
Chapter 2
To Begin With: PGD for Poisson Problems

It is one of the first duties of a professor, for example, in any
subject, to exaggerate a litlle both the importance of his subject
and his own importance in it

—G.H. Hardy, 1940

Abstract In this chapter we cover the detailed implementation of PGDmethods for
the simplest problem, the Poisson equation. Detailed code is provided and its results
compared with data available in the bibliography.

2.1 Introduction

To begin with, let us consider one of the simplest problems, the Poisson equation.
This problem was first analyzed in the original publication by Ammar et al. [6], still
when the term PGD had not been coined.

Even if it is of little practical interest (very rarely we are interested in separating
the space coordinates, unless very special cases such as plate and shell geometries
[16] for instance), let us briefly recall the PGDmethod applied to a Poisson problem,
still in two dimensions, for the ease of representation. In it, coordinates x and y have
been separated with an eye towards the full comprehension of themethod. In general,
for non-separable (non parallelepipedic) domains, to separate the physical space is
not possible nor even desirable. If you are, nevertheless forced to do it, maybe you
could be interested in reading the reference [38].

© The Author(s) 2016
E. Cueto et al., Proper Generalized Decompositions, SpringerBriefs
in Applied Sciences and Technology, DOI 10.1007/978-3-319-29994-5_2

7

8 2 To Begin With: PGD for Poisson Problems

2.2 The Poisson Problem

The D-dimensional Poisson equation writes

�u = − f (x1, x2, . . . , xD), (2.1)

where u is a scalar function of (x1, x2, . . . , xD). Although for representation purposes
we will restrict ourselves to the two-dimensional case, we consider here Eq. (2.1),
defined in the domain (x1, x2, . . . , xD) ∈ Ω = (−L ,+L)D with vanishing essential
boundary conditions. The general treatment of non-vanishing boundary conditions
under the PGD framework needs for an special (although straightforward) treatment,
deeply discussed from a practical point of view in [38].We refer the interested reader
to that reference.

Under the basic PGD assumption given by Eq. (1.1), we express the unknown
solution field as a sum of separable functions, i.e.,

u(x1, x2, . . . , xD) =
∞∑

j=1

α j

D∏

k=1

F j
k (xk),

where F j
k is the j th basis function, with unit norm, which only depends on the kth

coordinate.
This a priori infinite sum is then truncated (usually with the help of some error

indicator, see [4, 19, 46, 52]) at a number (n) of approximation functions, i.e.:

u(x1, x2, . . . , xD) ≈
n∑

j=1

α j

D∏

k=1

F j
k (xk). (2.2)

Note that originally, in [6], the separate functions F j
k (which we later refer to

as modes very often) were of unity norm. This is the origin of the α j weight
that accompanies each term j of the sum. While it is not strictly necessary
to employ such unitary functions, the relative decay of the α j weights with
j gives a very intuitive notion on the convergence of the series.

Note also that, in Eq. (2.2) only one-dimensional functions F j
k have been con-

sidered. The method is of course much more general than that, and a combination
of functions defined in arbitrary dimensional spaces can be employed. Also the (in
principle 1D) mesh employed for each function need not be uniform. h-refinements
can be made along each dimension as needed.

The modes F j
k at a given iteration of the method, j , and the α j value need now

to be computed. In the original paper [6] an algorithmwas proposed that proceeded by

http://dx.doi.org/10.1007/978-3-319-29994-5_1

2.2 The Poisson Problem 9

Step 1: Projection of the solution in a discrete basis

If we assume functions F j
k (∀ j ∈ [1, . . . , n]; ∀k ∈ [1, . . . , D]) already known,

coefficients α j can be computed by introducing the approximation of u into the
Galerkin variational formulation associated with Eq. (2.1):

∫

Ω

∇u∗ · ∇udΩ =
∫

Ω

u∗ f dΩ. (2.3)

PGD methods assume a separated representation of both u and u∗:

u(x1, x2, . . . , xD) =
n∑

j=1

α j

D∏

k=1

F j
k (xk), (2.4)

and

u∗(x1, x2, . . . , xD) =
n∑

j=1

α∗
j

D∏

k=1

F j
k (xk).

