On the Identification of «-Asynchronous
Cellular Automata in the Case of Partial
Observations with Spatially Separated Gaps
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Abstract In this paper we present a statistical method, based on frequencies, for
identifying so-called o-asynchronous Cellular Automata from partial observations,
i.e. pre-recorded configurations of the system with some cells having an unknown
(missing) state. The presented method, in addition to finding the unknown Cellular
Automaton, is able to unveil the missing state values with high accuracy.
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1 Introduction

Cellular Automata (CAs) are commonly used modelling constructs for addressing a
variety of problems [12]. In order to use CAs for a practical modelling task, one needs
to understand the underlying mechanisms of the phenomenon at stake, and translate
them into a CA rule. Additionally, the state space, tessellation and neighborhood
structure need to be pinned down beforehand. This hampers the use of CAs, since
there are problems for which it is hard to manually design a proper local rule. In some
cases, only the initial and final states of the system are known (e.g. [2, 20, 21]).
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Besides classical deterministic CAs, Stochastic CAs (SCAs) are frequently used.
Many efforts have been made in the direction of developing automated methods
for constructing CAs and SCAs based on observed space-time diagrams [1, 3, 5,
6, 10, 11, 15-19, 22, 24, 26, 27]. Yet, there is only very limited literature for the
case of incomplete observations in the deterministic case [7, 8]. To the best of our
knowledge, the identification of CAs in the context of incomplete observations and
stochastic rules has not yet been tackled by other authors.

The main goal of the research presented in this paper is to develop a method for the
automated identification of a relatively simple class of SCAs, namely «-asynchronous
CAs (a-ACAs) [14], based on partial observations. The presented method is based on
statistical principles for estimating the parameters of binomial distributions based on
frequencies of observed events. Moreover, we also present a method for completing
those observations, i.e. filling the missing gaps into the observations. In addition to
serving as a useful tool for building and analyzing models based on o-ACAs, the
presented method is a first step towards an effective identification of SCAs based on
partial observations.

The performance of the presented method is verified with computational exper-
iments, for the class of a-ACAs corresponding to Elementary CAs (ECAs). The
results show that the accuracy of the identification algorithm, when it comes to esti-
mating the value of the synchrony rate «, finding the underlying CA and filling the
missing states in the observation is very high.

This paper is organized as follows. In Sect. 2, we introduce definitions and present
some well-known facts on CAs and SCAs. In Sect. 3, o-ACAs are formally intro-
duced, while the formal definition of the identification problem is given in Sect.4.
Section 5 holds the description of the identification algorithm. The paper is concluded
with Sect. 6, which presents the results of computational experiments.

2 Preliminaries

In this paper, we will concentrate on 1D, deterministic, two-state CAs with a sym-
metric neighborhood and a finite number of cells. Let »r € Ny, R =2r + 1 and let
£:1{0, 1}® — {0, 1} be a function, then for N > 0, we define the N-cell global CA
rule Ay: {0, 1}YV — {0, 1}V as:

AN(. ey Siy e ) = ( cey f(S,',r, ey S,’Jrr), .. .), (1)

where periodic boundary conditions are assumed, i.e. for any i € Z it holds that
si+n = ;. The function f used in (1) will be referred to as a local rule, and the
integer » will be referred to as the radius of the neighborhood. Any local rule can
be uniquely defined by a lookup table (LUT), which lists all the possible arguments
of the local rule together with the corresponding function values. It is assumed that
the arguments are listed in lexicographic order. The general form of such a LUT for
r = 11is shown in Table 1.
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Table 1 The LUT of the local rule n = (17, lg, Is, l4, 13, 12, 11, lo)2
(1,1,1) (1,1,0) (1,0,1) (1,0,0) (0,1,1) (0,1,0) 0,0,1) (0,0,0)
I lg I5 Iy I3 153 I Iy

Table 2 The LUTs of ECAs 51 and 204

1,1, | (1,1,0) | (1,0,1) | (1,0,00 | (0,1,1) | (0,1,0) | (0,0,1) | (0,0,0)
51 negation | O 0 1 1 0 0 1 1

204 identity | 1 1 0 0 1 1 0 0

The LUT can be used to enumerate local rules, as the coefficients /; can be treated
as digits in the binary representation of an integer n, i.e.in the case of r = 1 the
number of a local rule is n = 217:0 I; 2'. Clearly, this reasoning extends to larger
radii. Given that the ordering of the arguments in the LUT is fixed, only the second
row needs to be known in order to uniquely define a CA, such that a LUT may be
represented as a binary vector of length 2%,

CAs for which there exists a local rule with radius » = 1 will be referred to as
ECAs [25]. Due to their simplistic definition and rich dynamics, ECAs form a well-
studied class of CAs. For that reason, the examples and experiments presented in
this paper are based on ECAs and their asynchronous counterparts.

