
Chapter 2
Intelligent Web Data Management
of NoSQL Data Warehouse

2.1 Introduction

2.1.1 Background

Relational database management systems (RDBMSs) have been widely used for
decades to store two dimensional data. However, it will have the I/O bottleneck
issues in a world of big data, especially for the read (e.g. query and search)
operation. To address this limitation, several systems have already emerged to
propose an alternative schema-free database, known as NoSQL [1]. A NoSQL
database provides a mechanism for storage and retrieval of data that is modeled in
means other than the tabular relations used in relational databases. Motivations for
this approach include simplicity of design, horizontal scaling and finer control over
availability, especially in using in big data and real-time web applications. The data
structure (e.g., tree, graph, and key/value) differs from the RDBMS, and therefore
some operations are faster in NoSQL and some in RDBMS. Despite the consistency
problem, the benefits of using NoSQL outweigh its disadvantages.

A document-oriented database, or simply called document store for short, is
one oof NoSQL databases. It is commonly used to store, retrieve, and manage
document-oriented information, which encapsulates and encodes data in some
standard formats. Encodings in use include XML, JSON, as well as BSON.
MongoDB [2] is an example of the leading document-based NoSQL database,
which enables new types of applications, better customer experience, and faster
time to market and lower costs for organizations of all sizes. Currently, there are
some classical solutions and best practices of the MongoDB.
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2.1.2 Challenges and Contributions

Nowadays, data warehouse plays an important part in most of areas of data man-
agement including data analysis, data mining and decision support activities in
academic and industrial community. Data administrators create the habit of using
high-specialized data structures that data warehouses usually maintain materializing
their most essential multidimensional perspectives for business analysis and deci-
sion. The data in the data warehouse today is enormous, and besides supporting
their information needs that they also enrich their common knowledge by bringing
new data from very specialized outsourced repositories. The challenge in the data
warehouse is that it would have very little effect on the track of the historical data
after reducing the data redundancy and compressing the data.

As we know, dimension tables are used to provide subject-oriented information
by providing data elements to filter, aggregate or describe facts in a relational data
warehouse. Thus, it is quite important that dimensions remain consistent accord-
ingly in some data warehouse’s time frame even when some values of their attri-
butes change over time. When this occurs, dimensions that change slowly over time
rather than changing on regular schedule. It is often called as slowly changing
dimensions (SCD) [3, 4].

However, most of the publications just discuss the SCD approaches of RDBMS.
In the field of the emerging NoSQL databases, few publications have mentioned the
technologies about how to formulate the data warehouse of NoSQL. Not only the
structure of NoSQL is different from RDBMS, but also NoSQL instance has bigger
data than RDBMS in practice. It is just natural that whether distributed computing
can integrate with the SCD approach or not is wondered. Currently, MapReduce is
a functional programming model for processing large data sets with a parallel,
distributed algorithm on a cluster. Therefore, MapReduce framework is used to
accelerate the formulation of the data warehouse.

In the rest of this chapter, a SCD approach of document-based NoSQL data
warehouse is introduced. MapReduce is taken advantage of to benefit SCD in the
scenario of NoSQL databases effectively. The main difficulty to construct
document-based NoSQL data warehouses is to achieve the balance among the
complexity, efficiency and flexibility. The contributions of this chapter are into
several folds. First, this SCD approach can highly compress the historical data in
the data warehouse of schema-free document stores without data redundancy.
Second, this SCD approach can keep track of the history, providing quicker access
to the snapshot at every point of a day or over a period of time. Finally, it is
managed to assure that the formulation of the daily cell with an effective lifecycle
tag is efficient and transparent to the business of applications.
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2.2 Related Works and Emerging Techniques