By introducing both in the weak form of the problem, Eq. (2.3), we arrive at

∫

Ω

∇
⎛

⎝
n∑

j=1

α∗
j

D∏

k=1

F j
k (xk)

⎞

⎠ · ∇
⎛

⎝
n∑

j=1

α j

D∏

k=1

F j
k (xk)

⎞

⎠ dΩ

=
∫

Ω

⎛

⎝
n∑

j=1

α∗
j

D∏

k=1

F j
k (xk)

⎞

⎠ f dΩ (2.5)

We assume also that the source term f (x1, · · · , xD) admits a separated represen-
tation

f (x1, · · · , xD) ≈
m∑

h=1

D∏

k=1

f h
k (xk),

for a sufficiently low number of terms m. If it is not the case, a simple singular value
decomposition would in general suffice, maybe in high dimensions (HOSVD) [38].
PGD could equally be employed to this end, by applying it on the identity operator,
see [28].

Equation (2.5) involves integrals of products involving D different functions,
each one defined in a different coordinate. Let

∏D
k=1 gk(xk) be one of these functions

to be integrated. One of the key ingredients of PGD is that the integral over Ω

can be performed by integrating each function along its definition interval and then
multiplying the D computed integrals according to:

10 2 To Begin With: PGD for Poisson Problems

∫

Ω

D∏

k=1

gk(xk) dΩ =
D∏

k=1

∫ L

−L
gk(xk)dxk .

This constitutes an essential feature of PGD that makes it possible to solve problems
defined in high dimensional spaces.

Since u∗ represents an admissible variation of the solution u, the weights α∗
j are

arbitrary, too (very much like nodal coefficients of admissible variations in FEM).
Thus, Eq. (2.5) allows to compute the n approximation coefficients α j , solving the
resulting linear system of size n × n. This problem is linear and moreover rarely
exceeds the order of some tens of degrees of freedom. Thus, even if the resulting
coefficient matrix is densely populated, the time required for its solution is negligible
with respect to the one required for performing the approximation basis enrichment
(step 3).

Step 2: Checking convergence

From the solution of u at iteration n given by Eq. (2.4) the residual Re related to
Eq. (2.1) can be computed:

Re =
√∫

Ω
(�u + f (x1, . . . , xD))2

u
. (2.6)

By fixing a tolerance Re < ε, the iteration process can be stopped, thus providing
the solution u(x1, . . . , xD).

As per the weak form of the problem, the integral in Eq. (2.6) can be written as
the product of one-dimensional integrals by performing a separated representation
of the square of the residual.

Step 3: Enrichment of the approximation basis

If the stopping criterion has not yet be accomplished, the PGD approximation can
be enriched by adding a new functional product

∏D
k=1 F (n+1)

k (xk). To this end, the
non-linear Galerkin variational formulation related to Eq. (2.1) is then solved:

∫

Ω

∇u∗ · ∇udΩ =
∫

Ω

u∗ f dΩ,

using the approximation of u given by:

u(x1, x2, . . . , xD) =
n∑

j=1

α j

D∏

k=1

F j
k (xk) +

D∏

k=1

Rk(xk).

2.2 The Poisson Problem 11

Identically, the test function has the form

u∗(x1, x2, . . . , xD) = R∗
1(x1)·R2(x2)·. . .·RD(xD)+. . .+R1(x1)·R2(x2)·. . .·R∗

D(xD),

by simply applying the rules of variational calculus.
This leads finally to a non-linear variational problem (note that we seek a product

of functions expressed in a one dimensional finite element basis), whose solution
allows to compute the D sought functions Rk(xk). Functions F (n+1)

k (xk) need finally
to be normalized.

To solve this problem we introduce a discretization of those functions Rk(xk).
Each one of these functions is approximated using a 1D finite element description. If
we assume than pk nodes are used to construct the interpolation of function Rk(xk)

in the interval [−L , L], then the size of the resulting discrete non-linear problem
is

∑k=D
k=1 pk . The price to pay for avoiding a whole mesh in the multidimensional

domain is the solution of a non-linear problem. However, even in high dimensions the
size of the non-linear problems remains moderate and no particular difficulties have
been found in its solution up to hundreds dimensions. Concerning the computation
time, evenwhen the non-linear solver converges quickly, this step consumes themain
part of the global computing time.

Different non-linear solvers have been analyzed: Newton or one based on an alter-
nating directions scheme. In this work the last strategy was retained. Thus, in the
enrichment step, function Rs+1

1 (x1) is updated by assuming known all the others func-
tions (given at the previous iteration of the non-linear solver Rs

2(x2), · · · , Rs
D(xD)).

