Chapter 2
Asymptotic Expansions for Stochastic Processes

Nakahiro Yoshida

2.1 Introduction

The central limit theorems are the basis of the large sample statistics. In estimation theory,
the asymptotic efficiency is evaluated by the asymptotic variance of estimators, and in
testing statistical hypotheses, the critical region of a test is determined by the normal
approximation.

Though asymptotic properties of statistics are based on central limit theorems, the acc-
uracy of their approximation is not necessarily sufficient in practice, especially in the case
not many observations are available. Even then, we experienced possibility of getting more
precise approximation by the asymptotic expansion methods.

The asymptotic expansion has theoretical importance. This method is today recognized
as basis of various branches of theoretical statistics like higher order inferential theory,
prediction, model selection, resampling methods, information geometry, and so on. For
example, the Akaike Information Criterion (AIC) for statistical model selection is a statis-
tic that incorporates higher-order behavior of the maximum log likelihood.

In the recent four decades, intensive studies have been done for statistics of semi-
martingales. See, e.g., Kutoyants [54, 55, 56], Basawa and Prakasa Rao [8], Kiichler and
Soerensen [51], and Prakasa Rao [80, 79]. Since large sample theoretical approaches are
inevitable to semimartingales, the development was in exact timing interactively with that
of limit theorems.

The counterpart of traditional independent observations is the class of stochastic pro-
cesses with ergodic property. Laws of large numbers were often deduced from mixing
properties or from ergodic theorems through Markovian structures of processes, and var-
ious central limit theorems have been produced in the mixing framework and in the mar-
tingale framework. Thus, after developments of the first order statistics, it was natural that
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a part of studies of limit theorems for stochastic processes was directed to higher-order
asymptotics. This trend entailed generalization of techniques applicable to dependency.

The emphasize of this survey is put on central limit theorems and asymptotic expan-
sion applied to statistics for semimartingales. The results can essentially apply to Markov
chains, therefore so-called nonlinear time series models. On the other hand, it should be
remarked that quite a few techniques invented in classical higher-order limit theorems,
such as smoothing inequalities, work as fundamentals of the theory of asymptotic expan-
sion for semimartingales.

Since non-normality of the limit distribution of statistical estimators, even in regular
experiments, emerged rather early [935, 4], the non-ergodic statistics was commonly recog-
nized and established in the 70s. There appear limit theorems that have a mixture of normal
distributions as the limit distribution. Intuitively, the Fisher information or the energy of
the martingale of the score function does not converge to a constant like classical statis-
tics, but does to a random variable. Then the error becomes asymptotically conditionally
normal given the random Fisher information. The non-ergodic statistics required develop-
ments in limit theorems and raises a problem about asymptotic expansion. These topics
will be discussed in Section 2.5.

2.2 Refinements of Central Limit Theorems

Let (¢)) jen be a sequence of d-dimensional independent and identically distributed (i.i.d.)
random vectors with E[£1] = 0 and Cov[£;] = Iy, the identity matrix.

2.2.1 Rate of Convergence of the Central Limit Theorem

The central limit theorem states S ,, = n~/2 PNEES —? Ny(0, Iy), namely, for any bounded

continuous function g on RY, fRd 8d(Q, — ®) = 0 as n — oo, where Q, is the distribution
of §, and @ = Ny(0, Iy).

LetB,; = E [Ifii)ls] and B, = Z?:l Bs.is fgi) being the i-th element of &;. For a function g
on RY, let wg(A) = supflg(x) — g)l; x,y € A} and let w,(x; €) = we(B(x, €)) for B(x, €) =
{y;|x — y| < €}. The existence of third order moment gives a refinement of the central limit
theorem. For example, under the assumption 83 < oo, it holds that for every real valued
bounded measurable function g on RY,

| [ s, -

if B3 < cin'/ 2(10g n)~9, where ¢, ¢|, and ¢, are constants depending on d (Theorem 4.2
of Bhattacharya [15]). See also Bhattacharya [13, 14] for the origin of this result. Bhat-
tacharya and Ranga Rao [20] give a comprehensive exposition and generalizations.

< cowg(RB3n™% + f W(+s B3 log n)d® 2.1
Rd
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2.2.2 Cramér-Edgeworth Expansion

The v-th cumulant of £; is denoted by y, for a multi-index v € Z‘i, Z, ={0,1,...}. That is,
for the characteristic function ¢, of &i,

log ¢g, (u) = Z %(iu)v +o(ul®) (u—0)

vi2<ly|<s

where [v| = vj + -+ vg and «’ = (u)"" -+ (ug)*® for v = (vi,...,vq) € Z% and u =
(ul,...,ud)ERd.
LetS, =n"1/2 2'}:1 ¢;. Then independency yields

s, (w) = el 2 exp[ Z )ﬁ(iu)"n’(l"l’z)/z] X [1 + o(n =272
" v!

v:3<yI<s

as n — oo for every u € RY. The last expression is rewritten as

s=2
s, (1) = e 2[1 > 2If’r(iu)] +o(n ), 2.2)

r=1

Here each P, is a certain polynomial whose coefficients are written in y,’s. The first term
on the right-hand side of (2.2) will be denoted by P,.

The (s—2)-th order Edgeworth expansion of the distribution of S, is given by the Fourier
inversion p, = F~'[P,] of P,. Asymptotic expansion gives higher-order approximation of
the distribution of S,. This method goes back to Tchebycheff, Edgeworth, and Cramér.

Regularity of the distribution is often supposed to obtain an asymptotic expansion of
the distribution. Otherwise, this approximation is not necessarily valid. In fact, for the
Bernoulli trials &; (j € N), i.e., these random variables are independent and P[¢; = —1] =
P[¢; = 1] = 1/2. We denote by F), the distribution function of n1/? Z'}: 1 &;- Then for even
neN,

n 1 n
F,(0) — F,,(0-) = P[ Zgj = 0] = (n’/’z) (E) ~ N2
j=1

and hence for any sequence of continuous functions @,

liminf (2n)"/? sup | F2,(x) — ®,(x)| > 0.
n—oo xeR

Therefore the ordinary Edgeworth expansion always fails to give a first-order asymptotic
expansion to F,.
The Cramér condition

lim sup |eg, ()] < 1 (2.3)

|u]—00
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is effective to deduce the decay of the characteristic function of §,. If the distribution
L{£} has a nonzero absolutely continuous part of the Lebesgue decomposition, then Con-
dition (2.3) holds.