Although the structure of the NoSQL is different from RDBMS, a relational
database is a special case of NoSQL in a broad way. The SCD principles to
RDBMS adapt to NoSQL through continuous innovative improvement. Currently,
there are at least three categories of strategies to the SCD. The first approach is daily
full backup. In this solution, all the daily backups that stand alone formulate the
whole data warehouse, which are simple but need very large storage spaces. Each
backup is a snapshot of the database at a particular point in time. The second
approach is daily incremental backup. An incremental backup includes only those
things that have changed since the previous backup and saves those things into a
separate and additional location. By definition, the first incremental backup is a full
backup since it backs up everything since there is no previous backup to compare
to. The next incremental backup backs up only those files that have changed since
the previous backup was taken. This incremental backup can result in a much
smaller backup. The cost of using incremental backups is one of the management.
Since each incremental backup relies on the backup that preceded it, in order to
restore the database to an arbitrary point in time all the incremental backups must be
available to perform the restore. The pros of this SCD approach cost significantly
less disk space used compared to an equivalent set of full backups. Moreover, The
cons of this SCD approach are that the baseline full backup and all the incremental
backups must be preserved and available in order to restore. Besides, the deleted
historical data are not easy to be tracked. Thus, another improvement of this
approach is daily incremental backup with the invalid partition. The content of the
data warehouse is divided into the last full backup, this daily latest increment and
this daily invalid partition. For the track of the deleted data, this is got from the
daily invalid partition. The last approach is daily differential backup. Differential
backup is a kind of hybrid approach. In reality, it is just incremental backup, but
with a fixed starting point. Rather than backing up only changes from the previous
day, each differential backup includes all the changes from the baseline of full
backup. Compared with the second incremental approach, each day can be restored
from only two backups, the initial baseline full plus that day’s differential.

Although SCD is not a new problem during the dimensional modeling phase of a
data warehouse, the state of art of SCD in the context of document-oriented NoSQL
databases is ambiguous. There are many mature SCD approaches to make data
warehouse of specific RDBMS. As for the emerging schema-free NoSQL data-
bases, few publications have mentioned the technologies about how to formulate
the data warehouse.
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2.2.1 Slowly Changing Dimensions of RDBMS

While dimension table attributes are relatively static, they are not fixed forever.
Dimension attributes change, albeit rather slowly, over time. Dimensional designers
must engage business representatives proactively to help determine the appropriate
change-handling strategy. While it is assumed that accurate change tracking is
unnecessary, business users may be assumed that the data warehouse will allow
them to see the impact of each and every dimension change. Special oriented
Extract-Transform-Load (ETL) processes are responsible to maintain SCD, acting
accordingly to the updating strategy previously defined. Usually, a Change Data
Capture (CDC) process detects the update event and records it accordingly to some
predefined SCD requisites. Although it is always spoken in terms of process, SCD
strategies are applied at the attribute level, for a particular dimension table. For each
dimension table, designers define what kind of update attributes will be modified
over time. They must prevent all the possible cases of attribute changing, once it is
not very recommendable to change dimension table structures when the DWS is
already in production. Over a same SCD, distinct updating strategies for a single
record is to be applied. Frequently, this involves different processes for different
SCD strategies.

Dealing with the issues involves SCD management methodologies referred to as
Type 0 through 6 [5]. Type 6 SCDs are also sometimes called Hybrid SCDs.

Type 0: The passive method
The Type 0 method is passive. It manages dimensional changes and no action is
performed. Some dimension data can remain the same as it was first time inserted,
others may be overwritten. In certain circumstances history is preserved with a
Type 0. High order types are employed to guarantee the preservation of history
whereas Type 0 provides the least or no control.

Type 1: Overwriting the old value
In this method no history of dimension changes is kept in the database. The old
dimension value is simply overwritten be the new one. Thus, it does not track
historical data. This type is easy to maintain and is often use for data which changes
are caused by processing corrections (e.g. removal special characters, correcting
spelling errors).

An example of Type 1 is shown in Fig. 2.1. This example is a teacher table with
attributes ID, number, name, and title. ID is the natural key, and number is a
surrogate key. If the teacher is promote to professor, the record would be over-
written. The disadvantage of the Type 1 method is that there is no history in the data
warehouse. It has the advantage however that it’s easy to maintain.

Type 2: Adding a dimension row
In this methodology, all history of dimension changes is kept by creating multiple
records for a given natural key in the dimensional tables. Unlimited history is
preserved for each insert. Both the prior and new rows contain as attributes the
natural key. The first method to track the data is called ‘current indicator’. There
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could be only one record with current indicator set to ‘Y’. Another method to track
the data is called ‘effective date’. For ‘effective date’ columns, i.e. start_date and
end_date, the end_date for current record usually is set to value 9999-12-31. The
9999-12-31 end_date in row two indicates the current record version. Two exam-
ples of these two methods are shown in Figs. 2.2 and 2.3. Introducing changes to
the dimensional model in type 2 could be very expensive database operation so it is
not recommended to use it in dimensions where a new attribute could be added in
the future.