Then, functions Rs+1
1 (x1), Rs

3(x3), · · · , Rs
D(xD) are assumed known for updating

function Rs+1
2 (x2), and so on until updating the last function Rs+1

D (xD). Now the
convergence is checked by calculating

∑i=D
i=1 Rs+1

i (xi) − Rs
i (xi)

2. If this norm is
small enough we can define the functions F (n+1)

k (xk) by normalizing the functions
R1, R2, . . . , RD and come back to step 1. On the contrary, if this norm is not small
enough, a new iteration of the non-linear solver should be performed by updating
functions Rs+2

i (xi), i = 1, · · · , D and then checking again the convergence. Despite
its simplicity, our experience proves that this strategy is in fact very robust.

We must recall that the technique that we proposed in the papers just referred,
is not a universal strategy able to solve any kind of multidimensional partial differ-
ential equation (PDE). Thus, the efficient application of the technique that we just
described requires the separability of all the fields involved in the model. Obviously,
this separability is not always possible because some functions need a tremendous
number of sums. On the other hand, even when the field is separable (one could
perform this separation by invoking for example the SVD or the multidimensional
SVD) the finite sums decomposition of general multidimensional functions is not
realistic because the amount of memory needed for storing the discrete form of such
functions before applying the multidimensional SVD.

12 2 To Begin With: PGD for Poisson Problems

In many physical models (see for example [6, 25]) a fully separation (consisting
of a sum of products of one-dimensional functions) could not be envisaged from a
practical point of view. Thus, a better approximation lies in writing

u(x1, · · · , xd) ≈
i=N∑

i=1

Fi
1(x1) × · · · × Fi

D(xd)

where the different functions taking part in the finite sums decomposition are defined
in spaces of moderate dimensions, that is xi ∈ Ωi ⊂ R

qi , where usually qi = 1, 2
or 3.

2.3 Matrix Structure of the Problem

The approximation to u given by Eq. (2.4) can indeed be further simplified by
assuming

u(x1, x2, . . . , xD) =
n∑

j=1

D∏

k=1

F j
k (xk), (2.7)

i.e., there is no need to assume unit-normed functions and a weighting parameter α j

in the approximations of u. This was the initial approach followed in [6, 7], but we
soon realized that it is equally possible to compute directly functions Fk without the
need to enforce its unity norm, nor the projection stage of the algorithm presented
before.

Consider, for simplicity, a two-dimensional code, although its extension to an
arbitrary number of dimensions is strightforward. In it, functions Fi (we are going
to rename them now by their two-dimensional counterparts Fi (x) and Gi (y)) are
approximated by employing (linear in this case) finite elements, so that, at iteration n,
the i-th sum of the approximation will be given by

ui (x, y) = [
NT Fi MT Gi

]
, (2.8)

with N and M the vectors containing the values of finite element shape functions
at integration points and Fi and Gi the vectors of nodal values at the FE mesh for
the functions Fi (x) and Gi (y), respectively. In the code included below we assume
identical approximation along x and y directions so that only a matrix N = M will
be necessary.

The same is necessary for the computation of the gradient terms arising in
Eq. (2.3),

[
∂u

∂x

∂u

∂y

]T

=
[

d NT F1MT G1 d NT F2MT G2 . . . d NT Fn MT Gn

NT F1d MT G1 NT F2d MT G2 . . . NT Fnd MT Gn

]
,

2.3 Matrix Structure of the Problem 13

where d N and d M represent the vector containing the value of shape function’s
derivatives at Gauss points. A similar expression can be envisaged both for u∗ and
∇u∗, while in this case the nodal values of functions F∗

i and G∗
i are arbitrary, as it is

well known from standard finite element theories.
When we look for a new term in the approximation, we assume that

u(x, y) =
n∑

i=1

Fi (x)Gi (y) + R(x)S(y), (2.9)

while
u∗(x, y) = R∗(x)S(y) + R(x)S∗(y).

The new, enhanced, expression of the gradients will be

[
∂u

∂x

∂u

∂y

]T

=
∑

i

[
d NT Fi MT Gi

NT Fi d MT Gi

]
+

[
MT Sd NT 0

0 NT Rd MT

] [
R
S

]

=
∑

i

Di + E
[

R
S

]
,

and, similarly,

u∗(x, y) = [
RT ST

] [
ST M N
RT N M

]
.

The same must be done for
[
∂u∗

∂x

∂u∗

∂y

]
= [

R∗T S∗T
] [

ST Md N ST d M N
RT d N M RT Nd M

]
= [

R∗T S∗T
]

FT ,

and for the source term, by assuming that

f (x, y) ≈
∑

h

ah(x)bh(y).