Under (2.3), combining the estimate (2.6) with (2.5) below, it is possible to evaluate
the error of the asymptotic expansion. Let s be an integer greater than 2. Let M,(f) =
Sup cpa(1 + [x|")~'f(x)| for measurable function f on RY. Let s’ < s. Then, under (2.3),

f £d0, - f Fpudx
]Kd Rd

where ¢ is a positive constant, c(s, d) is a constant depending on (s, d), and €, = o(n~=>/2)
as n — oo. This result is Theorem 20.1 of Bhattacharya and Ranga Rao [20]. We refer the
reader to Cramér [26], Bhattacharya [14], Petrov [75], and other papers mentioned therein
for results in the early days.

< My(f)e, + c(s, d)f wy(x; 2e”")D(dx) (2.4)
Rd

2.2.3 Smoothing Inequality

The so-called smoothing inequality plays an essential role in validation of the above refine-
ments (2.1) and (2.4) of the central limit theorem. Let p be an integer with p > 3. Consider
a probability measure % on RY and a constant a such that « := K.(B(0,a)) > 1/2. The
scaled measure K is defined by K.(A) = K(e"'A) for Borel sets A. Given a finite measure
P and a finite signed measure Q on RY, let Y€ = 11l kd h(|xDIKe = (P — Q)|(dx),
Zr() = I/ "Nl f{x;lx\zar} h(Ix)K(dx), and 7(1) = SUP.|yi<rae L@ ws(x +y,2ae)Q* (dy), where
f*(x) = f)/h(x)), h(r) = 1 + P (pg = 2[p/2]) and Q7 is the positive part of Q. Among
many versions, Sweeting’s smoothing inequality [88] is given by

1
20— 1

-«

|(P-0)f1| < [Aoy(e) + A1Zs(€ [€) + T(D)] + ( ) Allf*lle (2.5)

a
for €, € t satisfying 0 < € < € < a ' and t € N (a€’t < 1), where Ay, A, and A, are
some constants depending on p, d, and (P + |Q|)[/(| - [)]. See Bhattacharya [13, 14, 15] and
Bhattacharya and Rao [20] for more information of smoothing inequalities.

There exists a constant Cy such that

f |f(x)ldx < Cq4 max f |0" FLf1w)|du (2.6)
Rd nvez‘i\ Rd

|v|=0,d+1

for all measurable functions f : RY — R satisfying ﬁgd(l + XD f(x)ldx < oo; see
[19, 20]. Thus, the comparison between two measures comes down to the integrability of
their Fourier transforms and estimation of the gap between them.
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2.2.4 Applications to Statistics

Asymptotic expansion has been a basis of modern theoretical statistics. Bhattacharya
and Ghosh [17] established validity of the Edgeworth expansion of functionals of inde-
pendent random variables, and it was applied to various statistical problems by many
authors; see Google Scholar for citing papers. The reader finds related works in Bhat-
tacharya and Denker [11]. Bootstrap methods obtain their basis on the asymptotic expan-
sion (Hall [36]). Information geometry introduced a-connection and gave an interpretation
of the higher-order efficiency of the maximum likelihood estimators by the curvature of
the fiber associated with the estimator (Amari [1]). Asymptotic expansion was also applied
to construction of information criteria for model selection as well as prediction problems;
e.g., Konishi and Kitagawa [50], Uchida and Yoshida [91], Komaki [49].

2.3 Asymptotic Expansion for Mixing Processes

As a generalization from independency, central limit theorems and asymptotic expansion
were developed under mixing properties; Ibragimov [39] among many others for a central
limit theorem. Error bounds were given in Tikhomirov [89], Stein [86], and others. Nagaev
[71, 72] presented rates of convergence and asymptotic expansions for Markov chains.
Doukhan [29] gives exposition of mixing properties and related central limit theorems.

The class of diffusion processes is of importance as the intersection of the Markovian
processes and the processes for which the ergodicity can be successfully treated. Bhat-
tacharya [16], Bhattacharya and Ramasubramanian [18], and Bhattacharya and Wasielak
[12] provided ergodicity of multidimensional diffusion processes and related limit theorems.
Also see the textbook by Meyn and Tweedie [67] for a general exposition of ergodicity, and
a series of papers of Meyn and Tweedie [64, 65, 66]. Kusuoka and Yoshida discussed mix-
ing property of possibly degenerate diffusion processes in [53]. Masuda [61] gave mixing
bounds for jump diffusion processes.

Under assumption of mixing property, Gotze and Hipp [34] gave asymptotic expan-
sions for sums of weakly dependent processes that are approximated by a Markov chain.
The smoothing inequality discussed in Section 2.2 was applied together with inventive
estimates of the characteristic function. A Cramér type estimate was assumed for a con-
ditional characteristic function of local increments of the process. Gotze and Hipp [35]
carried out their scheme for more concrete time series.

The Markovian property in practice plays an essential role in estimation of the char-
acteristic function of an additive functional of the underlying process. Mixing property is
deeply related to the ergodicity especially in Markovian contexts. Therefore it is practically
natural to approach Edgeworth expansion through mixing.

Given a probability space (2, 7, P), let Y = (¥;).er, be a dp-dimensional cadlag process
and let X = (X;).er, be ad;-dimensional cadlag process with independent increments in the
sense that Bff)”t] is independent of Bffoo) for r € R, where Bff)’f; = olX, Ysre 0,71 VN
and B‘fx =o[X, - Xg;s,t € Il VN, I c Ry, with N being the null-o-field. Suppose that
Y is an e-Markov process driven by X. That is, there exists a nonnegative constant € such
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that Y, is B{A eq Vv del -measurable for all # > s > €, where 8] = o[Y,;;r € I] V N. Let
=o[X; - X,,Y:;s,t€eI]v Nforl CcR,.

An @-mixing condition for Y is expressed by the inequality

E|

— E[f1] < @y(s, Ol flleo

for s < t and bounded Bg’w)-measurable functions f. Let a(s,t) = @y(s,t —€)if s<t—¢€
and 1if s > t — €. Let a(h) = sup;», g, @(s, s + ’). we shall assume exponential rate,
namely, there exists a constant @ > 0 such that a(h) < a~'e~*" for all h > 0. This condition
can be relaxed but the exponential rate is assumed for simplicity.

We consider a d-dimensional process Z = (Z;),cr, satisfying that Z; is Bjg-measurable
and that Z, — Z; is B, -measurable for every t > s > €. Given an integer p > 3, we assume
that there exists sy > O such that

ENZl"™" +  sup  E[|Zpn — Z P < oo,
t,h:teR, ,0<h<hg
and that E[Z;] = 0 forall r € R,.

