs yj of other subsystems by

u = My (2.3)

where u = [uT
1 · · · uT

N ]T and y = [yT
1 · · · yT

N ]T . We assume that the interconnection is
well-posed; that is, upon the substitution yi = hi(xi, ui) the Eq. (2.3) admits a unique
solution for u as a function x.

2.1 Compositional Stability Certification

Our goal is to derive a bottom-up stability test using dissipativity properties and the
interconnection structure of the subsystems. Dissipativity serves as an abstraction of
the subsystem models (Fig. 1.1) and allows us to study interconnections whose com-
bined dynamical equations are too large to analyze directly. The use of input/output
properties and interconnection matrices for network stability tests dates back to the
early Refs. [1, 2].

© The Author(s) 2016
M. Arcak et al., Networks of Dissipative Systems,
SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-29928-0_2

13

http://dx.doi.org/10.1007/978-3-319-29928-0_1


14 2 Stability of Interconnected Systems

Fig. 2.1 An interconnection
of subsystems G1, . . . , GN .
The inputs depend on the
outputs of other subsystems
by u = My where M is a
static matrix
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We assume each subsystem is dissipative with a positive definite, continuously
differentiable storage function Vi(·) and a quadratic supply rate:

si(ui, yi) =
[

ui

yi

]T

Xi

[
ui

yi

]
=

[
ui

yi

]T
[

X11
i X12

i

X21
i X22

i

] [
ui

yi

]
(2.4)

where Xjk
i , j, k ∈ {1, 2}, are conformal block partitions of Xi. We then search for a

weighted sum of storage functions

V (x) = p1V1(x1) + · · · + pN VN (xN ) pi > 0, i = 1, . . . , N (2.5)

that serves as a Lyapunov function for the interconnection. To this end we ask that
the right-hand side of the inequality

N∑
i=1

pi∇Vi(xi)
T fi(xi, ui) ≤

N∑
i=1

pi

[
ui

yi

]T

Xi

[
ui

yi

]
(2.6)

be negative semidefinite in y when u is eliminated with the substitution u = My.
Rewriting the right-hand side of (2.6) as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
...

uN

y1
...

yN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1X11
1 p1X12

1
. . .

. . .

pN X11
N pN X12

N
p1X21

1 p1X22
1

. . .
. . .

pN X21
N pN X22

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
� X(p1X1, . . . , pN XN )

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
...

uN

y1
...

yN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.7)

= yT

[
M
I

]T

X(p1X1, . . . , pN XN )

[
M
I

]
y
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Fig. 2.2 When M is as in (2.9), u = My describes a negative feedback interconnection of two
subsystems where u1 = −y2 and u2 = y1

we obtain the following stability criterion:

Proposition 2.1 If there exist pi > 0, i = 1, . . . , N, such that

[
M
I

]T

X(p1X1, . . . , pN XN )

[
M
I

]
≤ 0 (2.8)

where X(p1X1, . . . , pN XN ) is as defined in (2.7), then x = 0 is stable for the
interconnected system (2.1)–(2.3) and (2.5) is a Lyapunov function.

For memoryless subsystems of the form yi(t) = hi(ui(t))we take the correspond-
ing storage function in (2.5) to be zero.

Asymptotic stability requires additional assumptions, such as strict inequality in
(2.8) accompanied with an argument that x(t) = 0 is the only solution satisfying
hi(xi(t), 0) = 0, i = 1, . . . , N , for all t.

Note that (2.8) is a linear matrix inequality (LMI) and the search for pi > 0
satisfying this inequality can be performedwith convex optimization packages [3, 4].

Below we assume each subsystem is single-input single-output and specialize
the LMI (2.8) to particular types of dissipativity. This allows us to derive analytical
feasibility conditions for special interconnection matrices M. Of particular interest
is

M =
[
0 −1
1 0

]
(2.9)

which describes the negative feedback loop of two subsystems (Fig. 2.2), commonly
studied in control theory.

2.2 Small Gain Criterion

Suppose each subsystem possesses a finite L2 gain; that is, the supply rate in (2.4) is

Xi =
[

γ 2
i 0
0 −1

]
.
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Defining P � diag(p1, . . . , pN ) and Γ � diag(γ1, . . . , γN ) we get

X(p1X1, . . . , pN XN ) =
[

Γ PΓ 0
0 −P

]

and (2.8) becomes
(Γ M)T P(Γ M) − P ≤ 0. (2.10)

Thus a diagonal matrix P > 0 satisfying this LMI certifies the stability of the
interconnection.

