
Filtered Model-Driven Product Line Engineering
with SuperMod: The Home Automation Case

Felix Schwägerl(B), Thomas Buchmann, and Bernhard Westfechtel

Applied Computer Science I, University of Bayreuth, 95440 Bayreuth, Germany
{felix.schwaegerl,thomas.buchmann,

bernhard.westfechtel}@uni-bayreuth.de

Abstract. Software Product Line Engineering promises to increase the
productivity of software development. In the literature, a plan-driven
process has been established that is divided up into domain and appli-
cation engineering. We argue that the strictly sequential order of its
process activities implies several disadvantages such as increased com-
plexity, late customer feedback, and duplicate maintenance. SuperMod
is a novel model-driven tool based upon a filtered editing model oriented
towards version control. The tool provides integrated support for domain
and application engineering, offering an iterative and incremental style
of development. In this paper, we apply SuperMod to a well-known case
study, the Home Automation System product line. We learn that the
tool supports a broad variety of iterative and incremental development
processes, ranging from phase-structured to feature-driven. Furthermore,
it can mitigate the disadvantages of the traditional software product line
development process.

Keywords: Software product line engineering · Software development
process · Filtered editing · Model-driven engineering · Home automation
example

1 Introduction

Software Product Line Engineering (SPLE ) aims at systematic development of a
family of software products by exploiting the variability among members thereof
[1]. Core assets of different products are provided as the platform. Common-
alities and differences among products are captured in feature models [2]. In
the literature [3], a two-stage SPLE process is proposed (cf. Fig. 1): (1) During
domain engineering (DE ), platform and variability model are defined. A map-
ping, e.g., presence conditions [4], specifies which part of the platform realizes
which feature(s). (2) In application engineering (AE ), variability is resolved by
specification of a feature configuration, and a product with the desired features
is derived in a preferably automated way. For the definition of the platform, two
distinct approaches exist: Using positive variability, a common core is defined to
which specific features may be added. Negative variability proposes to specify

c© Springer International Publishing Switzerland 2016
P. Lorenz et al. (Eds.): ICSOFT 2015, CCIS 586, pp. 19–41, 2016.
DOI: 10.1007/978-3-319-30142-6 2



20 F. Schwägerl et al.

Fig. 1. The two-stage SPLE process as defined in the literature [3].

the platform as superimposition of product variants, from which elements must
be removed to obtain a specific product.

Version Control (VC ) has become indispensable for software engineers to
control software evolution and to coordinate changes among a team. Version
control systems (VCS ) such as Git [5] or Subversion [6] provide an iterative
three-stage editing model, which is shown in Fig. 2: (1) A developer checks out a
specific revision of a software project from a repository. A copy of the project is
created in the local workspace. (2) In the workspace, the developer modifies the
project by implementing new functionality or by fixing bugs. (3) To make these
modifications persistent and available to others, the developer commits his/her
changes to the repository as a new revision.

Model-Driven Software Engineering (MDSE ) [7] considers models as first-
class artifacts, using well-defined languages such as the Unified Modeling Lan-
guage (UML) [8]. Many model-driven applications are built upon the Eclipse
Modeling Framework (EMF) [9]. The combination of MDSE with VC or SPLE is
subject to many research activities, resulting in the integrating disciplines Model
Version Control [10] and Model-Driven Product Line Engineering (MDPLE )
[11], which improve tool support by raising the abstraction level of the artifacts
subject to version control or variability.

Previous Work. In [12], we have elaborated a conceptual framework for the
integration of SPLE and VC based on MDSE. The framework addresses the

Fig. 2. The iterative three-stage editing model proposed by version control systems
[5,6].



Filtered Model-Driven Product Line Engineering with SuperMod 21

Fig. 3. Detailed phases of the traditional SPLE process as defined in the literature [3].

incremental development of a SPL in a single-version workspace using a filtered
editing model that fully automates variability management. In addition to a revi-
sion graph, which describes evolution, a feature model and feature configurations
are used to express logical variability. In [13], we have presented SuperMod, a
model-driven tool that realizes the conceptual framework, allowing to develop a
software product line in a single-version workspace step by step using the familiar
version control metaphors update, modify, and commit.

Contribution. The current paper explores the development processes under-
lying existing SPLE tools relying on unfiltered editing on the one hand, and
the impact of SuperMod’s filtered editing model on development processes on
the other hand. We apply SuperMod to a well-known SPLE example, the Home
Automation System (HAS ) product line [3], illustrating the following key obser-
vations:

– Using a filtered editing model, product lines may be developed in an iterative
and incremental way, relaxing the strictly sequential order of DE and AE.

– By applying all changes representatively within one product variant, complex-
ity is reduced when compared to multi-variant editing.

– Tool support for DE and AE is integrated, allowing to postpone the decision
whether a change is product-specific or in the scope of multiple products until
commit.

– The adaptation of the VCS-oriented editing model allows to propagate
product-specific changes back to the product line.

– SuperMod is flexible with respect to the used SPLE process, ranging between
phase-structured and feature-driven domain engineering.

Roadmap. Section 2 is dedicated to SPLE processes. Section 3 sketches the
tool SuperMod used to carry out the HAS case study in Sect. 4. Related work
is outlined in Sect. 5. Finally, in Sect. 6, open questions are discussed, before the
paper is concluded.



22 F. Schwägerl et al.

2 Software Product Line Development Processes

2.1 The Traditional SPLE Process

The de-facto standard SPLE process has been sketched in the introduction.
Figure 3 shows both sub-processes, domain and application engineering, being
equally structured by the typical software development activities analysis, design,
implementation, and testing. Prior to DE stands an additional activity, product
management, where the scope of the product line is planned, including econom-
ical considerations. AE is applied repeatedly for each product; in the traditional
SPLE process, it strictly follows DE and re-uses artifacts developed there, i.e.,
the outcomes of domain analysis, design, implementation, and testing. The sub-
process terminates with the deployment of particular products.