Suppose that there exists a sequence of intervals 1(j)=[u(j), v(j)] (j=1,...,n(T)) such
that lim7 e n(T)/T > 0 and 0 < § < v(j) — u(j) < & < oo for some 6 and 6, and that for

each j, some o-field By, . of Byuj-erpy satisties Eg, ., [h] = Eg . [h] forall
bounded By, j) oo)-measurable functions . Let C(j) = By jy—eu(jy) V B[v(]) e(jy)- Denote by
Z; the increment of Z over the interval J. Moreover, suppose that

hm hm sup n(T)” Z E| sup |EC( yle WLy s ]| 2.7

and liminfr_ n(T)™' 3 ;El;] > 0 for some [0, 1]-valued measurable functionals ¢ ;.
These conditions work as a kind of Cramér’s condition. Thus, in this situation, we obtain
an Edgeworth expansion of T~'/2Z; as follows. The cumulant functions y7..(«) of T~'/2Z;
are defined by y7,(u) = (0¢)"|e=o log E[exp(ieu - T~'/2Zr)] for u € RY. Next define Pr,(u)
by the formal expansion

o)

exp ( Z(r!)‘le"z)(ryr(u)) =exp (27 yr2(w) + Z €T Pr . (u).
r=2

r=1

Let 77, = F ' [¥1,] for ¥r,(uw) = exp (2 xr2w) + X7 T~"2Pr,(u). Then if the
covariance matrix Cov[7~'/2Z;] converges to a regular matrix as T — oo, then it is possi-
ble to show that a similar estimate to (2.4), and the error [E[ f(T~/?Z7)]- ¥7,,[ f]| becomes
o(T~P=2/2) ordinarily in applications. See Kusuoka and Yoshida [53] and Yoshida [99].

In order to validate the asymptotic expansion, it suffices to find good truncation func-
tionals y; and o-fields B[v(]) —en(jy) 38 well as intervals /() for which (2.7) is satisfied. For
example, we shall consider a system of stochastic integral equations
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! 15 i3
Y, = Yo+ f A(Y,_)ds + f B(Y,_)dw, + f f C(Y,_, x)ii(ds, dx)
0 0 0

! i3 !
Zi=Zy+ f A'(Y,_)ds +f B (Y, )dwy +f fC'(YS_,x)ﬂ(ds,dx)
0 0 0

where Z is o[Yy]-measurable, A € C*(R%;R%), B € C*(R%;R% @ R™), C € C®(R% x
E;R%), and similarly A’ € C*(R%;RY), B’ € C*(R%;RY ® R™), C’ € C®(R® x E;RY),
where w is an m-dimensional Wiener process, E is an open set in R?, and i is a compen-
sated Poisson random measure on R, X E with intensity dt X dx. Under standard regularity
conditions, (Y;,Z;) can be regarded as smooth functionals over the canonical space. In this
case, the process X; can be chosen as X; = (wy, 1;,(g;); i € N) for a countable measure det-
ermining family over E, and Y is a 0-Markov process (i.e., a Markovian process). Though
there are several versions of the Malliavin calculus for jump processes, we consider a clas-
sical version based on diffusive intensive measure for example by Bichteler et al. [22].
Then it is possible to make truncation functionals i ; by using local non-degeneracy of the
Malliavin covariance matrix of the system. See Kusuoka and Yoshida [53] and Yoshida
[99] for details of this case. The local non-degeneracy of the Malliavin covariance of the
functional to be expanded plays a similar role as the Cramér condition in independent
cases, assisted by the support theorem for stochastic differential equations.

Since typical statistics are expressed as a Bhattacharya-Ghosh [17] transform of a multi-
dimensional additive functional that admits the Edgeworth expansion, it is possible to
obtain Edgeworth expansions for them. This enables us to construct higher-order statistics
for stochastic processes (Sakamoto and Yoshida [83, 84], Uchida and Yoshida [91]). For
moment expansions, if the Fourier analytic aspect of the smoothing inequality is recalled
or the Taylor expansion is applied directly, it is clearly possible to remove Cramér’s type
condition of the regularity of the distribution. Some refinements of the results of Gotze
and Hipp were given in Lahiri [57].

2.4 Asymptotic Expansion for Martingales

2.4.1 Martingale Central Limit Theorems

Suppose that, for each n € N, 8" = (Q",F",F", P") is a stochastic basis with a
filtration F" = (¥, )sc0,1,..1,- We consider a sequence of discrete-time L?-martingales
M" = (M})=0,1,..1, (n € N), each M" defined on 8" and My = 0. Let & = M} — M,
fort = 1,...,T,. Then a classical martingale central limit theorem is stated as follows.
Suppose that (i) Zth"l E"[(EM?IF",] =P o as n — oo for some constant o2, and that for

€>0, X0 E"(EN lyeselF",] P 0as n — co. Then M} —* N(0,0%) as n — .
Here E" denotes the expectation with respect to P”, and the convergence —” is naturally
defined along the sequence (P"),en. For this result, see B. M. Brown [25], Dvoretsky [30],
McLeish [63], Rebolledo [82], Hall and Heyde [37]. Functional type convergence results

also hold.
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Various extensions were made to limit theorems for semimartingales. Among them,
a version of the central limit theorem for seminartingales is as follows. Consider a
sequence of stochastic processes X", n € N, each of which is a semimartingale defined
on a stochastic basis 8" with a filtration F* = (7").eg,, and has the local character-
istics (B",C",v"), where B" is the finite variation part with respect to the truncation
by the function x1jy<i;, C" is the predictable covariation process for the continuous
local martingale part X™¢ of X", and v" is the compensator of the integer-valued ran-
dom measure y" of jumps of X". Denote by M = (M;).r, a continuous Gaussian
martingale with a (deterministic) quadratic variation (M). Suppose that Xj = 0 and
the following conditions are fulfilled for every + > O and € > 0 as n — oo: (i)
fol f{|x|>s; Vi(ds,dx) —P 0, (i) B™ + Y., f[mge} xV'({s},dx) —P 0, B being the con-

t 2

tinuous part of B", and (iii) C} + fo f{lxlsd ¥V (ds,dx) =Y < (f{|x|Sf} Vi({s}, dx)) —P (M),.
Then the finite-dimensional convergence X" —47 M holds. Moreover, under (i), (iii), and
(i) supcpoq BV + Dzt figeq ¥ (U} d)
in place of (ii), one has the functional convergence X" —¢ M in D(R,;R) as n — oco.
See Liptser and Shiryayev [59], Jacod et al. [42], Jacod and Shiryaev [43], and Liptser
and Shiryaev [60]. Developments of the central limit theorems for martingales and con-
vergences to processes with independent increments are owed to many authors. We refer
the reader to the bibliographical comments to Chapter VIII of Jacod and Shiryaev [43].