Transactions that reference a particular surrogate key are then permanently
bound to the time slices defined by that row of the slowly changing dimension
table. An aggregate table summarizing facts by state continues to reflect the his-
torical state. If there are retrospective changes made to the contents of the
dimension, or if new attributes are added to the dimension which have different

ID number name title start_date end_date

1 0001 Jim Green lecturer 1999-01-01 2013-12-31

2 0001 Jim Green professor 2014-01-01 9999-12-31

ID number name title start_date end_date

1 0001 Jim Green lecturer 1999-01-01 9999-12-31BEFORE

AFTER

Fig. 2.3 Effective date method of type 2

ID number name title

1 0001 Jim Green professor

BEFORE

AFTER

ID number name title

1 0001 Jim Green lecturer

Fig. 2.1 An example of type 1

ID number name title current

1 0001 Jim Green lecturer Y

ID number name title current

1 0001 Jim Green lecturer N

2 0001 Jim Green professor Y

BEFORE

AFTER

Fig. 2.2 Current indicator method of type 2
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effective dates from those already defined, then this can result in the existing
transactions needing to be updated to reflect the new situation. This can be an
expensive database operation, so Type 2 SCDs are not a good choice if the
dimensional model is subject to change.

Type 3: Adding a dimension column
This method tracks changes using separate columns and preserves limited history.
The Type 3 preserves limited history as it is limited to the number of columns
designated for storing historical data. The original table structure in Type 1 and
Type 2 is the same but Type 3 adds additional columns. In the following example
shown in Fig. 2.4, an additional column has been added to the table to record the
title of a teacher—only the previous history is stored. The new value is loaded into
‘current’ column and the old one into ‘previous’ column. This record contains a
column for the previous title and current title track the changes. Figure 2.4 shows an
example of Type 3.

Type 4: Using historical table
The Type 4 method is usually referred to as using historical table, where one table
keeps the current data, and an additional table is used to keep a record of some or all
changes. Both the surrogate keys are referenced in the fact table to enhance query
performance. For the above example the original table name is teacher and the
history table is teacher_history. Figure 2.5 shows an example of Type 4. This
method resembles how database audit tables and change data capture techniques
function.

ID number name previous_title current_title

1 0001 Jim Green lecturer lecturer

ID number name previous_title current_title

1 0001 Jim Green lecturer lecturer

2 0001 Jim Green lecturer professor

BEFORE

AFTER

Fig. 2.4 An example of
type 3

ID number name title

1 0001 Jim Green professor

teacher

ID number name title create_date

1 0001 Jim Green lecturer 2013-12-31

teacher_history

Fig. 2.5 An example of
type 4

26 2 Intelligent Web Data Management of NoSQL Data Warehouse



Type 6: Hybrid methods of types 1, 2, 3 (1 + 2 + 3 = 6)
The Type 6 method combines the approaches of types 1, 2 and 3 (1 + 2 + 3 = 6).
This hybrid method is also called unpredictable changes with single-version
overlay. Figure 2.6 shows an example of Type 6.

However, the above classical SCD approaches have some limitations. Type 1
cannot keep track of historical data. Type 2, 3 and 4 have too much redundant data.
In our opinion, keeping the track of historical data is the unique SCD question,
especially for the NoSQL databases. In our point of view, when keeping history in
dimension data is spoken about, all types of SCD can be implemented quite
effectively using only SCD type 4. Classifying an SCD as a new Type X is not
exactly true, types of SCD are applied to attributes, so in general dimensions with
attributes that are type 1 are considered, other attributes that are type 2 or type 3.

2.2.2 Slowly Changing Dimensions of NoSQL

Since the data in the data warehouse are used for data analysis with SCDs, we are
only concerned about the daily data rather than the real-time data. That is to say that
only the last change of the data each day is valid. Thus, we will merge all the
real-time data each day into a set of final daily data. There are two solutions to
slowly changing dimensions of NoSQL [6].