The benefits of SPLE are obvious: Rather than developing products from
scratch, they may be configured and refined based upon an existing platform.
The more products are contained in the product line, the higher the return of
investment will be. However, we argue that the traditional SPLE process suffers
from a couple of disadvantages:

1. Necessity of Additional Tools. To manifest the captured variability in
the platform, the toolchain must be extended by mapping tools in the case
of negative variability, or composers or transformation languages in the case
of positive variability. Obviously, additional tools require additional training
effort and imply new sources of error. In the case of MDSE, tools need to
be generic with respect to the used modeling language, which immediately
leads to undesirable compromises concerning, e.g., the representation of model
elements in concrete syntax.

2. Complexity of the Multi-variant Platform. Domain engineering requires
the developers to keep track of all artifacts of the SPL. This raises complex-
ity particularly concerning the implementation of variation points. Assuming
that designing a good architecture is already a challenge for single system
development, domain design and implementation become even more complex
and error-prone. In many MDSE approaches, multi-variant models are con-
strained with single-version rules.

3. Duplicate Maintenance. Many tools, particularly in the context of
MDPLE, aim at fully automated AE by reducing it to a simple configuration
step. Frequently, product maintenance causes duplicate maintenance effort.
For instance, a bug report may be at first glance specific to a single product,
but then become relevant to different members of the product line. Techni-
cally, the problem is caused by the automated configuration of products being
a one-way road. Round-trip support between DE and AE is urgently required.

2.2 Iterative and Incremental Software Product Line Engineering

Iterative SPLE. In analogy to the waterfall model for single-system develop-
ment, the traditionally applied sequential SPLE process has soon been extended



Filtered Model-Driven Product Line Engineering with SuperMod 23

Fig. 4. Phase-structured domain engineering. The identifiers fi refer to different fea-
tures and their connected realization artifacts in the platform.

by feedback loops and iterations, making SPLE more flexible. Gomaa’s double
spiral development model [11] allows for alternations between the activities of
DE and AE, which are executed in intertwined spirals. Similarly, Clements and
Northrop [1] define an iterative SPLE process consisting of three main activi-
ties, namely Core Asset Development, Product Development, and Management,
which coarsely correspond to DE, AE, and product management, respectively.
It is assumed that all three activities are performed in parallel, evolving both
the platform and individual products continuously.

Iterative SPLE still assumes that DE is performed in a strictly sequen-
tial way as shown in Fig. 4. In the beginning of each iteration, during domain
analysis, several features are introduced. These features are further designed,
implemented, and tested during the subsequent activities. This implies a phase-
structured domain engineering process, which typically consists of long-running
iterations that have to be planned extensively in advance.

Phase-structured SPLE processes allow to maintain an overview of the over-
all product line, easing architectural decisions necessary to anticipate variation
points. For this purpose, multi-version editing tools are employed, e.g., preproces-
sor languages [14] in source-code centric approaches and mapping tools [15,16]
in MDPLE.

Incremental SPLE. Feature-Oriented Software Development (FOSD) sum-
marizes a plethora of different techniques and paradigms for the development of
variational software in general, and SPL in particular [17]. In the sub-discipline
Stepwise and Incremental Software Development (SISD) [18], features are
described as refinements or layers of an existing software system and consecu-
tively added to the platform as separate increments. The implied feature-driven
and incremental realization of domain engineering is sketched in Fig. 5 as a coun-
terpart to the phase-structured way. By introducing one feature at a time, this
results in comparatively short-running iterations.

In the FOSD context, feature-driven development is preferred over phase-
structured approaches. Rather than focusing on multi-variant architectural deci-
sions and explicitly modeling variation points, product changes associated with



24 F. Schwägerl et al.

a specific features are described in a preferably fine-granular way, e.g., by using
composition [19,20] or aspect-oriented techniques [21].

2.3 SPLE Processes with SuperMod

During the transition from phase-structured to feature-driven SPLE, the per-
formed iterations become smaller. Accordingly, the distinction between domain
engineering and application engineering is blurred. The tool SuperMod presented
in Sect. 3 provides a filtered editing model, which makes multi-variant artifacts
transparent to the SPL engineer by uniformly supporting DE and AE. An incre-
ment is performed representatively in a particular product variant and then prop-
agated to the platform. Increments correspond to change sets, each referring to
a partial feature configuration, which may be developed over multiple iterations.
SuperMod is compatible with SPLE processes ranging between phase-structured
and feature-driven. The disadvantages of the traditional process listed in Sect. 2.1
are addressed as follows:

1. Familiar VCS and SPL Metaphors. SuperMod is added to the toolchain
as a new tool, implying the aforementioned difficulties. However, SuperMod’s
user interface relies on familiar concepts such as version control metaphors
(check-out and commit) and established SPL abstractions (feature models
and configurations).

2. Filtered Editing. Changes are generally performed on single-variant prod-
ucts, which eases architectural decisions. Variation points are created auto-
matically and transparently. In the case of MDPLE, the variability of the
invisible multi-variant model is unconstrained.

3. Automatic Propagation of Changes. After having finished an iteration,
the performed changes are propagated to the platform automatically, remov-
ing the necessity of duplicate maintenance. In SuperMod, there is technically
no distinction between DE and AE. Only at commit time, the user must
decide whether a change is product-specific or global.

Fig. 5. Feature-driven domain engineering.