When M is as in (2.9), the LMI (2.10) becomes

[
p2γ 2

2 0
0 p1γ 2

1

]
−

[
p1 0
0 p2

]
≤ 0

which consists of two simultaneous inequalities, p2γ 2
2 ≤ p1 and p1γ 2

1 ≤ p2. We
rewrite them as

γ 2
2 ≤ p1

p2
≤ 1

γ 2
1

and note that such p1 > 0 and p2 > 0 exist if and only if γ 2
2 ≤ 1

γ 2
1
, that is

γ1γ2 ≤ 1. (2.11)

This condition restricts the loop gain in Fig. 2.2 and is known as a “small gain”
criterion.

Note that the derivation above yields the same condition, (2.11), when adapted to
the positive feedback interconnection where

M =
[
0 1
1 0

]
.

This means that the small gain criterion is oblivious to the feedback sign.

2.3 Passivity Theorem

We now specialize Proposition 2.1 to passivity where

Xi =
[

0 1/2
1/2 −εi

]
εi ≥ 0.
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With P � diag(p1, . . . , pN ) and E � diag(ε1, . . . , εN ) we get

X(p1X1, . . . , pN XN ) = 1

2

[
0 P
P −2PE

]

which means that (2.8) is equivalent to

P(M − E) + (M − E)T P ≤ 0 (2.12)

and a diagonal matrix P > 0 satisfying this LMI certifies the stability of the inter-
connected system.

From matrix Hurwitz stability theory, (2.12) with P > 0 implies that all eigenval-
ues of M − E are within the closed left half-plane. Thus, if M − E has an eigenvalue
with a strictly positive real part, there is no P > 0 satisfying (2.12). However, we
cannot confirm the feasibility of (2.12) with a diagonal P > 0 from the eigenval-
ues alone.

Below we exhibit practically important classes of interconnection structures for
which (2.12) admits a diagonal solution P > 0.

2.3.1 Skew Symmetric Interconnections

The stability criterion (2.12) holds trivially with P = I when M is skew symmetric:

M + MT = 0.

There is no restriction on the number or the gains of subsystems, which makes pas-
sivity ideally suited to large-scale systems with a skew symmetric coupling structure.

In Chap.4 we show that this structure arises naturally in distributed control of
vehicle platoons and in Internet congestion control. A simpler example of a skew
symmetric interconnection is the negative feedback interconnection of two subsys-
tems (Fig. 2.2) where M is as in (2.9). The stability of this interconnection with
passive subsystems is a classical result known as the passivity theorem.

2.3.2 Negative Feedback Cyclic Interconnection

To derive another special case of the stability criterion (2.12), we consider a negative
feedback loop of N subsystems where the interconnection matrix is

M =

⎡
⎢⎢⎢⎣

0 · · · 0 δ1
δ2 0 · · · 0
...

. . .
. . .

...

0 · · · δN 0

⎤
⎥⎥⎥⎦ with

N∏
i=1

δi = −1. (2.13)

http://dx.doi.org/10.1007/978-3-319-29928-0_4
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G1 G2 · · · GN
u1 yN

–

Fig. 2.3 A negative feedback cyclic interconnection of N subsystems. In this example M is as in
(2.13) with δ1 = −1, δ2 = · · · = δN = 1

One such interconnection is shown in Fig. 2.3 where δ1 = −1, δ2 = · · · = δN = 1.
We prove in Sect. 7.2 that (2.12) admits a diagonal solution P > 0 for the class

of matrices (2.13) if and only if

N∏
i=1

εi ≥ cosN (π/N). (2.14)

In addition, it was shown in [5] that (2.12) holds with strict inequality if and only if
(2.14) is strict.

For N = 2 the condition (2.14) recovers the classical passivity theorem:
cos(π/2) = 0 and passivity (εi ≥ 0) guarantees stability. For N ≥ 3, cos(π/N) > 0
and (2.14) demands output strict passivity (εi > 0).

To compare (2.14) to the small gain criterion, we recall from Sect. 1.1 that output
strict passivity implies an L2 gain of γi = 1/εi and rewrite (2.14) as

N∏
i=1

γi ≤ secN (π/N) (2.15)

where sec(·) = 1/ cos(·). Unlike the small gain criterion which restricts the feedback
loop gain by one, the “secant condition” (2.15) offers the relaxed bound secN (π/N)

which is equal to 8 when N = 3, and decreases asymptotically to one as N → ∞.
This sharper bound is due to the output strict passivity assumption which restricts
the subsystems further than an L2 gain property.