The simplest case is the central limit theorem for continuous local martingales. Let
M" = (M} )01 be a continuous local martingale defined on 8". If (M"); —? C. as
n — oo for some constant C,, then

—P 0asn — oo foreveryr > 0 and € > 0,

M" —-? N(0,C,) as n— oo, (2.8)

For later discussions, it is worth recalling the derivation of the central limit theorem (2.8).
Let C} = (M");. We have a trivial decomposition of the characteristic function of M7:

E["™M] =Ty + T, + T (2.9)

for u € R, where Ty = E[e2 ], T, = E[¢"™i(1 — ¢ €i1-C))] and T, =
E[(eMMi+27'Clw* _ 1)=27'Co®] If necessary, we replace M" by a suitably stopped process
to validate integrability of variables. By the convergence of C”, the tangent T tends to 0.
Moreover, the torsion T, vanishes thanks to the martingale property of the exponential
martingale since C,, is deterministic. Thus, £ [¢"M] - E [e‘zflcm“z] = e‘zflc“’“z, which
proves (2.8).

For martingales with jumps, a uniformity condition such as the conditional type Lin-
deberg condition is necessary to obtain central limit theorems. Otherwise, processes with
independent increments can appear as the limit.

2.4.2 Berry-Esseen Bounds

Berry-Esseen type bounds are in Bolthausen [24] and Hiusler [38]. Rate of convergence in
the central limit theorem for semi-martingales is in Liptser and Shiryaev [58, 60]. In other
frames of dependent structures, error bounds are found in Bolthausen [23] for functionals
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of discrete Markov chains, Bentkus, Gotze, and Tikhomirov [10] for statistics of S-mixing
processes, Dasgupta [28] for nonuniform estimates for some stationary m-dependent pro-
cesses, and Sunklodas [87] for a lower bound for the rate of convergence in the central
limit theorem for m-dependent random fields.

2.4.3 Asymptotic Expansion of Martingales

Consider a sequence of random variables (Z,),cn having a stochastic expansion
Z, =M, +r,N,, (2.10)

where for each n € N, M,, denotes the terminal random variable M T of a continuous martin-
gale (M7)se0,1) with M{j = 0, on a stochastic basis 8" = (", F",F", P"), F" = (F/ )e(0,11-
The variable N, is a random variable on 8" but no specific structure like adaptiveness is
assumed, and (r,) is a sequence of positive numbers tending to zero as n — oo. Suppose
that (M"); —” 1 as n — oo for the quadratic variation (M") of M". Then the martingale
central limit theorem (2.8) ensures the convergence M,, —4 N(0, 1) as n — oo.

The effect of the tangent T appears in the asymptotic expansion of the law £{Z,}. We
suppose that (M,,, &,, N,) =% (Z,&,17) asn — oo for &, = r;'((M"); —1). Define the density
Pn by

1
Pn(2) = ¢(2) + Ernf??(E[fIZ = 21¢(2)) = ra0-(EZ = z]4(2)), 2.11)

where ¢ is the standard normal density. Furthermore, we assume that each (", 7", P") is
equipped with a Malliavin calculus and random variables are differentiable in Malliavin’s
sense. Then the derivatives in (2.11) exist, and for any @ € Z,, p > 1 and g > 2/3, we
obtain the estimate

‘E[f(zn)] - ff(Z)pn(Z)dZ‘ < C(”f(zn)“u' + ”f”Ll((1+|z|2)"’/2dz))
X(ry Ploy, < s.1'7 + &)

for any measurable function f satisfying E[|f(Z,)|] < oo and f [f(0)|pu(2)dz < oo, where
o u, is the Malliavin covariance of M, s, are positive smooth functionals with complete
non-degeneracy sup,.y E[s,”] < coforanym > 1, p" = p/(p - 1), 6 = o(r,), and C is a
constant independent of f. Assumption of full non-degeneracy for oy, is not realistic in
statistical applications, nor necessary in asymptotic expansion.

The central limit theorem for the functional of the form fOT T-'2g,dw, for a random
process a; is indispensable to deduce asymptotic normality of the estimators in the like-
lihood analysis of the drift parameter of ergodic diffusion processes. Then it is natural to
seek for asymptotic expansion for martingales to formulate higher-order statistical infer-
ence for diffusion processes. As a matter of fact, the martingale expansion went ahead of
the mixing method, as for semimartingales. The second-order mean-unbiased maximum
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likelihood estimator @; of the drift parameter 6 of an ergodic diffusion process has the
Edgeworth expansion

-1/3)
2032NT

where [ is the Fisher information at 6 and @ is the standard normal distribution function.
I'=173) is the coefficient of the Aamari-Chentsov affine a-connection for & = —1/3 [97].

See [97] for details of this subsection. A similar asymptotic expansion formula exits
for general martingales M" with jumps. In that case, we take &, = r,," (&, — 1) with &), =
1[M"] + 3(M");. A Malliavin calculus on Wiener-Poisson space is used to quantify the
non-degeneracy of M, [98].

Mykland [68, 69, 70] provided asymptotic expansion of moments. The author was in-
spired by his pioneering work.

The mixing approach gives in general more efficient way to asymptotic expansion if
one treats functionals of e-Markov processes with mixing property like the above example.
However, the martingale approach still has advantages of wide applicability. For example,
an estimator of volatility in finite time horizon, non-Gaussianity appears in the higher-
order term of the limit distribution even if the statistic is asymptotically normal. Such
phenomena cannot be handled by mixing approach; however, the martingale expansion
still gives asymptotic expansion.

P[VIT(®; - 0) < x| = ®(x) + (= Dg(x) + o (T7172)

2.5 Non-ergodic Statistics and Asymptotic Expansion

2.5.1 Non-central Limit of Estimators in Non-ergodic Staftistics

The non-ergodic statistics features asymptotic mixed normality of estimators. Non-normality
of the maximum likelihood estimators was observed quite many years ago: White [95],
Anderson [4], Rao [81], Keiding [46, 47].

Extension of the classical asymptotic decision theory was required to formulate non-
ergodic statistics: Basawa and Koul [7], Basawa and Prakasa Rao [8], Jeganathan [45], and
Basawa and Scott [9]. From aspects of limit theorems, the notion of stable convergence is
fundamental since the Fisher information is random even in the limit. The nesting con-
dition with Rényi mixing is a standard argument there. In this trend, Feigin [31] proved
stable convergence for semimartingales.