Filtered Model-Driven Product Line Engineering with SuperMod 25

3 The Tool SuperMod

This section briefly describes SuperMod [13], a model-driven tool that allows to
develop software product lines in an iterative and incremental way as proposed
in the previous section. First, we explain theoretical foundations of the tool.
Thereafter, SuperMod’s architecture and editing model are sketched and the
operations check-out, modify, and commit are redefined. The tool is available
for evaluation as Eclipse plug-in (see installation instructions at the end of this
paper). Currently, SuperMod is restricted to single-user operation; support for
team collaboration is scheduled for future releases.

3.1 Underlying Principles

SuperMod realizes the conceptual framework presented in [12], which integrates
MDSE, SPLE, and VC. The framework in turn specializes the uniform version
model [22], adding higher-level representations for both the version space (i.e.,
feature models and revision graphs) and the product space (i.e., EMF models).
Below, the core concepts of UVM and its extensions are described informally.

– Options: An option is a temporal or logical property of a software system,
which may or may not be included in a specific product version. In SuperMod,
two kinds of options exist: revision options and feature options.

– Choices: A choice denotes a single valid version by assigning a selection
(selected or deselected) to each of the existing options. Choices are used as
read filters, i.e., they describe product versions available in the workspace.

– Ambitions: An ambition denotes a set of versions as a subset of all valid
versions. Ambitions are used as write filters in order to delineate the scope
of a product change performed in the workspace. In contrast to a choice, an
ambition may contain unbound options, to which the change is immaterial.

– Version Rules: The set of available choices and ambitions is constrained by
a set of version rules, logical expressions over the option set. Version rules are
used, e.g., in order to implement constraints such as mutual exclusion imposed
by feature models, or to designate subsequent revisions.

– Visibilities: A visibility is a logical expression over the option set, which is
attached to an element of the feature or domain model. In order to test an
element’s presence in a specific version, the bindings specified by the respective
choice are applied. Visibilities are modified automatically during the operation
commit.

3.2 Tool Architecture and Editing Model

Both the architecture and the editing model of SuperMod are inspired by distrib-
uted VCS [5]. The traditional VCS architecture is extended as follows: Firstly,
the feature model is an additional artifact varying along the temporal dimension.
Secondly, the domain model varies along two dimensions, the revision graph and
the feature model. Figure 6 illustrates the remarks below.



26 F. Schwägerl et al.

Fig. 6. SuperMod tool architecture and editing model.

Repository. A repository is a persistent storage transparently linked to a
software project under VC. Developers communicate with it by means of the
metaphors check-out and commit. A SuperMod repository consists of three
layers.

– The revision graph is a directed acyclic graph that describes the temporal his-
tory of a SuperMod project. The graph is extended automatically each time a
new revision has been committed. For each revision, a revision option is intro-
duced transparently together with a version rule that realizes the relationship
to the predecessor revision.

– The multi-version feature model plays a dual role: Firstly, its evolution is
controlled by the revision graph. Secondly, each feature is mapped to a feature
option, such that the feature model provides an additional version model.
Feature model constraints are mapped to version rules transparently [12].

– The multi-version domain model describes the superimposition of the ver-
sioned project. Although the term “domain model” is used here, the project
may comprise a file hierarchy containing model or non-model resources.
Within the visibilities of domain model elements, both revision and feature
options may occur.

Workspace. A SuperMod workspace contains the currently selected version of
the domain model in its single-version representation. EMF models are repre-
sented as instances of their custom Ecore-based metamodel(s). Plain text and
XML files are made available in their ordinary format, allowing SuperMod users
to utilize their preferred single-version editing tools. During the sub-process mod-
ify, they may also edit the feature model, e.g., by introducing new features or
relationships.



Filtered Model-Driven Product Line Engineering with SuperMod 27

Version Specification. A version in the temporal dimension corresponds to a
single revision. As mentioned above, feature configurations specify choices and
ambitions in the logical dimension. When referring to an iterative and incre-
mental development process (cf. Sect. 2.2), version specification happens in the
beginning and at the end of each iteration. A feature configuration is specified
on the current revision of the feature model. When provided as an ambition,
the feature configuration may be partial1 and typically binds only few features,
in many cases only one feature. The effective choice/ambition is formed during
check-out/commit as conjunction of the temporal and logical component.

3.3 Check-Out, Modify, and Commit

In the following, the operations update, modify, and commit known from VCS
are redefined on top of SuperMod’s architecture and editing model (cf. Fig. 6).

Check-Out. Like in ordinary VCS, the operation check-out is provided to select
a specific version (the choice) from the repository, which is then copied to the
workspace:

– The user selects a revision as the temporal component of the choice. The
feature model is filtered by the revision, and made available for modification
in the workspace.

– The user specifies a completely bound feature configuration, which forms the
logical component of the choice. The effective choice is recorded persistently.

– The domain model is filtered by the effective choice and exported into the
local workspace. The export transformation translates multi-version resources
into their specific single-version representation, e.g., plain text or XMI files.

– The filtered and exported contents are made available in the workspace.

Modify. The user may modify both the filtered feature model and the filtered
domain model within the workspace. For domain model resources, arbitrary
editors may be used. For the feature model, the command Edit Version Space is
offered, which delegates to a specific model editor for the current feature model
revision.

Commit. The operation commit, the counterpart to check-out, propagates
changes performed in the workspace to the repository under a user-specified
scope (the ambition):

1 Our notion of partial feature configuration only implies that there exist unbound
features. This differs from the concept of staged configurations (as introduced, e.g., in
[4]), which need to be specified in a top-down way, introducing parent-child selection
constraints.



28 F. Schwägerl et al.

– A new revision is created as the successor of the revision specified for the
choice and selected in the temporal component of the ambition. Within the
given revision of the feature model, the logical component of the ambition is
user-specified as a partial feature configuration. For consistency, it is required
that the set of versions described by the effective ambition include the recorded
choice.

– The original state of the workspace version is temporarily restored by applying
the recorded choice to the repository. The new state is generated by importing
(the inverse of export) the current workspace into its multi-version represen-
tation.