Solution 1: document with timestamp
Obviously, we can conclude that the historical collection dimension is a feasible
SCD solution to the schema-free document stores. In this solution, the historical
data are saved in another separate collection with the timestamp every day. In order
to make further comparison, we call this approach “document with timestamp”
next. Figure 2.7 shows the structure of document with timestamp. However, this
solution has too many disadvantages. The first one is that the data warehouse is

ID number name previous_title current_title start_date end_date current

1 0001 Jim Green lecturer lecturer 1999-01-01 9999-12-31 Y

ID number name previous_title current_title start_date end_date current

1 0001 Jim Green lecturer lecturer 1999-01-01 2013-12-31 N

2 0001 Jim Green lecturer professor 2014-01-01 9999-12-31 Y

BEFORE

AFTER

Fig. 2.6 An example of type 6

ID A1 … An timestamp
Fig. 2.7 Document with
timestamp
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huge enough so that the storage becomes a disaster over a long period. The second
one is that it will consume too many excessive storage spaces due to the redundant
data. The process of the formulation of the NoSQL data warehouse using this
solution is shown in Fig. 2.8. First, we capture the changed document-based data
from the NoSQL using the log event listener. Second, we merge the changed data
with a timestamp. Third, we compress all the real-time documents with a timestamp
on a day with the same surrogate key into one document. At last, all the compressed
daily documents with timestamp plus the data warehouse last day formulate the new
data warehouse today.

Solution 2: document with a lifecycle tag
Another improved version of the document with timestamp solution is called
“document with a lifecycle tag”. Figure 2.9 shows the structure of document with a
lifecycle tag. In this solution, we use the start and end timestamp instead of the
unique timestamp. Although this solution saves the storage space compared with
the first solution, it has the challenge on how to generate the collection dimension in
the data warehouse. Similar to the timestamp solution, the process of the formu-
lation of the NoSQL data warehouse using this solution is shown in Fig. 2.10. First,
we capture the changed document-based data from the NoSQL using the log event
listener. Second, we label the changed data with lifecycle tags. Third, we compress
all the real-time documents with lifecycle tags on a day with the same surrogate key
into one document. At last, all the compressed daily documents with lifecycle tags
plus the data warehouse last day formulate the new data warehouse today.

The above two solutions have the same disadvantage that the daily documents in
the data warehouse have excessive storage space due to the data redundancy. For
this purpose, we design a new SCD approach adapted to the schema-free document
stores using fine-grained element. We call this approach “cell with an effective

label

Data

NoSQL

Log

Log event listener
Real-time document 

with timestampcapture

capture-label-compress process

Daily document with 
timestamp

merge

Data 
warehouse

Data 
warehouse

last day

today

[changed]

[last]

Fig. 2.8 Process of the formulation of the NoSQL data warehouse using document with
timestamp

ID A1 … An start_date end_date
Fig. 2.9 Document with a
lifecycle tag
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lifecycle tag using MapReduce”. This idea comes on this premise that the changing
of the database is slow enough to have redundant data in the data warehouse.

2.2.3 MapReduce Framework

MapReduce is a programming model for parallel processing large data sets, which
was proposed by Google in 2004 [7]. A popular free implementation is Apache
Hadoop. The model is inspired by the map and reduce functions commonly used in
functional programming, although their purpose in the MapReduce framework is
not the same as their original forms. The process is divided into two steps: map and
reduce. Developers specify Map functions which take an input pair and produces a
set of intermediate key/value pairs. The MapReduce library then groups together all
intermediate values associated with the same intermediate keys, and passes them to
the Reduce functions which are also specified by the programmers; The Reduce
function accepts an intermediate key and a set of values for that key. It merges
together these values to form a possibly smaller set of values. The intermediate
values are supplied to the user’s reduce function via an iterator. The programming
model of MapReduce framework is shown as follows:

• map: (k1, v1) -> list(k2, v2). Map Function. Map function takes an input
key-value pair (k1, v1) and produces a set of intermediate key-value pairs
(k2, v2).

• reduce: (k2, list(v2)) -> list(k3, v3). Reduce Function. Reduce function merges
the intermediate key-value pairs (k2, list(v2)) together to produce a smaller set
of values list(v3).

As for the application scenarios of SCD, MapReduce can improve the compu-
tational capacity to the creation of the NoSQL data warehouse. Map function in
MapReduce corresponds with mapping the document-based data into real-time cells
with lifecycle tags, and reduce function in MapReduce works in concert with merge
all the real-time cells with lifecycle tags into daily cells with lifecycle tags.

label

Data

NoSQL

Log

Log event listener
Real-time document 

with lifecycle tagcapture

capture-label-compress process

Daily document with 
lifecycle tag

merge

Data 
warehouse

Data 
warehouse

[changed]

[last]
today

Fig. 2.10 Process of the formulation of the NoSQL data warehouse using document with a
lifecycle tag
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2.3 Requirements

First, we have the following requirements and their corresponding solutions while
designing slowly changing dimensions of NoSQL with MapReduce.