Statistical inference for high frequency data has been attracting attention since around
1990. Huge volume of literature is available today: Prakasa Rao [77, 78], Dacunha-Castelle
and Florens-Zmirou [27], Florens-Zmirou [32], Yoshida [96, 100], Genon-Catalot and Ja-
cod [33], Bibby and Soerensen [21], Kessler [48], Andersen and Bollerslev [2], Andersen
et al. [3], Barndorff-Nielsen and Shephard [5, 6], Shimizu and Yoshida [85], Uchida [90],
Ogihara and Yoshida [73, 74], Uchida and Yoshida [92, 93], and Masuda [62] among many
others. Recently a great interest is in estimation of volatility. The scaled error of a volatility
estimator admits a stable convergence to a mixed normal distribution, that is, typically for
a volatility estimator 8,, Vn(8, —6) —»% I'"'/2f where I" is the random Fisher information
and £ ~ N(0, 1) independent of I'. It is possible to apply the martingale problem method
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as in Genon-Catalot and Jacod [33], Jacod [41], or convergence of stochastic integrals in
Jakubowski et al. [44] and Kurtz and Protter [52] to obtain stable convergence.

2.5.2 Non-ergodic Statistics and Martingale Expansion

To go beyond the first order! asymptotic statistical theory, we need to develop asymptotic
expansion of functionals. However, the potential (Doléans-Dade exponential~!) that makes
a local martingale from exp(uM{) no longer has a deterministic limit, and this breaks a
usual way to asymptotic expansion. In other words, the exponential martingale in T} is not
a martingale under the measure E [~e‘c°°”2/ 21/E [e‘CW”Z/ 2], and the torsion of this shift on
the martingale appears in the expansion.

We will consider a d-dimensional random variable Z, that admits the stochastic
expansion (2.10) on (2, % ,F, P), F = (Fi)sej0,17- M" is a d-dimensional continuous local
martingale with M{j = 0, and N, is a d-dimensional random variable. Let C} = (M"),,
RY®@RY-valued random matrix. A d,-dimensional reference variable is denoted by F,. For
example, F), is the Fisher information matrix. We shall present an expansion of the joint
law L{(Z,, F\)}. ) )

The tangent vectors are given by C,= r;l(C’l’ - CY) and F,= r-Y(F, — Fs). Sup-
pose that (M", Ny, C, F) =T (M, Neo, Coo, Feo) and M ~ Ng(0, C™). These limit
variables are defined on the extension (2, F, P) = (x 502 F X 7?‘ , Px 10-") of (Q,F,P).
Let ¥ = F v o[M7°]. Random function Co(z) = C(w,?) is a matrix-valued random
function satisfying C(w, M) = E[E‘(,o 1F]. Similarly, let Foo(w, M) = E[}ci"w |1 and
Neo(w, M) = E[N|F].

To make an expansion formula, we need two kinds of random symbols: the adap-

tive random symbol and the anticipative random symbol. The adaptive random symbol
is defined by

oz i) = 5 CoU0?) + Nl + Ful)liv]

for u € RY and v € RY'. Here the brackets mean a linear functional. This random symbol is
corresponding to the correction term of the classical asymptotic expansion. Let ¥, (1, v) =
exp (- $Colt®?] + iF[v]), Coo := C° and let L'(u) = exp (iM?"[u] + $C*[u®*]) — 1. Then
the anticipative random symbol o (iu, iv) = ), j¢jiw)y™i(iv)" (multi-index) is specified by

lim 7, E[L () Vet VW] = E[Weo (it V)T (it V)], 2.12)

where ¥, ~ 1 is a truncation functional a suitable choice of which reflects the local non-
degeneracy of (Z,, F,).

! The order of the central limit theorem is referred to as the first order in asymptotic decision theory,
differently from the numbering of terms in asymptotic expansion.
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For the full random symbol o = o + 7, the asymptotic expansion formula is defined by
Pn(z, %) = E[¢(2;0, Cu)0x(Feo)] + 1 E[07(z, 82, 0:)"{¢(z; 0, Coo)0x(Feo)}],

where ¢(z; 0, C) is the normal density with mean 0 and covariance matrix C, and 6,(F )
is Watanabe’s delta function; cf. Watanbe [94], Ikeda and Watanabe [40]. The adjoint
0(z,0,,0,)" is naturally defined as 07(z,0;,0.)"{¢(z; 0, Coo)0(Foo)} = X (=)™ (=0,)"
s{c;j#(z;0, Coo)x(F o)} and similarly for o The density formula gives a concrete expres-
sion since E[yd,(F)] = E[y|F = x]p¥(x) for functionals ¢ and F.

Under certain non-degeneracy conditions, for any positive numbers B and v,

sup
fe&(Byy)

E[f(Zy, Fo)] - L oy J@0Pa(2, V)dzdx) = o(ry) (2.13)

as n — oo, where &(B,y) is the set of measurable functions f : R*% — R satisfying
|f(z, )] < B(1 + |z] + |x])” for all (z, x) € RY x R% . Details are given in [102].

The martingale expansion (2.13) was applied to the realized volatility in [101]. The
martingale part M" is a sum of double Skorokhod integrals. The anticipative random
symbol o specified by the integration-by-parts formula at (2.12) has expression involv-
ing the Malliavin derivatives. Recently Podolskij and Yoshida [76] obtained expansions
for p-variations. Construction of higher order statistical inference is a theme of the non-
ergodic statistics today.

Acknowledgements This work was in part supported by Japan Society for the Promotion of Science
Grants-in-Aid for Scientific Research No. 24340015 (Scientific Research), Nos. 24650148 and 26540011
(Challenging Exploratory Research); CREST Japan Science and Technology Agency; and by a Cooper-
ative Research Program of the Institute of Statistical Mathematics.

References

[1] Shun-ichi Amari. Differential-geometrical Methods in Statistics, volume 28 of
Lecture Notes in Statistics. Springer-Verlag, New York, 1985.

[2] Torben G. Andersen and Tim Bollerslev. Answering the skeptics: Yes, standard
volatility models do provide accurate forecasts. International Economic Review,
39:885-905, 1998.

[3] Torben G. Andersen, Tim Bollerslev, Francis X. Diebold, and Paul Labys. The dis-
tribution of realized exchange rate volatility. J. Amer. Statist. Assoc., 96(453):42-55,
2001.

[4] Theodore W. Anderson. On asymptotic distributions of estimates of parameters of
stochastic difference equations. Ann. Math. Statist., 30:676—687, 1959.

[5] Ole E. Barndorftf-Nielsen and Neil Shephard. Econometric analysis of realized
volatility and its use in estimating stochastic volatility models. J. R. Stat. Soc. Ser.
B Stat. Methodol., 64(2):253-280, 2002.