Once all this matrices have been substituted into the weak form of the problem,
Eq. (2.3) ,we arrive at

∫

Ω

[
R∗T S∗T

] ∑

i

FT Di dΩ +
∫

Ω

[
R∗T S∗T

]
FT E

[
RT

ST

]
dΩ

=
∑

h

∫

Ω

[
R∗T S∗T

] [
ST Mbh(y)Nah(x)

RT Nah(x)Mbh(y)

]
dΩ.

(2.10)

14 2 To Begin With: PGD for Poisson Problems

These integrals in Ω can in fact be separated (since every term is) into a sequence
of integrals along x and y coordinates. The resulting terms for matrices FT Di and
FT E will involve a repeated evaluation of four terms, namely,

∫ x=+L

x=−L
d Nd NT dx and

∫ y=+L

y=−L
d Md MT dy (2.11)

and ∫ x=+L

x=−L
N NT dx and

∫ y=+L

y=−L
M MT dy, (2.12)

which are referred to as p1 and p2, respectively, in routine elemstiff (see the
call [Km{i1},Mm{i1}] = elemstiff(coor{i1}) in the main file of the
code). The code below in fact assumes that N = M, since equal partitions are made
along x and y directions. For instance, the term 11 of the integration of matrix FT E
has the form,

∫

Ω

(FT E)11dΩ =
(∫ x=+L

x=−L
d Nd NT dx

)
ST

(∫ y=+L

y=−L
M MT dy

)
S. (2.13)

Similarly, the right-hand-side term in Eq. (2.10) has the form,

m∑

h=1

⎡

⎣
ST

(∫ y=+L
y=−L Mbh(y)dy

) (∫ x=+L
x=−L Nah(x)dx

)

RT
(∫ x=+L

x=−L Nah(x)dx
) (∫ y=+L

y=−L Mbh(y)dy
)

⎤

⎦ . (2.14)

The problem, finally, renders Eq. (2.3) in a matrix form that can be simplified,
after invoking the arbitrariness of R∗T and S∗T , to

V 1(R, S) + K (R, S)

[
R
S

]
= V 2(R, S),

which is more easily recognized if we write it in the form

K (R, S)

[
R
S

]
= V 2(R, S) − V 1(R, S) = V (R, S). (2.15)

It is important to note that the problem in Eq. (2.15) is non-linear, since we look
for functions R and S, but both appear multiplied to each other in Eq. (2.9). You
can choose your favorite linearization procedure (Newton methods, for instance). In
our experience, fixed-point, alternated directions algorithms render excellent results
and, despite their general lack of convergence, this is rarely found in practice.

2.4 Matlab Code for the Poisson Problem 15

2.4 Matlab Code for the Poisson Problem

The code main file is called main.m, of course! Its content is reproduced below.

%

% PGD Code for Poisson problems

% D. Gonzalez , I. Alfaro , E. Cueto

% Universidad de Zaragoza

% AMB -I3A Dec 2015

%

clear all; close all; clc;

%

% VARIABLES

%

ndim = 2; nn = 40.* ones(ndim ,1); % # of Dimensions , # of Elements

num_max_iter = 15; % Max. # of summands for the approach

TOL = 1.0E-4; npg = 2; % Tolerance , Gauss Points

coor = cell(ndim ,1); % Coordinates in each direction

L0 = -1.*ones(ndim ,1);

L1 = ones(ndim ,1); % Geometry (min ,max coordinates)

for i1=1:ndim ,

coor{i1} = linspace(L0(i1),L1(i1),nn(i1));

end

%

% ALLOCATION OF IMPORTANT MATRICES

%

Km = cell(ndim ,1); % "Stiffness" matrix \int dN dN dx, Eq. (2.10)

Fv = cell(ndim ,1); % R and S sought enrichment functions

Mm = cell(ndim ,1); % "Mass" matrix \int N N dx, Eq. (2.11)

V = cell(ndim ,1); % Source term in separated form

%

% COMPUTING STIFFNESS AND MASS MATRICES ALONG EACH DIRECTION

%

for i1=1:ndim ,

[Km{i1},Mm{i1}] = elemstiff(coor{i1});

end

%

% SOURCE TERM IN SEPARATED FORM

%

% Let us begin by a separable expression. Evaluation of Eq. (2.13)

Ch{1,1} = @(x) cos(2*pi*x); Ch{2,1} = @(y) sin(2*pi*y);

% Try this new source term by yourself by simply uncommenting next 2 lines!