Example 1 InTable?2the LUTs of ECA rules 51 and 204 are shown, which are known
as negation and identity CAs, respectively. Both of these CAs can be expressed with
a local rule of radius zero, but the ECA description is more commonly used.

With {0, 1}* we will denote the set of all binary sequences of finite length, i.e.
{0, 1}* = U510, 1}M. The function A: {0, 1}* — {0, 1}*, defined by A(X) =
Ay (X) if X € {0, 1I}™, with every global rule Ay being defined with the same
local rule f, will be referred to as a generalized global CA rule. We will simply refer
to such functions as global rules or rules. In this paper, a CA will be identified by its
global rule, and by referring to a CA, we therefore always refer to its global rule in
this generalized sense.

Every CA A can be uniquely defined by its local rule f with neighborhood
radius r > 0. Every local rule can be uniquely described with a set of neighbor-
hood configurations C(f), for which the local rule agrees with identity CA, i.e.
(x1,...,xg) € C(f) if and only if f(xq,...,xg) = x,41. As a consequence of the
binary nature of the state set, it further holds that f(x, x5, ..., xg) = 1 — x,4; when
(X1,...,xp) ¢ C(f)-

Let AbeaCA, X € {0, 1} for some M and T > 0. The finite sequence of vectors
given by:

(X, A(X), A2(X), ..., AT\ (X)),
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Table 3 pLUT of a stochastic ECA local rule
(1,1,1) (1,1,0) (1,0,1) (1,0,0) (0,1,1) (0,1,0) 0,0,1) (0,0,0)
P17 Po Ps P4 P3 P2 P1 Po

where A’ denotes the result of applying the rule A to A’~!(X), will be referred to as
the space-time diagram covering 7 time steps. Each of its elements will be referred to
as a configuration of the CA A, while the first element will be referred to as the initial
configuration. Forany t =0, 1,...,T —landm =1, ..., M, A"(X)[m] refers to
the state of the mth cell in the 7th row of the space-time diagram.

The CAs defined above are deterministic and are fully governed by their local rule.
However, there are also Stochastic CAs (SCAs), for which the local rule is a random
function that can be uniquely defined by a probability lookup table (pLUT). The
pLUT lists all possible neighborhood configurations and maps them to the probabili-
ties of transition to state 1. The general form of a pLUT for the stochastic counterparts
of ECAs is shown in Table 3.

Formally, the meaning of the pLUT is the following. Let f be the local rule of an
SCA with unit neighborhood radius, and let (x;, x», x3) € {0, 133.Leti be an integer
such that the vector (x1, x;, x3) is its binary representation, then the entries in Table 3
are given by:

P(f(x1,%2,%3) = 1) = p; .
Obviously, from this it follows that:
P(f(x1, 22, 23) =0) =1 = pi.
In the case of SCAs, it is hard to define the space-time diagram in a strict, formal

way. So if A is an SCA, any sequence of configurations, which can be obtained
by simulating A, starting from some given initial configuration, is a space-time

diagram. Formally it means thatif p; €10, 1[fori =0, ..., 7, any sequence of binary
configurations makes up a space-time diagram. Yet, the likelihood of observing a
given space-time diagram is uniform only in case p; = 0.5 foralli =0,...,7.In

other cases, the probability distribution over the space of space-time diagrams might
be more complex.