– Differences are computed between the original and the new workspace state.
– Inserted elements are copied into the repository.
– The visibilities of inserted/deleted feature model elements are updated auto-

matically by adding/subtracting the temporal component of the ambition
to/from the existing visibility.

– In analogy, the visibilities of inserted/deleted domain model elements are
updated by adding/subtracting the effective ambition.

4 The Home Automation Case Study

We apply the tool SuperMod presented in Sect. 3 to the standard example of a
product line for Home Automation Systems from [3]. The example is divided up
into a phase-structured and a feature-driven part. First, the activities analysis
(Sect. 4.1), design (Sect. 4.2), and implementation (Sect. 4.3) are executed, realiz-
ing an initial DE iteration. During implementation, a command-line application
is developed based on the generated source code. Due to space restrictions, the
activity testing has been omitted. In the second part, we transition into feature-
driven DE, extending the product line by a new feature ensuing from a customer
request (Sect. 4.4). Last, we present our observations and refer back to the SPLE
processes from Sect. 2.

For analysis and design, we rely on UML use case, activity, package, and class
diagrams [8], using the GMF2-based UML modeling tool Valkyrie [23] and its
Java code generator. The remarks below are illustrated by screencasts available
on our web pages; please follow the link provided at the end of this paper.

4.1 Requirements Analysis

Requirements analysis is split into two phases. To begin with, residents’ inter-
actions with the HAS are documented in a use case diagram. Subsequently, one
use case is representatively refined by means of an activity diagram.

After having initialized a Valkyrie project and having connected it to Super-
Mod version control, the first phase is started with an empty use case diagram.
In consecutive iterations, we add actors, components, use cases, and relation-
ships as summarized in Table 1. The table also shows that the feature model
2 Graphical Modeling Framework, http://www.eclipse.org/modeling/gmp/.

http://www.eclipse.org/modeling/gmp/


Filtered Model-Driven Product Line Engineering with SuperMod 29

Table 1. Commit history of the use case diagram.

Rev. Ambition Changes to feature model Changes to use case diagram

1 H.A.S. added feature H.A.S. added actor Resident and
component H.A.S.

2 Id.Mech. added feature Id.Mech. added component Id.Mech.,
contained use cases,
includes, and connected
use links

3 DoorLock added feature DoorLock added comp. DoorL., use
cases Lock and Unlock

4 DoorLock — added missing use links for
Lock and Unlock

5 AlarmAct. added feature AlarmActivision added component
AlarmActivision,
contained use cases, and
connected use links

6 SMSTo-Owner added features Ac.Sig., Vid.S.,
PoliceInf., and SMSToOwner

added use case Change
Phone Number

7 Heat.Cont. added feature Heat.Cont. added component Heat.Cont.
and contents

Fig. 7. The use case diagram of the HAS example after revision 7, shown in a variant
that includes all mandatory and optional features available.

is developed simultaneously, introducing new features on demand in order to
delineate the scope of the respective changes. Figure 7 shows a variant of the
final use case diagram.

During the second analysis phase, the feature IdentificationMechanism is fur-
ther refined by adding three concrete mechanisms, namely Keypad, Magnetic-
Card, and FingerprintScanner. These are collected in an OR-group, meaning that
at least one mechanism must be chosen in a valid configuration. In case several
mechanisms are available, one of them must be chosen during identification. The



30 F. Schwägerl et al.

Table 2. Commit history of the activity diagram for Identify.

Rev. Ambition Changes to feature model Changes to activity diagram

8 H.A.S. added XOR groups below
DoorL. and
HeatingCont.

—

9 Id.Mech. — initialized diagram, added initial and
final nodes, Choose Mech.,
decision/merge nodes, and flows

10 Keypad added OR group with
Keypad, Mag.Card,
Fp.Scanner

added action KeypadIdentification and
incoming/outgoing flow

11 Mag.Card — added action M.C.Id. and
incoming/outgoing flow

12 Fp.Scan. — added action Fp.Id. and
incoming/outgoing flow

Fig. 8. The activity diagram of the use case Identify after revision 12, shown in a variant
that includes all sub-features of IdentificationMechanism.

available selection should be restricted by the active features; this is realized in
revisions 10 until 12 shown in Table 2. The resulting activity diagram is shown
in Fig. 8; Fig. 9 shows the refined feature model.

4.2 Design

The static structure of the HAS product line is also developed in two phases.
After modeling an initial package diagram, specific packages are refined by class
diagrams.

Table 3 indicates that the package diagram (see Fig. 10) is developed in an
iterative and incremental way by realizing one feature after another. Variation



Filtered Model-Driven Product Line Engineering with SuperMod 31

Fig. 9. The feature model after revision 12, shown in SuperMod’s feature model editor.
Filled circled denote mandatory features, empty circles optional child features. OR
groups require the selection of at least one, XOR groups of exactly one child feature.

Table 3. Commit history of the package diagram.

Rev. Ambition Changes to package diagram

13 HomeAutomationS. added package has and contained class
HomeAutomationSystem

14 Ident.Mechanism added package identification, class Id.Mech., and
interface IMechanism

15 Keypad added class Keypad

16 MagneticCard added class MagneticCard

17 FingerprintScanner added class FingerprintScanner

18 DoorLock added package doorLock and interface IDoorLock

19 Active added class ActiveLock

20 Passive added class PassiveLock

21 AlarmActivision added package alarm, class AlarmAct., and interface
IAlarmService

22 AcousticSignal added class AcousticSignal

23 VideoSurveillance added class VideoSurveillance

24 PoliceInformation added class PoliceInformation

25 SMSToOwner added class SMSNotifier

26 HeatingControl added package heating and contained interface
IHeatingControl

27 Automatic added class heating::Automatic

28 Manual added class heating::Manual

points are anticipated by sketching the use of appropriate design patterns such
as strategy and command [24], which are subsequently refined by class diagrams.
Here, we refrain from introducing new features during the design phase, although
permitted in general.