• Keeping track of history: Since the historical data are used for data analysis
and decision making, we want to keeping track of history. In our solution, we
use cells with an effective lifecycle tag using MapReduce to track all the
changes to the source NoSQL database.

• Quick access to the historical snapshot at every point of a day or over a
period of time: We want to further analyze the data in the NoSQL data
warehouse. This implies needing to support the quick access to the historical
data on a specific day or over a period of time.

• Reduce the storage space and remove the redundant data from the data
warehouse: Since the data in the data warehouse are compressed as the final
daily cells with effective lifecycle tags, we expect to reduce the storage space
and remove the redundant data of the data warehouse. That is to say that the
current cell with timestamp and lifecycle tag solutions need the high com-
pression ratio of the NoSQL data warehouse. In our solution, we split the
changed document stores into sets of cells with effective lifecycle tag divided by
column.

• The high efficiency of the creation: Due to the large amount of data in the
source NoSQL database, the creation of the NoSQL data warehouse can benefit
from the distributed computing. Therefore, we use MapReduce framework to
generate the schema-free document stores in the data warehouse.

• Data consistency preservation: We want to preserve the consistency semantics
that the data warehouse provides. Since the process of data analysis and decision
making need not be done in real time, we can tolerate the delay of the data
consistency. We can miss the latest but cannot provide the incorrect historical
data.

• Transparency to the business: We expect the creation of the data warehouse is
independent of the application using NoSQL databases. This will be imple-
mented with the change data capture engine independent of the source database.
Thus, we design a log-based change data capture that will impact the perfor-
mance of the source database at a minimum.

2.4 Architecture

In this section, we discuss the proposed architecture for changing the dimensions of
NoSQL with MapReduce.
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2.4.1 Deployment Architecture

The typical architecture of slowly changing dimensions of NoSQL with
MapReduce is shown in Fig. 2.11. The architecture is composed of four layers in
order to reduce the complexity. From the top to the bottom, they are data layer,
computing layer, historical storage layer and application layer respectively.

On top is the data layer. Since EDSM of schema-free document stores is
designed, MongoDB is adopted as the NoSQL in this layer. All the historical data in
the data warehouse come from this source NoSQL. The second layer from the top
is the computing layer, which is the core of our proposed middleware. The
Capture-Map-Reduce procedure is used to generate the data in the data warehouse.
The details are discussed in the next section. The second layer from the bottom is
the historical storage layer. The historical data in this layer are stored. At the bottom
is the application layer. This layer consists of all kinds of applications using the data
warehouse, such as decision making, data analysis and data mining.

2.4.2 Capture-Map-Reduce Procedure

As the name suggests, the tentative plan for the capture-map-reduce procedure
consists of the following steps: capture, map and reduce procedure. It is shown in
Fig. 2.12. Strictly speaking, the capture-map-reduce procedure refers to a kind
of ETL.

NoSQL

Change Data Capture

MapReduce

Data 
warehouse

Data Layer

Computing Layer

Historical Storage Layer

Application Layer Decision Making Data Analysis Data Mining

slowly changing dimensions of NoSQL with MapReduce

Fig. 2.11 Architecture
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2.4.3 Log-Based Capture

Our log-based engine has been designed to support the extraction from different
source NoSQL databases. This flexibility is achieved by allowing different captures
to be developed and plugged into the capture engine. In this Chapter, schema-free
document stores are mainly discussed. This capturer is typically an embedded
thread and must follow a few semantic constraints. For example, oplog (operations
log) is used to implement MongoDB capture.

In the scenario of change data capture (CDC), only the changed data reading
from the operational log are concerned. The document-oriented NoSQL products
often provide document-based replication (DBR) events to capture changed data
from the operational log. This API is used to connect the listener to get the
incremental data. By interpreting the contents of the database operational log one
can capture the changes made to the database in a non-intrusive manner.