% Ch{1,1} = @(x) x.*x; Ch{1,2} = @(x) -1.0+0.0*x;

% Ch{2,1} = @(y) 1.0+0.0*y; Ch{2,2} = @(y) y.*y;

for j1=1: ndim

for k1=1: size(Ch ,2)

V{j1}(:,k1) = Ch{j1,k1}(coor{j1});

end

% Although in this case we have a closed -form expression for the source

% term , in general we know its nodal values.

V{j1} = Mm{j1}*V{j1};

end

%

% BOUNDARY CONDITIONS

%

CC = cell(ndim ,1);

for i1=1:ndim ,

IndBcnode{i1} = [1 numel(coor{i1})];

end

for i1=1:ndim ,

CC{i1} = setxor(IndBcnode{i1},[1: numel(coor{i1})])’;

end

%

% ENRICHMENT OF THE APPROXIMATION , LOOKING FOR R AND S

%

16 2 To Begin With: PGD for Poisson Problems

num_iter = 0; iter = zeros (1); Aprt = 0; Error_iter = 1.0;

while Error_iter >TOL && num_iter <num_max_iter

num_iter = num_iter + 1; R0 = cell(ndim ,1);

for i1=1: ndim

% Initial guess for R and S.

% It works equally well by choosing something random.

R0{i1} = ones(numel(coor{i1}),1);

% We impose that initial guess for functions R and S verify

% homogeneous essential boundary conditions.

R0{i1}(IndBcnode{i1}) = 0;

end

%

% ENRICHMENT STEP

%

[R,iter(num_iter)] = enrichment(Km,Mm,V,num_iter ,Fv,R0,CC,TOL);

for i1=1:ndim , Fv{i1}(:, num_iter) = R{i1}; end % R (S) is valid , add it

%

% STOPPING CRITERION

%

Error_iter = 1.0;

% One possible criterion is to stop when the norm of the new sum is

% negligible wrt the pair of functions with the maximum norm

for i1=1:ndim , Error_iter = Error_iter .*norm(Fv{i1}(:, num_iter)); end

Aprt = max(Aprt ,sqrt(Error_iter));

Error_iter = sqrt(Error_iter)/Aprt;

fprintf(1,’%dst summand in %d iterations with a weight of %f\n’ ,...

num_iter ,iter(num_iter),sqrt(Error_iter));

end

num_iter = num_iter - 1;% the last sum was negligible , we discard it.

fprintf(1,’PGD Process exited normally\n\n’);

save(’WorkSpacePGD_Basic.mat’);

%

% POST -PROCESSING

%

for i1=1: ndim

figure;

plot(coor{i1},Fv{i1}(:,1: num_iter));

end

figure;

if ndim ==2

surf(coor{1},coor{2},Fv{2}*Fv{1}’);

end

The source code reproduce before includes a call to a function calledelemstiff
that, obviously, provideswith the stiffnessmatrix for each 1D element in the problem.
It is reproduced below:

function [p1,p2] = elemstiff(coor)

% function [p1,p2] = elemstiff(coor)

% For the coordinates coor , obtains p1 (Stiffness) and p2(Mass) matrices

% Universidad de Zaragoza - 2015

nen = numel(coor); p1 = zeros(nen); p2 = zeros(nen); % p3 = zeros(nen ,1);

X = coor (1:nen -1)’; % Left coordinate of the elements

Y = coor (2:nen)’; % Right coordinate of the elements

L = Y - X; % Length of the elements

sg = [-0.57735027 , 0.57735027]; wg = [1, 1]; % Gauss and weight points

npg = numel(sg);

for i1=1:nen -1

c = zeros(1,npg);

N = zeros(nen ,npg);

dN = zeros(nen ,npg);

c(1,:) = 0.5.*(1.0 - sg).*X(i1) + 0.5.*(1.0+ sg).*Y(i1);

N(i1+1,:) = (c(1,:)-X(i1))./L(i1);

N(i1 ,:) = (Y(i1)-c(1 ,:))./L(i1);

2.4 Matlab Code for the Poisson Problem 17

dN(i1+1,:) = ones(1,npg)./L(i1);

dN(i1 ,:) = -dN(i1+1,:);

for j1=1:npg

p1 = p1 + dN(:,j1)*dN(:,j1) ’*0.5.*wg(j1).*L(i1); % dNůdN

p2 = p2 + N(:,j1)*N(:,j1) ’.*0.5.*wg(j1).*L(i1); % NůN

end

end

return

Once the sequence of 1D problems has lead us to a new term in the PGD approx-
imation, we check if it is enough for the prescribed accuracy. If not, we add a new
couple of functions in the enrichment function:

function [R,iter] = enrichment(K,M,V,num_iter ,FV,R,CC,TOL)