As shown in Table 4, the package identification is refined by a class diagram,



32 F. Schwägerl et al.

Fig. 10. The package diagram after revision 28. The shown product variant does not
include features Active and Automatic, thus not classes doorLock::ActiveLock and heat-
ing::Automatic, either.

exemplifying the realization of variation points during design. In revision 29,
general details are added to the class IdentificationMechanism as well as to the
interface IMechanism that realizes the command pattern. Its specific realizations
are added subsequently and scoped with the respective feature. In this example,
the only necessary changes are to make the respective command classes realize
IMechanism (see Fig. 11). In fact, more details could have been added to the
classes here. Furthermore, similar refinements might have been applied to the
packages doorLock, alarm, and heating.

4.3 Implementation

In our model-driven product line, the static part of the source code can be
derived from the artifacts developed in the design phase using Valkyrie’s code
generator. The main class HomeAutomationSystem shall contain the main exe-
cutable as command-line application. Below, we confine the presentation to the

Table 4. Commit history of the class diagram refining package identification.

Rev. Ambition Changes to class diagram for package identification

29 Ident.Mechanism initialized diagram, detailed class Ident.Mech. and
interface IMech.

30 Keypad added interface realization originating from class Keypad

31 MagneticCard added interface realization originating from class
MagneticCard

32 FingerprintScanner added interface realization originating from class
FingerprintScanner



Filtered Model-Driven Product Line Engineering with SuperMod 33

Fig. 11. The class diagram that refines package identification in its state after revi-
sion 32, with features Keypad, MagneticCard, and FingerprintScanner selected.

implementation of the method identify() of class IdentificationMechanism, which
implements the activity diagram from Fig. 8.

Table 5. Overall commit history of the implementation phase.

Rev. Ambition Changes to IdentificationMechanism.java or other source files

33 HomeAutomationS. generated Java source code

34 Ident.Mechanism added multi-variant implementation to method identify() (l. 96 – 101)

35 not Fp.Scanner removed FingerprintScanner.java and line 99

36 not MagneticCard removed MagneticCard.java and line 98

37 not Keypad removed MagneticCard.java and line 97

Variability is achieved by making the declarations and usages of specific
mechanism classes dependent on their respective features. As shown in Table 5
and Listing 1.1, after the initial code generation run in revision 33, negative vari-
ability is simulated: In revision 34, a multi-variant implementation is provided.
We then connect the variable constructor calls and the concrete implementation
classes to their respective features by applying the negative implementation, i.e.,
by removing the corresponding source code file and the statement containing the
constructor call, and by committing against the negation of the respective ambi-
tion3. In order to perform these deletions, it is necessary to switch to a suitable
choice where the respective features are deselected, e.g., the choices presented in
the screencast.

3 Equivalently, we could have applied the positive realization and committed it against
positively bound features; however, this would have required three additional code
generation increments.



34 F. Schwägerl et al.

95 private void identify() {
96 List<IMechanism> mechs = new LinkedList<>();
97 mechs.add(new Keypad());
98 mechs.add(new MagneticCard());
99 mechs.add(new FingerprintScanner());
100 IMechanism mech = (...) // choose interactively
101 return mech.checkIdentification(getIdentifySignature());
102 }

Listing 1.1. Implementation of the method IdentificationMechanism.identify() in revi-
sion 34.

4.4 Handling a New Customer Request

So far, our SPL has been developed in a phase-structured way, following the
classical development activities analysis, design, and implementation. Now, we
demonstrate how SuperMod allows to quickly react to a new customer request
that cross-cuts all three development activities; we realize the increment in one
single iteration.

The customer requests to extend the list of identification mechanisms avail-
able in the HAS product line by a new, biometric mechanism that uses existing
iris scanner hardware and drivers. We check-out the latest revision of the HAS
project, choosing the customer’s product variant, which currently includes all
sub-features of IdentificationMechanism. Then, we handle the request as follows
(due to space restrictions, we cannot present the modified artifacts here; please
refer to the screencasts):

– Analysis: It is obvious that a new feature Biometric must be introduced into
the OR-group below IdentificationMechanism (cf. Fig. 9). The request does not
affect the use cases, but the activity diagram that details the use case Identify
(cf. Fig. 8): We add a new action BiometricIdentification and connect it to the
decision/merge node in analogy to the existing identification actions.

– Design: We add a new class Biometric as well as a realization of the interface
IMechanism to the class diagram shown in Fig. 11. This transparently extends
the package diagram (cf. Fig. 10).

– Implementation: The (incremental) code generation is re-invoked, cre-
ating a new source file Biometric.java. To the implementation of method
IdentificationMechanism.identify() (cf. Listing 1.1), we add the following state-
ment after line 99:

mechs.add(new Biometric());

– Deployment: The current iteration is finalized by committing all pending
changes to the repository under revision 38. As logical ambition, we specify a
partial configuration that selects only the new feature Biometric. Hence, the
performed modifications hold for future variants that include this feature. At
last, the current product variant is deployed to the customer, without the
need for an additional AE run.



Filtered Model-Driven Product Line Engineering with SuperMod 35

Fig. 12. Summary of the HAS example: Iterations and increments performed during
specific development activities, aligned with the temporal (x-axis) and logical dimen-
sion (y-axis).