In the process of DBR, the document events parsed from the oplog contain
changes to one or more documents in a transaction in a given collection.
A document change may consist of one or two full document copies in its turn.
These are generally known as before image (BI) and after image (AI). Each image
has a different purpose: the BI, containing data as it was before the document was
modified, is used for locating the document to be updated/deleted in the storage
engine, while the AI is used for replaying the actual changes. In addition, the one
and only usage for such image is to help finding the correct cell to be updated or
deleted. In order to describe the CDC approach, the representation of the image is
given, denoted as image: (keyname, k1, k2, …, kn), where keyname is the unique
key of this image, and kt (1 ⇐ t ⇐ n) is the name of the cell. An instance of this
image is generally denoted as (keyvalue, v1, v2,…, vn), where keyvalue is the value
of this unique key, vt (1 ⇐ t ⇐ n) is the value of the cell. Not both images are
needed for every operation. Deletes only need the BI, and inserts just need the AI,
while updates generate pairs of images for each row changed. Summing up, BI
must contain values that uniquely identifies documents, acting like a primary key,

Capture: Capture the row-based documents from the log
Map: Map the document-based data into real-time cells with lifecycle tags
Reduce: Merge all the real-time cells with lifecycle tags into daily cells with lifecycle tags

map

Data

NoSQL

Log

Log event listener
Real-time cell with 

lifecycle tagcapture
reduce Daily cell with  

lifecycle tag

capture-map-reduce process
In memory In data warehouse

Data 
warehouse

Data 
warehouse

today

last day

[changed]

[unchanged]

[last]

Fig. 2.12 Capture-map-reduce process

32 2 Intelligent Web Data Management of NoSQL Data Warehouse



while AI must contain values that make possible changing the document according
to the original execution.

Most databases have binary logs that contain the log of changes as they are
applied to the database. However, it is fragile to mine these logs and reverse-
engineer the structure, because there is no guarantee that the format will be stable
across multiple subsequent versions. In the case of MongoDB though, it is possible
to tap into the storage engine API. MongoDB product itself provides a stable that
has been used to build many commercial and open-source storage engines. The
capture interface is implemented in the form of adapters so that it can be reused to
support more NoSQL databases.

2.4.4 MapReduce

In the MapReduce procedure, the changed data (in the form of document-based
data) from the log event listener are transformed into the final daily cells with
lifecycle tags in the data warehouse. The innovation of our approach is utilizing
MapReduce framework. In the first Map procedure, the document-based data are
mapped into real-time cells with effective lifecycle tags. For the insert changes, they
are mapped into the newborn cells with effective lifecycle tag. For the delete
changes, thay are mapped into the dead cells with effective lifecycle tag. For the
update changes, they are mapped into the dead and newborn cells with effective
lifecycle tags in order. The Map procedure is shown in Fig. 2.13, where UUID and

Fig. 2.13 Map algorithm
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lastUUID are the functions to obtain an unique key and the last unique key of a cell
respectively, and lastStart is the function to get the last start timestamp of the cell.
Besides, the add and edit is the function to insert and update the cell.

In the second Reduce procedure, all the real-time cells with effective lifecycle
tags are merged into daily cells with effective lifecycle tags. The Reduce procedure
is shown in Fig. 2.14. First, all the cells with effective lifecycle tags within a day are
collected. Next, they are classified by the surrogate key. Since the daily data rather
than the real-time data for further analysis are concerned, the set of the cells with
the same surrogate key is merged. The value of this cell depends on the last value of
this day.

2.5 Evaluation

Slowly changing dimension (SCD) problem applies to cases where the attribute of a
record varies over time. In fact, most of the business data in the NoSQL applica-
tions are of this kind. Since only a small part of the cell and the document varies
over time, this generates a lot of redundant data. In the SCD process, the probability
of the changing of a document and cell is very small (generally less than 10 %). To
test the performance of different NoSQL SCD solutions, source schema-free doc-
ument stores are generated using the script we design. This generator was config-
ured to create results for 180 days each having average 5000 documents. Thus, data
for one month gave 900,000 fact documents. Our cell with an effective lifecycle tag
solution is compared with the current document with timestamp and lifecycle tag
solutions. Our experiments were performed on a six-core server (Xeon(R) CPU

Fig. 2.14 Reduce algorithm
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E7-4807 @1.87 GHz, 130 G RAM, 500TB SATA-III disk, Gigabit Ethernet)
running MongoDB 2.2.7 and Hadoop MapReduce 2.2. The system was configured
with a Windows Server 2012 x64.