Example 2.1 Consider the following model for a ring oscillator circuit (Fig. 2.4)
that consists of a feedback loop of three inverters:

τ1
dx1(t)

dt
= −x1(t) − h3(x3(t))

τ2
dx2(t)

dt
= −x2(t) − h1(x1(t)) (2.16)

τ3
dx3(t)

dt
= −x3(t) − h2(x2(t))

where τi = RiCi > 0, i = 1, 2, 3, and xi represent voltages. The functions hi(·)
depend on the inverter characteristics and satisfy

http://dx.doi.org/10.1007/978-3-319-29928-0_7
http://dx.doi.org/10.1007/978-3-319-29928-0_1
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Fig. 2.4 Schematic of a
three-stage ring oscillator
circuit R1 R2 R3

C1 C2 C3

x1 x2 x3

hi(0) = 0, xhi(x) > 0 ∀x 	= 0, (2.17)

as in the commonly used model

hi(x) = αi tanh(βix) αi > 0, βi > 0. (2.18)

We decompose (2.16) into the subsystems

Gi: τi
dxi(t)

dt
= −xi(t) + ui(t) yi(t) = hi(xi(t))

interconnected according to u = My where M ∈ R
3×3 is as in (2.13) with δ1 = δ2 =

δ3 = −1.
Next, we note from (1.14) with f0(x) = −x that the subsystems are output strictly

passive if
εixhi(x) ≤ x2.

This inequality, combined with (2.17), restricts the graph of hi(·) to the sector in
Fig. 1.2 (middle) with slope γi = 1/εi. An example of such a function is (2.18)
where γi = αiβi.

Then, an application of (2.15) with N = 3 shows that the equilibrium of the
interconnection x = 0 is stable when

γ1γ2γ3 ≤ 8 (2.19)

and a weighted sum of storage functions, each constructed as in (1.13), serves as a
Lyapunov function:

V (x) =
3∑

i=1

pi

∫ xi

0
hi(z)dz.

The weights pi > 0 are obtained from the LMI (2.12) which is guaranteed to have a
diagonal solution P > 0 by (2.19). When the inequality (2.19) is strict we conclude
asymptotic stability because (2.12) is negative definite, which means that (2.7) is a
negative definite function of y and, further, yi = hi(xi) = 0 ⇒ xi = 0 by (2.17).

http://dx.doi.org/10.1007/978-3-319-29928-0_1
http://dx.doi.org/10.1007/978-3-319-29928-0_1
http://dx.doi.org/10.1007/978-3-319-29928-0_1


20 2 Stability of Interconnected Systems

Fig. 2.5 Examples of cactus graphs

When τ1 = τ2 = τ3, the secant condition (2.19) is also necessary for stability
[5]. Once the loop gain exceeds 8, the equilibrium loses its stability and a limit cycle
emerges, hence, the term “ring oscillator.”

2.3.3 Extension to Cactus Graphs

To describe a broader interconnection structure that encompasses the cyclic inter-
connection above, we define an incidence graph for M by directing an edge from
vertex j to i if and only if mij 	= 0. This graph is said to be a cactus graph if any pair
of distinct simple cycles1 have at most one common vertex, as in the examples of
Fig. 2.5.

For matrices M with this structure and E � diag(ε1, . . . , εN ) > 0, a procedure
was developed in [6] to determine the range of the entries of M and E for which
a diagonal P > 0 satisfies (2.12) with strict inequality. This procedure assigns the
weight mij/εi to the edge connecting vertex j to i and calculates the gain Γc for each
cycle c = 1, . . . , C by multiplying the weights along the cycle. It then restricts the
cycle gains according to the specific topology of the graph.

When applied to the subclass of cactus graphs where all cycles intersect at one
common vertex as in Fig. 2.5 (right), this procedure yields the condition

C∑
c=1

αcΓc < 1 where αc =
{
1 if Γc > 0
− cosnc(π/nc) if Γc < 0

(2.20)

and nc is the number of edges on cycle c. For a single cycle (C = 1) with negative
gain Γ < 0 and N edges, (2.20) becomes

αΓ = |Γ | cosN (π/N) < 1,

thus recovering the strict form of the secant condition.

1Simple cycles are cycles with no repeated vertices other than the starting and ending vertexes.



2.3 Passivity Theorem 21

Although the feasibility of (2.12) with diagonal P > 0 can be checked numeri-
cally, algebraic conditions like (2.20) that explicitly display the range of feasibility
are beneficial when the parameters exhibit wide uncertainty, as in typical biologi-
cal models. Such conditions further give insight into the interplay between network
structure and stability properties.
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