3 «a-Asynchronous CAs

Classically, states in CAs are updated synchronously, i.e. a new state is assigned to
all cells simultaneously at every time step according to the local rule. Yet, different
approaches of breaking the synchronicity of CAs have been proposed [23]. Interest-
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ingly, the choice of the update scheme, which defines the order or timing of cell state
updates, has very important repercussions on the dynamical properties of CAs [4].
Here, we focus on one of such schemes, namely «-asynchronous CAs (a-ACAs). A
detailed definition of «-ACAs is presented below, while the description of their most
important properties and applications can be found in [13].

Any o-ACA can be defined by a deterministic CA A and a probability «, called the
synchrony rate, which controls whether or not its cells are updated. More precisely,
« is the probability of applying the local rule f of A. Let f be the random function

(local rule) corresponding to an «-ACA, then for any x, ..., xg, y € {0, 1} it holds
that:
0, if (x1,...,xr) €C(f)NY # X141,
~ 1, if (x1,...,xgr) €C(f) Ay =X41,
P(f(x1,...,xg) = y) = b R Py =
(xa lf(-xlv"'a-xR)¢C(f)/\y#xl‘+lv

l—a, if(xq,...,xg) ¢C(f)ANY =2Xr41.

Note that if o = 0, such a system stays at its initial configuration, whereas the
system is equivalent to a deterministic CA A if « = 1.

The essential property of «-ACAs as defined here is that they may equivalently be
considered as SCAs for which the local rule f is selected with probability ¢, while
the identity rule is selected with probability 1 — «. Hence, we may say that CA A
becomes stochastically mixed with the identity rule. In the remainder we will write
A, to denote the «-ACA which is defined with the use of CA A and synchrony rate
a.

Let us assume that a local rule of an ECA A is defined by the LUT (/; )Z:O. Clearly,
a-ACAs form a special class of SCAs, therefore, we can represent A, in terms of a
pLUT. If ¢ € [0, 1] and @ = 1 — «, the pLUT of A, is given by Table4.

As can be inferred from the LUT shown in Table4, A, is deterministic on those
neighborhood configurations belonging to the set C(f), where f is the local rule of
A. For remaining neighborhood configurations, where f agrees with the negation
rule, A, is stochastic. This simple property is important in the construction of the
identification algorithm.

Example 2 Let A be the ECA 150. The pLUT of A, is given by Table 5. The space-
time diagrams evolved for the same initial configuration for: (a) ¢« = 0.1, (b) ¢ = 0.5,
(c)@ = 0.9 and (d) @ = 1 are shown in Fig. 1. As can be inferred from the plots, the
behavior of the dynamical system is greatly affected by .

Table 4 pLUT of an «-ACA local rule
(1,1,1) (1,1,0) (1,0,1) (1,0,0) 0,1,1) 0,1,0) (0,0,1) (0,0,0)
al7+a |alsg+a |als aly alz+a |ab+a |al aly
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Table 5 pLUT of A, for A being ECA 150
(1,1,1) (1,1,0) (1,0,1) (1,0,0) (0,1,1) (0,1,0) 0,0,1) (0,0,0)

1 o 0 o o 1 o 0

i".

Fig.1 Space-time diagrams of A, evolved for the same initial configuration, for different synchrony
rates, where AisECA 150.aad =0.1.ba=05.ca=09.da =1

4 Identification Problem

In this section we define the identification problem. Our formulation is based on
the concept of an observation of a space-time diagram, which is assumed to be
incomplete, i.e. it contains only partial information on the states of the underlying
a-ACA.

Let I be an N x M array containing symbols belonging to the set {0, 1, 7}, where
the symbols 0 and 1 denote valid states of an unknown «-ACA, while the symbol ?
denotes an unknown state belonging to the set {0, 1}. Additionally, let the first row
I[1] € {0, 1}™ represent the initial configuration of an a-ACA. Such an array / will
be referred to as an observation. If an observation I does not contain the symbol ?,
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we refer to it as complete, while it will be referred to as partial otherwise. Entries in
the observations occupied by the symbol ? will be denoted as gaps.

Note that the assumption of a completely observed initial configuration, i.e. /[1] €
{0, 1} is crucial for the construction of the presented method and cannot be relaxed
easily. Yet, this condition can be met in many practical applications as there are often
means of controlling the initial state of the system in question.