The source NoSQL and its data warehouse are initialized as empty. After that,
the script is executed to generate the data in the source document stores. At the
same time. Our EDSM begin to formulate the data in the data warehouse. The
experimental data of document with timestamp and lifecycle tag solutions are
observed, and our cell with an effective lifecycle tag solution. In the scenario of
SCD, it is assumed that a document remains unchanged with probability 90 %, and
a key in a document remains unchanged with probability 80 %. While in the
scenario of non-SCD, it is assumed that a document remains unchanged with
probability 40 %, and a key in a document remains unchanged with probability
50 %.

2.5.1 Redundancy Rate

First, the redundancy experiment of SCD and non-SCD solution to illustrate the
advantage of our solution have been made. Figures 2.15 and 2.16 show the

Fig. 2.15 Redundancy rate of SCD
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redundancy rate every day in the scenario of SCD and non-SCD respectively. As
depicted in SCD Fig. 2.15, the first two solutions have the serious bottleneck
problem of the redundancy. The redundancy rate of the document with timestamp
solution heads toward 100 % in the SCD scenario, since all the documents need to
be stored regardless of whether the documents are changed or not. The redundancy
rate of the document with lifecycle tag solution is diminished gradually due to the
consolidation of the unchanged data at different days. As depicted in non-SCD
Fig. 2.16, the redundancy rate of the document with timestamp solution is down
with the unchanged probability of the documents. No matter the SCD and
non-SCD, our cell with an effective lifecycle tag solution handles the redundancy
problem better. Owing to the breakup of the documents into cells, our solution
produced no additional redundant data.

2.5.2 Storage Space

Next, the storage space of different solutions is analyzed. It is assumed that the data
size increases by average 5000 documents from the source NoSQL every day. The
storage space of the corresponding data warehouse every day is observed.
Figures 2.17 and 2.18 shows the variation of different three solutions respectively.

Fig. 2.16 Redundancy rate of non-SCD
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Fig. 2.17 Storage space of SCD

Fig. 2.18 Storage space of non-SCD
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Scales of the data size of the corresponding data warehouse increase linearly. The
fastest increasing solution is document with timestamp, since all the documents
need to be stored regardless of whether the documents are changed or not. As
depicted in SCD Fig. 2.17, our cell with effective lifecycle tag solution is superior
to the document with lifecycle tag solution. However, our solution takes no
remarkable superiority in the non-SCD scenery, which is shown in Fig. 2.18. It is
concluded that our cell with an effective lifecycle tag solution is effective in the
SCD scenario.

2.5.3 Query Time of Track of History

In the process of the storage space experiment, the query time of the historical data
in the data warehouse is measured. In order to make the comparison of different
solutions, the historical data on the first day are selected. 8 points to record the time
of the same query are selected. Figures 2.19 and 2.20 shows the query time of
different three solutions. As depicted in Fig. 2.19, the worst showing on the query
performance is the document with timestamp solution due to the large amount of
historical data in the data warehouse. The increase of our cell with an effective
lifecycle tag solution is lower. Next, the query time over a period of time is

Fig. 2.19 Query time of SCD
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measured. The historical data from the 30 to 40 days are selected during the
180 days. As depicted in Fig. 2.20, the query time is always the lowest. It is
concluded that our solution is feasible in practice.

Generally, data redundancy and data consistency conflict with each other. slowly
changing dimensions of NoSQL with MapReduce attempts to assure low data
redundancy as well as eventual and weak consistency. The data in the data ware-
house might miss the latest value. One day delay is tolerated, since data warehouse
is used in the field of data analysis and decision making.

2.5.4 Execution Time of Creation

Finally, the execution time of label-merge procedure (used by the first two solu-
tions) is compared with map-reduce procedure that we use. As depicted in
Fig. 2.21, map-reduce solution consumes the shortest time with the deployed
Hadoop MapReduce framework.

Fig. 2.20 Query time of non-SCD
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2.6 Discussion

In this section, we discuss the structure of cell with effective lifecycle tag, and the
extreme data storage principles for optimization.