2 Asymptotic Expansions for Stochastic Processes 27

(6]

(7]

(8]

(9]

(10]

(11]
[12]
[13]
(14]

(15]

[16]
(17]
(18]

(19]

(20]
[21]

(22]

(23]

Ole E. Barndorff-Nielsen and Neil Shephard. Econometric analysis of realized co-
variation: high frequency based covariance, regression, and correlation in financial
economics. Econometrica, 72(3):885-925, 2004.

Ishwar V. Basawa and Hira L. Koul. Asymptotic tests of composite hypotheses
for nonergodic type stochastic processes. Stochastic Process. Appl., 9(3):291-305,
1979.

Ishwar V. Basawa and B. L. S. Prakasa Rao. Statistical Inference for Stochastic
Processes. Probability and Mathematical Statistics. Academic Press Inc. [Harcourt
Brace Jovanovich Publishers], London, 1980.

Ishwar V. Basawa and David J. Scott. Asymptotic Optimal Inference for Nonergodic
Models, volume 17 of Lecture Notes in Statistics. Springer-Verlag, New York, 1983.
Vidmantas K. Bentkus, Friedrich Gotze, and Alexander N. Tikhomirov. Berry-
Esseen bounds for statistics of weakly dependent samples. Bernoulli, 3:329-349,
1997.

Rabi Bhattacharya and Manfred Denker. Asymptotic Statistics, volume 14 of DMV
Seminar. Birkhduser, Basel, 1990.

Rabi Bhattacharya and Aramian Wasielak. On the speed of convergence of multidi-
mensional diffusions to equilibrium. Stochastics and Dynamics, 12(1), 2012.

Rabi N. Bhattacharya. Rates of weak convergence for the multidimensional central
limit theorem. Teor. Verojatnost. i Primenen, 15:69-85, 1970.

Rabi N. Bhattacharya. Rates of weak convergence and asymptotic expansions for
classical central limit theorems. Ann. Math. Statist., 42:241-259, 1971.

Rabi N. Bhattacharya. Recent results on refinements of the central limit theorem. In
Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Prob-
ability (Univ. California, Berkeley, Calif., 1970/1971), Vol. 1I: Probability theory,
pages 453—-484. Univ. California Press, Berkeley, Calif., 1972.

Rabi N. Bhattacharya. On classical limit theorems for diffusions. Sankhya (Statis-
tics). The Indian Journal of Statistics. Series A, 44(1):47-71, 1982.

Rabi N. Bhattacharya and Jayanta K. Ghosh. On the validity of the formal
Edgeworth expansion. Ann. Statist., 6(2):434-451, 1978.

Rabi N. Bhattacharya and Sundareswaran Ramasubramanian. Recurrence and erg-
odicity of diffusions. Journal of Multivariate Analysis, 12(1):95-122, 1982.

Rabi N. Bhattacharya and R. Ranga Rao. Normal Approximation and Asymptotic
Epansions. Robert E. Krieger Publishing Co. Inc., Melbourne, FL, 1986. Reprint of
the 1976 original.

Rabi N. Bhattacharya and R. Ranga Rao. Normal Approximation and Asymptotic
Expansions, volume 64 of Classics in Applied Mathematics. SIAM, 2010.

Bo Martin Bibby and Michael Sgrensen. Martingale estimation functions for dis-
cretely observed diffusion processes. Bernoulli, 1(1-2):17-39, 1995.

Klaus Bichteler, Jean-Bernard Gravereaux, and Jean Jacod. Malliavin Calculus for
Processes with Jumps, volume 2 of Stochastics Monographs. Gordon and Breach
Science Publishers, New York, 1987.

Erwin Bolthausen. The Berry-Esseen theorem for functionals of discrete Markov
chains. Z. Wahrsch. verw. Gebiete, 54(1):59-73, 1980.



28
[24]
[25]

[26]

[27]
(28]
[29]

(30]

(31]
(32]

(33]

[34]
[35]
(36]

[37]

[38]
(39]

[40]

[41]

[42]

N. Yoshida

Erwin Bolthausen. Exact convergence rates in some martingale central limit
theorems. Ann. Probab., 10(3):672-688, 1982.

Bruce M. Brown. Martingale central limit theorems. Ann. Math. Statist., 42:59-66,
1971.

Harald Cramér. Random Variables and Probability Distributions, volume 36 of
Cambridge Tracts in Mathematics. Cambridge University Press,Cambridge, 3rd
edition, 1970.

Didier Dacunha-Castelle and Danielle Florens-Zmirou. Estimation of the coeffi-
cients of a diffusion from discrete observations. Stochastics, 19(4):263-284, 1986.
Ratan Dasgupta. Nonuniform speed of convergence to normality for some stationary
m-dependent processes. Calcutta Statist. Assoc. Bull., 42(167-168):149-162, 1992.
Paul Doukhan. Mixing: Properties and Examples., volume 85 of Lecture Notes in
Statistics. Springer-Verlag, New York, 1994.

Aryeh Dvoretsky. Asymptotic normality for sums of dependent random variables.
In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and
Probability, pages 513-535. Univ. California Press, Berkeley, Calif., 1972.

Paul D. Feigin. Stable convergence of semimartingales. Stochastic Process. Appl.,
19(1):125-134, 1985.

Daniéle Florens-Zmirou. Approximate discrete-time schemes for statistics of diffu-
sion processes. Statistics, 20(4):547-557, 1989.

Valentine Genon-Catalot and Jean Jacod. On the estimation of the diffusion
coefficient for multi-dimensional diffusion processes. Annales de I’Institut Henri
Poincaré (B) Probabilités et Statistiques, 29(1):119-151, 1993.

Friedrich Gotze and Christian Hipp. Asymptotic expansions for sums of weakly
dependent random vectors. Z. Wahrsch. verw. Gebiete, 64(2):211-239, 1983.
Friedrich Gotze and Christian Hipp. Asymptotic distribution of statistics in time
series. Ann. Statist., 22(4):2062-2088, 1994.

Peter Hall. The Bootstrap and Edgeworth Expansion. Springer Series in Statistics.
Springer-Verlag, New York, 1992.

Peter Hall and Christopher C. Heyde. Martingale Limit Theory and its Application.
Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980.
Probability and Mathematical Statistics.

Erich Hiusler. On the rate of convergence in the central limit theorem for martin-
gales with discrete and continuous time. Ann. Probab., 16(1):275-299, 1988.

Ildar A. Ibragimov. Some limit theorems for stationary processes. Theory of Prob-
ability & Its Applications, 7(4):349-382, 1962.