Let r € Ny, then the vector (I[n,m —r], ..., I[n,m + r]) will be denoted by
I[n, m|r], for any n, m € Z, where periodic boundary conditions are assumed. Fur-
thermore, we assume that there are strict limitations for what concerns the occur-
rence of gaps in observations. If for some n, m it holds that I[n, m] = ?, then
In—1,m|r] € {0, 1}, I[n+ 1,m|r] € {0, 1} and in I[n, m|2r] only for the pair
(n, m)itholsthat I[n,m] =?,i.e.form’'=m —2r,.... m—1,m+1,...,m+2r
it holds that /[n, m'] € {0, 1}. Such a condition of spatial separation of gaps allows
to consider each of the gaps separately in the gap filling process.

We consider the identification problem with the assumption that / was generated
by some unknown a-ACA, denoted by A, . Solving the identification problem means
finding the CA A and @, as an approximation of «, such that @ € Ja, ay[, where
o — o is as small as possible, and it is very likely that & € Joy, oz [. More formally,
we select L €10, 1[ and assume a confidence level 1 — L. We build an estimate
for A, o) and «, based on observation I, such that observation / is a space-time
diagram of A, for some « € Ja, o[ with probability 1 — L. In those cases where
the observation [ is incomplete, the identification algorithm should yield the most
likely values of the missing states.

We will consider the identification problem in the context of observation sets 7
containing one or more observation /; for j =1, ..., |Z], of the behavior of some
a-ACA, where I; € 7 contains M;, columns and Ny, rows.

It should be mentioned that the identification problem presented here, has limited
applicability when it comes to real-world modeling tasks. This is mostly due to
the fact that binary CAs are typically too simple to mimic real-world processes as
a consequence of their limited state set. Yet, the identification problem becomes
of more direct importance in the case of multi-state and multi-dimensional CAs.
Although the presented solution algorithm is tailored towards the binary case, it is
possible to generalize it. This is one of the topics of future research in this area.

5 Identification Algorithm

5.1 Complete Observations

In this section we describe the algorithm for solving the identification problem in
the case of complete observations. Besides, we assume that « is bounded between
known bounds a > 0 and b < 1.
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Based on a set of complete observations Z, we define frequency tables N =
(Ng, ..., Nyr_y)and K = (Ky, ..., Kor_1), where N; denotes the number of occur-
rences of the ith neighborhood configuration in all of the observations / € Z, where
the last row of each observation is discarded, i.e. we count the occurrences of the
neighborhoods in every row except for the last one, and store the results in N. To
build table K, we additionally check the state of the central cell in the next row for
each of the visited neighborhoods, and we count the number of cases where the value
of the central cell changed, i.e. cases where the unknown «-ACA changed the value
of a cell to its complement, and thus acted like the negation CA. It is obvious that
for all i it holds that K; < N;.

Proposition 1 Let N* =%, (N, K* = Zfigl K; and@ = X The proportion
o is a random variable following a binomial distribution with success probability
equal to «.

Following [9] there are various methods to estimate the confidence interval for
« using @. Here, we choose the normal distribution approximation, even though
the authors of [9] advice against it. This choice is motivated by the fact that this
method leads to an algorithm with a reasonable accuracy and at the same time its
implementation is straightforward. Assuming that 1 — L is the selected confidence
level, then the following holds with probability 1 — L:

> fa(l —a) R [a(l —o)
o —zr T_afa-i-ZL T, )

where z; is the argument at which the cumulative standard normal distribution func-
tion takes the value of 1 — % The above holds if N* is large enough, for example if
both N*« and N*(1 — «) are greater than five [9]. Since « is unknown, we impose
a bit stronger condition N* > max(%, %), which can be easily verified.

The estimated interval given by (2) can be adjusted, taking into account the
assumption that « € [a, b]. For that purpose, let:

R [ad —@) ol b3+ [a(l —a)
= max — e = min —
oy axfa, o — 2z N , O , O T 2 N* ,

then it holds that o € [«], ap] with probability 1 — L. Note that oy — o < «/“ﬁ and
for commonly used confidence levels it holds that z;, < 3. Thus, if N* is sufficiently
large, we are sure that the interval [o, op] narrows.

Summing up, we have formulated the estimation method for the confidence inter-
val of «. If a point estimation is desired, the value of @t® which in most cases is
equal to @, shall be used. We now turn to the method for constructing the local rule
of CA A.