In order to define the slowly changing dimensions of NoSQL with MapReduce,
a mathematical representation of the fine-grained model is necessary. In our solu-
tion, we map the changes to source NoSQL database into sets of real-time cells with
effective lifecycle tags divided by column. Then the real-time cells are merged into
daily cells. We assume that the Extract-Transformation-Load (ETL) process
extracts all the changed data exists in a source NoSQL database to load into a
specific dimension of the data warehouse.

2.6.1 Effective Lifecycle Tag

First, we give the definition of the effective lifecycle tag. The effective lifecycle tag
is a 2-tuple of start and end element, which implies the lifecycle of a cell in the
NoSQL data warehouse. The effective lifecycle tag is denoted as $(start, end)$. The
first element of an effective lifecycle tag is the start timestamp, and the second
element of an effective lifecycle tag indicates the end timestamp.

Fig. 2.21 Execution time of label-merge and map-reduce procedures
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Next, we define some special effective lifecycle tags.

• Newborn effective lifecycle tag: For the inserted document of the source
NoSQL database, we will split it into several cells in the data warehouse by
column. Its value of the effective lifecycle tag is (currentTimestamp, null),
where currentTimestamp means the current timestamp.

• Killed effective lifecycle tag: For the deleted document of the source NoSQL
database, we will split it into several cells in the data warehouse by column.
Its value of the effective lifecycle tag is (start, currentTimestamp), where
currentTimestamp means the current timestamp.

• Active effective lifecycle tag: When the end tag of the effective lifecycle tag is
null, it indicates that this cell is alive.

• Dead effective lifecycle tag: When the end tag of the effective lifecycle tag is
less than the current timestamp, it indicates that this cell becomes the historical
data.

An update operation of the source NoSQL database is split into two atomic
operations (delete the original data, and insert the new data). Seen from the
dimensional point of view, update means the death of the original data and the born
of the new data.

2.6.2 Cell with Effective Lifecycle Tag

We define the cell with effective lifecycle tag in the data warehouse as a list of
attributes that comprise a natural key, a surrogate key, a regular key and an effective
lifecycle tag, denoted as (naturalKey, surrogateKey, regularKey, tag), where
naturalKey is the unique identification of the dimension of the data warehouse,
surrogateKey is the unique identification of the fact of the source NoSQL database,
regularKey is the name of the attribute, and tag is the effective lifecycle tag
introduced in the last section. This definition is the metamodel of the cell with an
effective lifecycle tag. That is to say that the cell in practice is the instance of this
model.

2.6.3 Extreme Data Storage Principles

From the above characteristics of the cell with an effective lifecycle tag, we arrive at
the following conclusions.

• Each changed document in the source NoSQL database generates several cells
with effective lifecycle tags.

• Each cell has one and only one effective lifecycle tag.
• Each effective lifecycle tag belongs to a set of cells.
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In fact, the data administrators only pay close attention to the daily data of the
data warehouse rather than the real-time data. Therefore, we design the extreme
data storage middleware to further compress the real-time data into the daily data. In
other words, the timestamp of the effective lifecycle tag is exact to the day. We will
merge all the real-time cells with effective lifecycle tag into daily cells with a
lifecycle tag as the extreme compression using MapReduce framework. This will be
discussed in the next section.

Next, we analyze the principles of the historical snapshot. Figure 2.22 shows the
method to get the historical 1-day snapshot. The cells with effective lifecycle tags
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Fig. 2.22 The method to get 1-day historical snapshot
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Fig. 2.23 The method to get the historical snapshot over a period of time
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that are penetrated by the black line formulate the full snapshot of the historical data
in the date 1217. The snapshot of any day is achieved is this way.

Figure 2.23 shows the method to get the historical snapshot over a period of
time. The cells with effective lifecycle tag that are penetrated by the two black lines
formulate the full snapshot of the historical data between the date 1215 and 1217.
The snapshot for some time is achieved in this way.

2.7 Conclusions

As the emerging NoSQL databases, MongoDB is a document database that pro-
vides high performance, high availability, and easy scalability. Currently, there are
more and more NoSQL applications, such as the social networking site. However, it
lacks the approaches to the NoSQL data warehouse. In this chapter, a methodology
for slowly changing dimensions of NoSQL with MapReduce is introduced. The
innovation of this method is that it reduces the data redundancy in the data ware-
house, and optimize the storage structure. Due to the support of the parallel and
distributed computing framework, MapReduce is used to improve the performance
of the creation of the NoSQL data warehouse.
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