4.5 Results and Observations

Key Figures. Our example SPL has evolved over a total of 38 iterations,
distributing as follows: 12 iterations for analysis, 20 for design, 5 for the imple-
mentation of a cut-out of the functionality, and one additional iteration for the
new customer request. In total, the product line contains approximately 100
model elements, from which 17 source code files have been derived, the largest
of which contains 137 lines of code. The final feature model contains 17 features,
10 of which are optional. The entire version management has been performed
by specifying 6 choices (cf. screencasts) and 38 ambitions, respectively, during
check-out and commit.

According to the mechanisms described in [12,13], 410 visibilities have been
added to elements, attributes, and links contained in the transparent multi-
variant UML model (not including its graphical representation). Necessarily, the
same number of feature expressions or presence conditions would have to be
manually be specified when using an explicit mapping model in a tool relying
on positive variability, e.g., [15] or [16].

Remarks on SPLE Process and Tools. Figure 12 summarizes the relevant
cut-out of the example. When considering DE as a whole, one could sum up
revisions 1 until 37 as one process iteration, including the DE activities analysis,
design, and implementation. Technically, a multitude of iterations have been
performed using fine-grained check-out/commit cycles in order benefit from



36 F. Schwägerl et al.

SuperMod’s automated variability management and filtered editing model. Note-
worthily, the iterations belonging to each phase are arranged roughly diagonally
when referring to the temporal and logical dimension.

Revision 37 may be considered as an initial major revision of the product line,
after which we transition from phase-structured to feature-driven development
in order to integrate customer feedback more flexibly. The change performed in
revision 38 is realized in the customer’s product variant and then added to the
product line transparently by committing the change against the new feature
Biometric. This way, duplicate maintenance is avoided by the tool-level integra-
tion of DE and AE.

In sum, the example has shown that SuperMod is compatible with both a
phase-structured and a feature-driven style of iterative and incremental SPLE
development. In addition to a reduced version management overhead, the exam-
ple has demonstrated a minimal planning effort when referring to particular
iterations; features are introduced on demand. The advantages of tool indepen-
dence and unconstrained variability discussed in [12] can also be reproduced in
the HAS example.

5 Related Work

This paper continues a series of previous publications on the SuperMod project
and its foundations. In [12], the underlying conceptual framework for the integra-
tion of VC, SPLE and MDSE has been defined. The paper also contains a general
overview of literature concerning the integrating disciplines Model-Driven Prod-
uct Line Engineering [11], Model Version Control [10], and Software Product
Line Evolution [25]. In [13], the tool SuperMod has been presented using the
standard example of a product line for graphs [26]. Additionally, the paper con-
tains a comparative domain analysis of VC and SPLE and aligns SuperMod with
different tools that share VC and SPLE concepts. In this section, we compare
our work to different iterative and/or incremental approaches to SPLE and to
other occurrences of the HAS case study.

The Home Automation System example has been introduced by Pohl et al. [3]
to illustrate different activities of the traditional SPLE process (cf. Fig. 3). The
authors stress the importance of the activity domain analysis, where an initial
feature model is produced. During domain design and domain implementation, a
reference architecture and core implementation assets are constructed. In domain
testing, component tests are written. These artifacts are then filtered and com-
posed during corresponding application engineering activities, concluding with
testing the product using respective component tests. As opposed to our ver-
sion of the HAS example, the original version has been developed in a strictly
phase-structured way.

Among others, the authors of [27] have observed that agile principles poten-
tially increase the applicability of SPLE while reducing time to market. They
present a bottom-up, test-driven approach inspired by Extreme Programming
[28]. After defining a test case specific to a new feature, its realization is incor-
porated to the product line using systematic refactoring techniques. However,



Filtered Model-Driven Product Line Engineering with SuperMod 37

the presented solution is not as highly automated as the SuperMod approach.
Furthermore, when compared to our example, the iterations are still relatively
long-running. Presumably, SuperMod can also meet the requirements of agile
SPLE.

In [29], an approach to filtered (projectional) editing of multi-variant pro-
grams is described. Like in our work, the motivation is a reduction of complexity
gained by hiding variants not important for a specific change to a multi-variant
model. Visibilities are managed automatically, but in contrast to our approach,
the choice always equals the ambition. Furthermore, the restriction of a com-
pletely bound choice does not exist since the user operates on a partially filtered
product which still contains variability. The wider the ambition, the more vari-
ability information is kept in the workspace, increasing maintenance overhead
especially for wide ambitions.

Völter et al. [21] apply aspect-oriented techniques such as modularization
and composition in order to realize the HAS example using positive variability.
The platform is described at a high level of abstraction using a custom domain-
specific language. During product derivation, artifacts belonging to the selected
features are composed. This leads to a reduction of complexity with respect to
architectural decisions of the modular artifacts, but raises new problems when
it comes to conflicting composition rules.

In [15,30], the HAS example has been used to demonstrate consistency mech-
anisms of the MDPLE tool FAMILE, which relies on negative variability and
unfiltered editing. The tool allows to connect a manually developed multi-variant
domain model to a feature model in a dedicated mapping model using feature
expressions, and to automatically configure products. Contradictions among fea-
ture expressions may lead to inconsistencies within the mapping model. The
presented solutions, which include a domain specific language for repair actions,
are interactively controlled by the SPL engineer. In contrast, SuperMod makes
both the multi-variant model and feature expressions transparent, and product
conflicts are resolved by the user in batch mode.

The HAS example is frequently referred to in the context of dynamically
reconfiguring systems, which can be considered as product lines that use run-time
variability. An example is provided in [31], where the platform itself is described
using MDSE techniques. When compared to our compile-time based solution,
time to market is even shorter. However, consistent component interaction must
be manually ensured.

6 Discussion

Having conducted two standard examples with the tool SuperMod and having
defined an appropriate development process, we are now able to discuss the
potential research impact as well as the limitations of our proposed approach.
The following open questions will also stimulate future research directions.