Let f be the unknown local rule given by a LUT (l,-)izia1 e {0, 1}2R, where the
l;’s are unknown. Deciding on these might be seen as picking the same value as the
identity rule or taking the opposite value. If K; > 0 and N; > 0 we pick the value
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opposite to identity, i.e. we select the value from the LUT of the negation rule. When
K; =0 and N; > 0, we are not sure if f agrees with the identity CA on the ith
neighborhood, or too few samples were observed. Yet, if it holds that:

N; L
(I—-a)" =< SlEK=o) * (3)
we may assume that f agrees with the identity. This assures that the total probability
of picking the wrong value, over all the neighborhood configurations for which
K; =0, is not higher than L. Otherwise if Eq. (3) is not fulfilled or K; = N; =0,
we are not able to select the value of /;. Still, if we can simulate the unknown «-
ACA starting from an arbitrary configuration, this bottleneck is eliminated. In the
remainder we assume that such cases do not happen.
The computational complexity of the identification algorithm is linear, in the sense
that it is proportional to the number of observed cells. Consequently, the algorithm
is applicable even for relatively big observation sets.

5.2 Gap Filling Procedure

Having defined the estimates o, a2, @ and A in the case of complete observations, we
now turn to the case of partial observations obeying the spatial separation condition
formulated in Sect. 4, which guarantees that we can treat each of the gaps separately.
We can find the estimates for o and A following the method described in Sect. 5.1,
with the only change that K; and N; are calculated discarding those entries that
contain the symbol ?. In other words, we ignore entries with gaps in the fist step
of estimating the parameters of «-ACA. Then, for every I € 7 and (n, m) such that
I[n, m] =7, we follow the procedure outlined below to find the missing state. Let the
function f: {0, 1}¥ — {0, 1} be the local rule of CA A, and f be the corresponding
random local rule of A,.

If f(I[n—1,m|r]) = I[n — 1, m], then f agrees with the identity CA on the
neighborhood configuration /[n — 1, m|r], and we may replace the ? at (n, m) by
I[n — 1, m] € {0, 1}. Otherwise, we need to inspect values in the n + 1th row of
observation / to find the most likely value for I[n, m]. In this case, from the definition
of a-ACAs, we know that:

l—a, ifl[ln—1,ml=y,
Py (ln,m]=y) [a, ifI[n—1,ml=1-y. @

The informal meaning of p, is that it is the probability of /[n, m] being y, as cal-
culated by only examining the n — 1th row of observation. For h € {—r, ..., r},
let Fj, denote the random event that, starting from the neighborhood configuration
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I[n — 1, m|r], the -ACA evolution leads to the state I[n + 1, m + h] after two time
steps. For any y € {0, 1}, let p; , be defined as:

DPhy =P(Fy | I[n,m] =y). &)

We may calculate pj, , according to the following formula, where it is assumed that
I[n,m] =y, and thus I[n, m + h|r] depends on y:

0, if I[n,m+h|rl € C(f) ANn,m~+hl# In+1,m+h],
L if Iln,m+h|rleC(f)Aln,m+hl=1In+1,m+h],
Phy =14, if Ifn,m+h|rl1 ¢ C(f) AMn,m~+hl# In+1,m+h],
l—«a, iflln,m+hlr]e¢C(f)ANIn,m+hl=1I1n+1,m+h].

(6)

Since « is not known, we can only get an approximation of pj, ,. Yetit suffices for our
purposes. The value py, , is the probability of obtaining the n + 1th row, assuming
that y is the missing value in the nth row. By combining those probabilities, we
will find the most likely value for I[n, m]. More formally, according to the Total
Probability theorem, it holds that:

r 1 r
P( N Fh) => PdU[n.m]= y)lP(hp Fy | Iln,m] = y)

h=—r

y=0
1 r
=> py]P’( N Ful I[n,m]zy)
=0 h=—r
1 r
=>" py [[ BFu | In.m1=y)
y=0 h=—r
1 r
=Z Py H Ph,y -
y=0 h=—r

This is justified as for | # h,, the events Fj,, and F}, are independent if /[n, m] is
known. The probability P (I [(n,ml=y| N, Fh) is the probability of I[n, m] =
y assuming that all of the transitions from /[n — 1, m|r] to n + 1th row happened
according to values recorded in observation /. Due to Bayes’ theorem it holds that:

- py [lhes Piy
Py I[n,m]=y| Fpl)l=——g——+. @)
( hDr h) P (ﬂh:—r Fh)

Therefore, the most likely value for /[n, m] is the one that maximizes the probability
P (Iln,m] =y | Mj—_, Fx),and to find it, we only need to examine the numerators
of the fractions in Eq. (7) for different values of y since the denominator does not
depend on y.
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Finally, the method for filling the gap in I[n, m] works as follows. Firstly, we
check whether the value can be selected deterministically according to the identity
rule, which happens when I[n — 1, m|r] € C(f). Otherwise, we calculate the two
numerators from Eq. (7), for y = 0 and y = 1, using @ instead of «. If the results
differ, we pick the y for which the numerator is the largest. If both numerators
are equal, we compare the probabilities py and p;, and pick this y for which the
probability is greater. Finally, if p, = p;_,, we randomly assign a value to I[n, m].

6 Experimental Results

For assessing the performance of the identification algorithm we evaluated 255
ECAs (all but ECA 204 which is the identity CA) for synchrony rates equal to
a = 0.05,0.01,...,0.95. For each ECA and «, a set of 100 observations, each con-
sisting of 49 time steps and 49 cells, was constructed by simulating the «-ACA and
storing the resulting space-time diagrams. A common set of 100 randomly generated
initial configurations was used. The 95 % confidence level was set, i.e. L = 0.05. The
bounds for o were defined as a = 0.05 and b = 0.95. In each of the observation sets,
2500 gaps were introduced at random positions in randomly selected observations,
but still such that the separation condition was fulfilled.

In all of the considered cases, the unknown ECA was discovered. To verify whether
the estimation of o was reliable, we measured the relative error E defined as:

o — o
E=E(Ay) =

x 100 %, (®)

where @ is the estimate obtained for A,. We obtained the following statistics of
E(A,) across the ECAs and synchrony rates (where the values were truncated to
two significant digits):

min(E) = 0.00 %, (E) = 0.51%, max(E) = 8.37%, o(E) = 0.68%,

where (E) denotes the mean error, and o (E) is the standard deviation of the error.
The histogram of E values with a bin width of 0.1 % is shown in Fig.2. As can
be inferred from this figure, the identification algorithm is able to find very good
estimates of the synchrony rate. Not only was the maximum relative error 8.37 %,
but more importantly the relative error was below 1% in 85 % of the cases.

We now assess the performance of the second step of the identification algorithm,
namely gap filling. We measured this as the percentage of correctly filled gaps in
observations for a given case. For each ECA we averaged the success rate over the
considered synchrony rates and the resulting quantity is denoted as S. The overall
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statistics of § are shown below (where the values were truncated to two significant
digits):

min(S) = 73.50 %, (S) = 96.02 %, max(S) = 99.95%, o (S) = 4.10%.

Figure 3 shows both the mean success rate S and the standard deviation of the
success rate for each ECA. The points on the plot close to the lower-right corner
(1, 0) correspond to the most successful cases. The results are labeled according
to the size of the set C(f), where f is the local rule of the considered ECA. As
can be inferred from the plot, ECAs for which the set C(f) is bigger, give rise
to slightly better results, possible due to the fact that more transitions happened
deterministically. Moreover, the outlier with a relatively low value of § originated
from ECA 51 which is the negation CA, for which the o-ACA reduces to a weighted,
random bit flip. Yet, even in this case we were able to correctly fill in more than 70 %
of the gaps. The presented results indicate that the algorithm is very effective and
accurate when it comes to gap filling.
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7 Summary

In this paper the identification of - ACAs was discussed. An algorithm foridentifying
the underlying CA and estimating the synchrony rate « was presented. Moreover,
a method for gap filling was put forward. The experimental results presented in
Sect. 6 for ECAs are very promising. In all cases the algorithm was able to find the
correct CA, and a good estimate for the synchrony rate was obtained. Also the rate
of correctly filled gaps was very high. The algorithm will be extended to a more
general setting where the observations have less separated gaps and to richer classes
of SCAs.
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