Nobuyuki Ikeda and Shinzo Watanabe. Stochastic Differential Equations and Diffu-
sion Processes, volume 24 of North-Holland Mathematical Library. North-Holland
Publishing Co., Amsterdam, 2nd edition, 1989.

Jean Jacod. On continuous conditional Gaussian martingales and stable conver-
gence in law. In Séminaire de Probabilités, XXXI, volume 1655 of Lecture Notes
in Math., pages 232-246. Springer, Berlin, 1997.

Jean Jacod, Andrzej Klopotowski, and Jean Mémin. Théoreme de la limite centrale
et convergence fonctionnelle vers un processus a accroissements indépendants: la
méthode des martingales. Annales de I’Institut Henri Poincaré (B) Probabilités et
Statistiques, 18(1):1-45, 1982.



2 Asymptotic Expansions for Stochastic Processes 29

[43]

[44]

[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]

(53]

[54]

[55]
[56]
[57]

(58]

[59]

[60]

[61]

Jean Jacod and Albert N. Shiryaev. Limit Theorems for Stochastic Processes, vol-
ume 288 of Grundlehren der Mathematischen Wissenschaften [ Fundamental Prin-
ciples of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2003.
Adam Jakubowski, Jean Mémin, and Gilles Pages. Convergence en loi des suites
d’intégrales stochastiques sur I’espace D' de Skorokhod. Probability Theory and
Related Fields, 81(1):111-137, 1989.

P. Jeganathan. On the asymptotic theory of estimation when the limit of the log-
likelihood ratios is mixed normal. Sankhya Ser. A, 44(2):173-212, 1982.

Niels Keiding. Correction to: “Estimation in the birth process” (Biometrika 61
(1974), 71-80). Biometrika, 61:647, 1974.

Niels Keiding. Maximum likelihood estimation in the birth-and-death process. Ann.
Statist., 3:363-372, 1975.

Mathieu Kessler. Estimation of an ergodic diffusion from discrete observations.
Scand. J. Statist., 24(2):211-229, 1997.

Fumiyasu Komaki. On asymptotic properties of predictive distributions.
Biometrika, 83(2):299-313, 1996.

Sadanori Konishi and Genshiro Kitagawa. Generalised information criteria in model
selection. Biometrika, 83(4):875-890, 1996.

Uwe Kiichler and Michael Sgrensen. Exponential Families of Stochastic Processes.
Springer Series in Statistics. Springer-Verlag, New York, 1997.

Thomas G. Kurtz and Philip Protter. Weak limit theorems for stochastic integrals
and stochastic differential equations. Ann. Probab., 19(3):1035-1070, 1991.
Shigeo Kusuoka and Nakahiro Yoshida. Malliavin calculus, geometric mixing, and
expansion of diffusion functionals. Probab. Theory Related Fields, 116(4):457-484,
2000.

Yury A. Kutoyants. Parameter Estimation for Stochastic Processes, volume 6 of
Research and Exposition in Mathematics. Heldermann Verlag, Berlin, 1984. Trans-
lated from the Russian and edited by B. L. S. Prakasa Rao.

Yury A. Kutoyants. Statistical Inference for Spatial Poisson Processes, volume 134
of Lecture Notes in Statistics. Springer-Verlag, New York, 1998.

Yury A. Kutoyants. Statistical Inference for Ergodic Diffusion Processes. Springer
Series in Statistics. Springer-Verlag London Ltd., London, 2004.

Soumendra Nath Lahiri. Refinements in asymptotic expansions for sums of weakly
dependent random vectors. Ann. Probab., 21(2):791-799, 1993.

Robert S. Liptser and Albert N. Shiryaev. On the rate of convergence in the cen-
tral limit theorem for semimartingales. Theory of Probability & Its Applications,
27(1):1-13, 1982.

Robert S. Liptser and Albert N. Shiryayev. A functional central limit theorem for
semimartingales. Theory of Probability & Its Applications, 25(4):667-688, 1981.
Robert S. Liptser and Albert N. Shiryayev. Theory of Martingales, volume 49 of
Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers
Group, Dordrecht, 1989. Translated from the 1974 Russian original by A.B. Aries.
Hiroki Masuda. Ergodicity and exponential S-mixing bounds for multidimensional
diffusions with jumps. Stochastic Process. Appl., 117(1):35-56, 2007.



30 N. Yoshida

[62] Hiroki Masuda et al. Convergence of Gaussian quasi-likelihood random fields for
ergodic Lévy driven SDE observed at high frequency. Ann. Statist., 41(3):1593—
1641, 2013.

[63] Donald L. McLeish. Dependent central limit theorems and invariance principles.
Ann. Probab., 2:620-628, 1974.

[64] Sean P. Meyn and Richard L. Tweedie. Stability of Markovian processes. 1. Criteria
for discrete-time chains. Adv. Appl. Probab., 24(3):542-574, 1992.

[65] Sean P. Meyn and Richard L. Tweedie. Stability of Markovian processes. II.
Continuous-time processes and sampled chains. Adv. Appl. Probab., 25(3):487-517,
1993.

[66] Sean P. Meyn and Richard L. Tweedie. Stability of Markovian processes. III.
Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Probab.,
25(3):518-548, 1993.

[67] Sean P. Meyn and Richard L. Tweedie. Markov Chains and Stochastic Stability.
Cambridge University Press, Cambridge, 2nd edition, 2009. (With a prologue by
Peter W. Glynn.).

[68] Per Aslak Mykland. Asymptotic expansions and bootstrapping distributions for de-
pendent variables: a martingale approach. Ann. Statist., 20(2):623-654, 1992.

[69] Per Aslak Mykland. Asymptotic expansions for martingales. Ann. Probab.,
21(2):800-818, 1993.

[70] Per Aslak Mykland. Martingale expansions and second order inference. Ann.
Statist., 23(3):707-731, 1995.

[71] Sergey V. Nagaev. Some limit theorems for stationary Markov chains. Theory of
Probability & Its Applications, 2(4):378-406, 1957.

[72] Sergey V. Nagaev. More exact statement of limit theorems for homogeneous
Markov chains. Theory of Probability & Its Applications, 6(1):62-81, 1961.

[73] Teppei Ogihara and N Yoshida. Quasi-likelihood analysis for the stochastic differ-
ential equation with jumps. Statistical Inference for Stochastic Processes, 14(3):
189-229, 2011.

[74] Teppei Ogihara and Nakahiro Yoshida. Quasi-likelihood analysis for stochas-
tic regression models with nonsynchronous observations. arXiv preprint;
arXiv:1212.4911, 2012.

[75] Valentin V. Petrov. Sums of Independent Random Variables, volume 82 of
Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, New York-
Heidelberg, 1975. Translated from the Russian by A. A. Brown.