38 F. Schwägerl et al.

How Steep is SuperMod’s Learning Curve? In the beginning, SuperMod’s
editing model seems quite unfamiliar, in particular to SPL engineers who are used
to unfiltered editing approaches, where they fully control the multi-variant archi-
tecture. According to our own experience, planning the iterations and learning to
specify a correct ambition are the most challenging parts. We have observed that
small iterations and frequent commits require a fair amount of discipline. The
effective training effort of SuperMod remains to be experimentally quantified
and compared to unfiltered SPLE approaches.

Do We Still Require Unfiltered Editing? Intentionally, SuperMod users
never get in touch with multi-version artifacts, since they always operate in a
single-version view. This reduces complexity, but also awareness of the variabil-
ity present in the overall product line. In some situations, one wants to inspect
or modify the multi-version artifacts in an unfiltered way, e.g., in order to revise
erroneously specified ambitions. A compromise between filtered and unfiltered
editing is partially filtered editing [29]. However, preprocessor-like variability
annotations are technically hard to realize for graphically represented models.

Where are Organized Reuse and Variation Points? SPL are based on
the principle of organized reuse. When developing the multi-variant architec-
ture, variation points are planned in advance and explicitly realized using the
features of the respective programming or modeling language, e.g., inheritance.
SuperMod does not require to explicitly model and document variation points;
on the contrary, they are completely transparent to the user. This fact is in turn
linked to the advantage of reduced complexity and the disadvantage of limited
awareness of variability [12]. Furthermore, in SPLE, features are typically intro-
duced in the beginning during product management. In contrast, our approach
dedicates the decision, when to introduce new features, to the user.

How to Control the Multi-variant Architecture? This question is linked
to the preceding two answers. Due to the single-version view and the fact
that variation points are transparent, the challenge of designing a multi-variant
architecture never arises. However, this also removes the chance to control the
architecture, e.g., by refactoring. Does this result in a “worse” multi-variant
architecture? Provided that it is transparent to the user anyway, is a “good”
multi-variant architecture important at all? The properties of automatically con-
structed multi-variant architectures need to be further investigated.

7 Summary and Outlook

In this paper, we have revisited a well-established SPLE case study, the Home
Automation System SPL. We have employed the tool SuperMod, which is
focused on but not restricted to model-driven SPL. Its user interface is ori-
ented towards version control by offering the metaphors update, modify, and



Filtered Model-Driven Product Line Engineering with SuperMod 39

commit. Developers may evolve the SPL in a single-version workspace, while
changes are propagated to the multi-version platform transparently, obviat-
ing the need for up-front, multi-variant design. The evolution of multi-variant
product artifacts is mostly automated. SuperMod’s integrated tool support
enables a round-trip between DE and AE, whose distinction is blurred by fine-
granular update/commit cycles and by keeping products in the product line until
deployment.

With respect to the underlying SPLE process, our example has demonstrated
that SuperMod is compatible with different styles of iterative and incremental
development, ranging from phase-driven domain engineering, which has been
applied to create an initial major revision of the product line, to feature-driven
development, which has been enforced to integrate customer feedback and to
integrate the respective change to the product line transparently, without the
need of duplicate maintenance.

When compared to state-of-the-art approaches, our presented solution mini-
mizes both planning and maintenance effort. Furthermore, the amount of man-
ually specified variability information is significantly lower. Using the presented
procedure and tool, the SPLE developer may focus on product-specific design
decisions, reducing the cognitive complexity in the domain engineering phase.
SuperMod integrates well with existing tools, particularly in the EMF world.

Future work addresses extensions to SuperMod, including multi-user support,
product conflict resolution, and difference representation. Furthermore, we aim
to continue the experimental evaluation of our approach using a case study of
industrial scale.

8 Accompanying Resources

The research prototype SuperMod is available as a set of Eclipse plug-ins under
the Eclipse Public License. The plug-ins may be installed into a clean Eclipse
Luna Modeling distribution using the following update site:4. The items Super-
Mod Core and SuperMod Revision+Feature Layered Version Model should be
selected for installation. Furthermore, we provide several screencasts where
SuperMod’s usage with both the graph example from [13] and the HAS example
from this paper is demonstrated:5.

Acknowledgements. The authors give thanks to Marco Dmitrow for adapting the
HAS case study in a master project and for valuable input for the improvement of
SuperMod.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston (2001)

4 http://btn1x4.inf.uni-bayreuth.de/supermod/update.
5 http://btn1x4.inf.uni-bayreuth.de/supermod/screencasts.

http://btn1x4.inf.uni-bayreuth.de/supermod/update
http://btn1x4.inf.uni-bayreuth.de/supermod/screencasts


40 F. Schwägerl et al.

2. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21,
Carnegie-Mellon University, Software Engineering Institute (1990)

3. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations. Principles and Techniques, Berlin (2005)

4. Czarnecki, K., Kim, C.H.P.: Cardinality-based feature modeling and constraints:
a progress report. In: International Workshop on Software Factories at OOPSLA
2005, San Diego, California, USA. ACM (2005)

5. Chacon, S.: Pro Git, 1st edn. Apress, Berkely (2009)
6. Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M.: Version Control with Sub-

version. O’Reilly, Sebastopol (2004)
7. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software

Development: Technology, Engineering Management. Wiley, New York (2006)
8. OMG: UML Superstructure. Object Management Group, Needham, MA.

formal/2011-08-06th edn. (2011)
9. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF Eclipse Modeling

Framework. The Eclipse Series, 2nd edn. Addison-Wesley, Upper Saddle River
(2009)

10. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning
approaches. Int. J. Web Inf. Syst. (IJWIS) 5, 271–304 (2009)

11. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Addison-Wesley, Boston (2004)