% function [R,iter] = enrichment(K,M,V,num_iter ,FV,R,CC,TOL)

% Compute a new sumand by fixed -point algorithm using PGD

% Universidad de Zaragoza , 2015

iter = 1;

mxit = 25; % # of possible iterations for the fixed point algorithm

error = 1.0e8; % Initialization

ndim = size(FV ,1); % Number of Variables

%

% FIXED POINT ALGORITHM

%

while abs(error)>TOL

Raux = R; % Remember: R is a cell containing both R and S

for i1=1: ndim % Alternating between R and S

matrix = zeros(numel(R{i1})); % K matrix in Eq. (2.14)

source = zeros(size(R{i1},1),1);% V2-V1 in Eq. (2.14)

%

% COMPUTING K MATRIX Eq (2.14)

%

for i2=1: ndim % Products in sum = ndim (2 in this case)

FTE = 1.0; % Computing F^T E in Eq. (2.8)

% Remember: K = \int dN dN dx and M = \int N N dx

for i3=1: ndim

if i3==i2

if i3==i1

FTE = FTE.*K{i3};

else

FTE = FTE.*(R{i3}’*K{i3}*R{i3});

end

else

if i3==i1

FTE = FTE.*M{i3};

else

FTE = FTE.*(R{i3}’*M{i3}*R{i3});

end

end

end

matrix = matrix + FTE;

end

%

% COMPUTING V2 in Eq. (2.14)

%

for j1=1: size(V{i1},2) % Number functions of the source

V2 = 1.0;

for i2=1: ndim

if i2==i1

V2 = V2.*V{i2}(:,j1);

else

V2 = V2.*(R{i2}’*V{i2}(:,j1));

end

end

source = source + V2;

18 2 To Begin With: PGD for Poisson Problems

end

%

% COMPUTING V1 in Eq. (2.14)

%

for j1=1: num_iter -1

for i2=1: ndim % Terms in sum

FTD = 1.0; % COMPUTING F^T D in Eq. (2.9)

for i3=1: ndim

if i3==i2

if i3==i1

FTD = FTD.*(K{i3}*FV{i3}(:,j1));

else

FTD = FTD.*(R{i3}’*K{i3}*FV{i3}(:,j1));

end

else

if i3==i1

FTD = FTD.*(M{i3}*FV{i3}(:,j1));

else

FTD = FTD.*(R{i3}’*M{i3}*FV{i3}(:,j1));

end

end

end

source = source - FTD; % Note that source = V2-V1

end

end

%

% SOLVE Eq. (2.14) FOR EACH DIRECTION

%

R{i1}(CC{i1}) = matrix(CC{i1},CC{i1})\ source(CC{i1});

% We normalize S. R takes care of the alpha constant in Eq. (2.2)

if i1~=1, R{i1} = R{i1}./ norm(R{i1}); end

end

% If two successive Rs are too similar , we stop

error = 0;

for j1=1: ndim

error = error + norm(Raux{j1}-R{j1});

end

error = sqrt(error);

iter = iter + 1;

if iter == mxit % If we reach the max # of iterations , we exit

return;

end

end

return

After executing this code in your own Matlab client, it provides you with the
following figures. In Fig. 2.1 the obtained solution for the Poisson problem is show.
Since the source term cos(2πx) sin(2πy) is separable, the code provides the solution
with one only term in the PGD sum. Of course, this is not always the case (indeed, it
is almost never the case!). The two functions obtained whose multiplication gives the
bi-dimensional solution are plotted in Fig. 2.2. Actually, both resemble very much to
(the finite element approximation of) the cos and sin functions, respectively.

2.4 Matlab Code for the Poisson Problem 19

1
0.5

0
-0.5

-1-1
-0.5

0
0.5

-0.02

-0.01

0

0.01

0.02

1

Fig. 2.1 Solution to the poisson problem, as given by the PGD code

-1 -0.5 0 0.5 1
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

-1 -0.5 0 0.5 1
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Fig. 2.2 Solution to the poisson problem. Single modes encountered in the x-direction (top) and
y-direction (bottom)

http://www.springer.com/978-3-319-29993-8

	2 To Begin With: PGD for Poisson Problems
	2.1 Introduction
	2.2 The Poisson Problem
	2.3 Matrix Structure of the Problem
	2.4 Matlab Code for the Poisson Problem