[76] Mark Podolskij and Nakahiro Yoshida. Edgeworth expansion for functionals of con-
tinuous diffusion processes. arXiv preprint; arXiv:1309.2071, 2013.

[77] B. L. S. Prakasa Rao. Asymptotic theory for nonlinear least squares estimator for
diffusion processes. Math. Operationsforsch. Statist. Ser. Statist., 14(2):195-209,
1983.

[78] B. L. S. Prakasa Rao. Statistical inference from sampled data for stochastic pro-
cesses. In Statistical Inference from Stochastic Processes (Ithaca, NY, 1987), vol-
ume 80 of Contemp. Math., pages 249-284. Amer. Math. Soc., Providence, RI,
1988.



2 Asymptotic Expansions for Stochastic Processes 31

[79]

[80]

[81]
[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

(93]

[94]

B.L.S. Prakasa Rao. Semimartingales and their Statistical Inference, volume 83 of
Monographs on Statistics and Applied Probability. Chapman & Hall/CRC, Boca
Raton, FI, 1999.

B.L.S. Prakasa Rao. Statistical Inference for Diffusion Type Processes, volume 8§ of
Kendall’s Library in Statistics. E. Arnold, London; Oxford Univ. Press, New York,
1999.

Malempati M. Rao. Consistency and limit distributions of estimators of parameters
in explosive stochastic difference equations. Ann. Math. Statist., 32:195-218, 1961.
Rolando Rebolledo. Central limit theorems for local martingales. Probability
Theory and Related Fields, 51(3):269-286, 1980.

Yuji Sakamoto and Nakahiro Yoshida. Asymptotic expansion formulas for func-
tionals of e-Markov processes with a mixing property. Ann. Inst. Statist. Math.,
56(3):545-597, 2004.

Yuji Sakamoto and Nakahiro Yoshida. Third-order asymptotic expansion of
M-estimators for diffusion processes. Ann. Inst. Statist. Math., 61(3):629-661,
2009.

Yasutaka Shimizu and Nakahiro Yoshida. Estimation of parameters for diffusion
processes with jumps from discrete observations. Stat. Inference Stoch. Process.,
9(3):227-277, 2006.

Charles Stein. A bound for the error in the normal approximation to the distribu-
tion of a sum of dependent random variables. In Proc. Sixth Berkeley Symposium
on Mathematical Statistics and Probability, volume II: Probability Theory, pages
583—-602. Univ. California Press, Berkeley, Calif., 1972.

Jonas K. Sunklodas. A lower bound for the rate of convergence in the cen-
tral limit theorem for m-dependent random fields. Teor. Veroyatnost. i Primenen.,
43(1):171-179, 1998.

Trevor J. Sweeting. Speeds of convergence for the multidimensional central limit
theorem. Ann. Probab., 5(1):28-41, 1977.

Alexander N. Tikhomirov. On the convergence rate in the central limit theorem
for weakly dependent random variables. Theory of Probability & Its Applications,
25(4):790-809, 1981.

Masayuki Uchida. Contrast-based information criterion for ergodic diffusion pro-
cesses from discrete observations. Annals of the Institute of Statistical Mathematics,
62(1):161-187, 2010.

Masayuki Uchida and Nakahiro Yoshida. Information criteria in model selection for
mixing processes. Stat. Inference Stoch. Process., 4(1):73-98, 2001.

Masayuki Uchida and Nakahiro Yoshida. Adaptive estimation of an ergodic diffu-
sion process based on sampled data. Stochastic Processes and their Applications,
122(8):2885-2924, 2012.

Masayuki Uchida and Nakahiro Yoshida. Quasi likelihood analysis of volatility and
nondegeneracy of statistical random field. Stochastic Processes and their Applica-
tions, 123(7):2851-2876, 2013.

Shinzo Watanabe. Lectures on Stochastic Differential Equations and Malliavin Cal-
culus. (Notes by Nair, M. Gopalan and Rajeev, B.), volume 73 of Tata Institute
of Fundamental Research Lectures on Mathematics and Physics. Springer-Verlag,
Berlin, 1984.



32 N. Yoshida

[95] John S. White. The limiting distribution of the serial correlation coefficient in the
explosive case. Ann. Math. Statist., 29:1188-1197, 1958.

[96] Nakahiro Yoshida. Estimation for diffusion processes from discrete observation.
J. Multivariate Anal., 41(2):220-242, 1992.

[97] Nakahiro Yoshida. Malliavin calculus and asymptotic expansion for martingales.
Probab. Theory Related Fields, 109(3):301-342, 1997.

[98] Nakahiro Yoshida. Malliavin calculus and martingale expansion. Bull. Sci. Math.,
125(6-7):431-456, 2001. Rencontre Franco-Japonaise de Probabilités (Paris,
2000).

[99] Nakahiro Yoshida. Partial mixing and conditional Edgeworth expansion for diffu-
sions with jumps. Probab. Theory Related Fields, 129:559-624, 2004.

[100] Nakahiro Yoshida. Polynomial type large deviation inequalities and quasi-
likelihood analysis for stochastic differential equations. Annals of the Institute of
Statistical Mathematics, 63(3):431-479, 2011.

[101] Nakahiro Yoshida. Asymptotic expansion for the quadratic form of the diffusion
process. arXiv preprint; arXiv:1212.5845, 2012.

[102] Nakahiro Yoshida. Martingale expansion in mixed normal limit. arXiv preprint;
arXiv:1210.3680v3, 2012.



2 Springer
http://www.springer.com/978-3-319-30188-4

Rabi M. Bhattacharya

Selected Papers

Denker, M.; Waymire, E.C. (Eds.)
2016, XX, 711 p. 1 illus., Hardcowver
ISEM: 978-3-319-30188-4

A product of Birkhauser Basel



	2 Asymptotic Expansions for Stochastic Processes
	2.1 Introduction
	2.2 Refinements of Central Limit Theorems
	2.2.1 Rate of Convergence of the Central Limit Theorem
	2.2.2 Cramér-Edgeworth Expansion
	2.2.3 Smoothing Inequality
	2.2.4 Applications to Statistics

	2.3 Asymptotic Expansion for Mixing Processes
	2.4 Asymptotic Expansion for Martingales
	2.4.1 Martingale Central Limit Theorems
	2.4.2 Berry-Esseen Bounds
	2.4.3 Asymptotic Expansion of Martingales

	2.5 Non-ergodic Statistics and Asymptotic Expansion
	2.5.1 Non-central Limit of Estimators in Non-ergodicStatistics
	2.5.2 Non-ergodic Statistics and Martingale Expansion

	References