12. Schwägerl, F., Buchmann, T., Uhrig, S., Westfechtel, B.: Towards the integra-
tion of model-driven engineering, software product line engineering, and software
configuration management. In: Hammoudi, S., Pires, L.F., Desfray, P., Filipe, J.
(eds.) Proceedings of the 3rd International Conference on Model-Driven Engineer-
ing and Software Development (MODELSWARD 2015), Angers, France, pp. 5–18.
SCITEPRESS (2015)

13. Schwägerl, F., Buchmann, T., Westfechtel, B.: SuperMod - A model-driven tool
that combines version control and software product line engineering. In: ICSOFT-
PT 2015 - Proceedings of the 10th International Conference on Software Paradigm
Trends, Colmar, Alsace, France, pp.5–18. SCITEPRESS (2015)

14. Kästner, C., Trujillo, S., Apel, S.: Visualizing software product line variabilities in
source code. In: Proceedings of the 2nd International SPLC Workshop on Visuali-
sation in Software Product Line Engineering (ViSPLE), pp. 303–313 (2008)

15. Buchmann, T., Schwägerl, F.: FAMILE: tool support for evolving model-driven
product lines. In: Störrle, H., Botterweck, G., Bourdells, M., Kolovos, D., Paige,
R., Roubtsova, E., Rubin, J., Tolvanen, J.P. (eds.) Joint Proceedings of Co-Located
Events at the 8th European Conference on Modelling Foundations and Applica-
tions. CEUR WS, Building 321, DK-2800 Kongens Lyngby, pp.59–62. Technical
University of Denmark (DTU) (2012)

16. Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: mapping features to
Models. In: Companion Proceedings of the 30th International Conference on Soft-
ware Engineering (ICSE 2008), pp. 943–944. ACM, New York (2008)

17. Apel, S., Kästner, C.: An overview of feature-oriented software development. J.
Object Technol. 8, 49–84 (2009)

18. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. In: Pro-
ceedings of the 25th International Conference on Software Engineering, ICSE 2003,
pp. 187–197. IEEE Computer Society, Washington, DC (2003)



Filtered Model-Driven Product Line Engineering with SuperMod 41

19. Jayaraman, P., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model composition in
product lines and feature interaction detection using critical pair analysis. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 151–165. Springer, Heidelberg (2007)

20. Zschaler, S., Sánchez, P., Santos, J., Alférez, M., Rashid, A., Fuentes, L., Moreira,
A., Araújo, J., Kulesza, U.: VML* – A family of languages for variability manage-
ment in software product lines. In: van den Brand, M., Gašević, D., Gray, J. (eds.)
SLE 2009. LNCS, vol. 5969, pp. 82–102. Springer, Heidelberg (2010)

21. Völter, M., Groher, I.: Product line implementation using aspect-oriented and
model-driven software development. In: Proceedings of the 11th International Soft-
ware Product Line Conference, SPLC 2007, pp. 233–242. IEEE Computer Society,
Washington, DC (2007)

22. Westfechtel, B., Munch, B.P., Conradi, R.: A layered architecture for uniform ver-
sion management. IEEE Trans. Softw. Eng. 27, 1111–1133 (2001)

23. Buchmann, T.: Valkyrie: A UML-based model-driven environment for model-
driven software engineering. In: Hammoudi, S., van Sinderen, M., Cordeiro, J.
(eds.) Proceedings of the 7th International Conference on Software Paradigm
Trends (ICSOFT 2012), pp.147–157. SCITEPRESS (2012)

24. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Ele-
ments of Reusable Object-Oriented Software, 1st edn. Addison-Wesley Longman,
Amsterdam (1995)

25. Laguna, M.A., Crespo, Y.: A systematic mapping study on software product line
evolution: From legacy system reengineering to product line refactoring. Sci. Com-
put. Program. 78, 1010–1034 (2013)

26. Lopez-Herrejon, R.E., Batory, D.: A standard problem for evaluating product-line
methodologies. In: Dannenberg, R.B. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 10–
24. Springer, Heidelberg (2001)

27. Ghanam, Y., Maurer, F.: Extreme product line engineering – refactoring for vari-
ability: a test-driven approach. In: Sillitti, A., Martin, A., Wang, X., Whitworth,
E. (eds.) XP 2010. LNBIP, vol. 48, pp. 43–57. Springer, Heidelberg (2010)

28. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley Professional, Reading (2004)

29. Walkingshaw, E., Ostermann, K.: Projectional editing of variational software. In:
Generative Programming: Concepts and Experiences, GPCE 2014, Vasteras, Swe-
den, 15–16 September 2014, pp. 29–38 (2014)

30. Buchmann, T., Schwägerl, F.: Ensuring well-formedness of configured domain mod-
els in model-driven product lines based on negative variability. In: Proceedings of
the 4th International Workshop on Feature-Oriented Software Development, FOSD
2012, pp. 37–44. ACM, New York (2012)

31. Cetina, C., Giner, P., Fons, J., Pelechano, V.: Autonomic computing through reuse
of variability models at runtime: The case of smart homes. Computer 42, 37–43
(2009)



http://www.springer.com/978-3-319-30141-9


	Filtered Model-Driven Product Line Engineering with SuperMod: The Home Automation Case
	1 Introduction
	2 Software Product Line Development Processes
	2.1 The Traditional SPLE Process
	2.2 Iterative and Incremental Software Product Line Engineering
	2.3 SPLE Processes with SuperMod

	3 The Tool SuperMod
	3.1 Underlying Principles
	3.2 Tool Architecture and Editing Model
	3.3 Check-Out, Modify, and Commit

	4 The Home Automation Case Study
	4.1 Requirements Analysis
	4.2 Design
	4.3 Implementation
	4.4 Handling a New Customer Request
	4.5 Results and Observations

	5 Related Work
	6 Discussion
	7 Summary and Outlook
	8 Accompanying Resources
	References


