
Chapter 5

Interpolation

5.1 Information from Data

The topic of this chapter is interpolation, which relates to passing a curve
through a set of data points. To put this in context, extracting information
from data is one of the central objectives in science and engineering and
exactly what or how this is done depends on the particular setting. Two
examples are shown in Figure 5.1. Figure 5.1(L) contains data obtained from
measurements of high redshift type supernovae. As is often the case with
computerized testing systems, there are many data points and there is some
scatter in the values obtained. Because of this one would not be interested
in finding a function that passes through all of these points, but rather a
function that behaves in a qualitatively similar manner as the data. In this
case one uses a fitting method, like least squares, to make the connection
more quantitative. Exactly how this might be done will be considered in
Chapter 8.

In comparison, the data in Figure 5.1(R) have a well-defined shape and for
this reason are more amenable to interpolation. This is also true for the data
shown in Figure 5.2. The hand data is typical of what arises in CAD applica-
tions, while the data on the right relates to a more mathematical application.
To explain, the data points are obtained by evaluating the function

f(x) =
1

3
+

∞∑
n=1

4(−1)n
n4/3π2

cos(nπx) (5.1)

at 10 points from the interval −1 ≤ x ≤ 1. What is seen is that the above
relatively complicated function does not have a correspondingly complicated
graph. This raises the question if we might be able to replace the function with
a much simpler expression that would serve as a respectable approximation
of the original.

© Springer International Publishing Switzerland 2016
M.H. Holmes, Introduction to Scientific Computing and Data Analysis,
Texts in Computational Science and Engineering 13,
DOI 10.1007/978-3-319-30256-0 5

183

184 5 Interpolation

color
-0.2 0 0.2 0.4

μ B
 -

 5
 lo

g
10

(d
l c

-1
 H

0)
 +

 α
 ¥

 (
s-

1)

-0.5

0

0.5

Figure 5.1 Left: data related to a supernovae redshift [Astier et al., 2006]. Right:
data for nanopores in a supercapacitor [Kondrat et al., 2012].

x-axis
0.2 0.3 0.4 0.5 0.6 0.7

y-
ax

is

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x-axis
-1 -0.5 0 0.5 1

y-
ax

is

0

0.5

1

1.5

2

Figure 5.2 Left: geometric representation of a hand using interpolation [Burkardt,
2015]. Right: values of (5.1) at selected points in interval −1 ≤ x ≤ 1.

One of the better ways to test how well an interpolation method works is
to try it out on different data sets. In what follows we will use the sets shown
in Figure 5.3. Each consists of 12 equally spaced points over the interval
−1 ≤ x ≤ 1. The top two were generated using functions; the one in the
upper left comes from the 5th order polynomial

y(x) = (x+ 0.9)(x+ 0.1)2(x− 0.2)(x− 0.8),

while the one on the upper right consists of points that lie on the circle x2 +
y2 = 1. The lower two are used to mimic or resemble a periodic function and
one with jumps. It is recommend that you spend a moment or two and sketch
in what you think would be an acceptable interpolation function for each data
set. This will help later when we see what the standard interpolation methods
produce.

It is of interest to know that many of the interpolation methods derived
in this chapter are summarized in Appendix C, Table C.1.

5.2 Global Polynomial Interpolation 185

x-axis
-1 -0.5 0 0.5 1

0

0.5

1

x-axis
-1 -0.5 0 0.5 1

y-
ax

is

-1

0

1

-1 -0.5 0 0.5 1

0

0.5

1

-1 -0.5 0 0.5 1

y-
ax

is

-0.2

0

0.2

0.4

Figure 5.3 Data sets that are used to test the various interpolation methods.

5.2 Global Polynomial Interpolation

If one wants to find a function to connect two data points, the easiest choice
is to use a straight line, in other words a linear function. Similarly, given three
data points one would likely use a quadratic. To generalize this idea, suppose
there are n+1 points and they are (x1, y1), (x2, y2), · · · , (xn+1, yn+1), where
x1 < x2 < · · · < xn+1. We are going to find a single nth degree polynomial
pn(x) that passes through each and every point. This is not particularly diffi-
cult and there are several ways to find the interpolation polynomial. However,
as is often the case in numerical computing, some methods are much more
sensitive to round-off error than other methods.

5.2.1 Direct Approach

Taking the direct approach, the simplest choice is to take

pn(x) = a0 + a1x+ · · ·+ anx
n. (5.2)

The interpolation requirement is that pn(x1) = y1, pn(x2) = y2, · · · ,
pn(xn+1) = yn+1. Using the above polynomial this produces the equations

186 5 Interpolation

a0 + a1x1 + · · ·+ anx
n
1 = y1

a0 + a1x2 + · · ·+ anx
n
2 = y2

...

a0 + a1xn+1 + · · ·+ anx
n
n+1 = yn+1

This can be rewritten in matrix form as Va = y, where a = (a0, a1, · · · , an)T ,
y = (y1, y2, · · · , yn+1)

T , and

V =

⎛
⎜⎜⎜⎝

1 x1 x2
1 . . . xn

1

1 x2 x2
2 . . . xn

2
...

...
...

...
1 xn+1 x2

n+1 . . . xn
n+1

⎞
⎟⎟⎟⎠ . (5.3)

This is a Vandermonde matrix. Given that it has a name you should not be
surprised that it plays an important role in interpolation, but as will be seen
shortly not all of its contributions are good.

Example

Each of the test data sets in Figure 5.3 contains 12 points. Fitting p11(x)
to each set produces the curves shown in Figure 5.4. The top two look to
be reasonable fits to the data while the bottom two are not. The over- and
under-shoots seen in the bottom two curves often appear with higher degree
polynomials and one of the drawbacks of using a global polynomial with
larger data sets. �

x-axis
-1 -0.5 0 0.5 1

-3

-2

-1

0

1

x-axis
-1 -0.5 0 0.5 1

y-
ax

is

-3

-2

-1

0

1

2

3
-1 -0.5 0 0.5 1

0

0.5

1

-1 -0.5 0 0.5 1

y-
ax

is

-0.2

0

0.2

0.4

Figure 5.4 Using a global polynomial p11(x), as given in (5.2), for the data in
Figure 5.3.

5.2 Global Polynomial Interpolation 187

The pervious example indicates that there are concerns about using a
global polynomial, particularly when you have a large number of data points.
In fact, there are significant problems not evident in the example related to
the condition number of the Vandermonde matrix. As shown in Section 3.4,
V can be ill-conditioned for even small values of n. It is possible in some
cases to rescale the data to improve the condition number, and an example
of this is given in Exercise 5.28. However, it is possible to avoid this particular
problem altogether, and this will be considered next. Even so, be warned that
there is a second problem with a large number of equally spaced data points
and this is discussed in Section 5.2.3.

5.2.2 Lagrange Approach

The easiest way to explain how to avoid using the Vandermonde matrix is to
examine what happens with linear and quadratic functions. So, suppose the
data points are (x1, y1) and (x2, y2), where x1 �= x2. The global polynomial
in this case is linear and it can be written as

p1(x) = y1 +
y2 − y1
x2 − x1

(x− x1)

= y1
x− x2

x1 − x2
+ y2

x− x1

x2 − x1

= y1�1(x) + y2�2(x),

where

�1(x) =
x− x2

x1 − x2
,

and

�2(x) =
x− x1

x2 − x1
.

The functions �1(x) and �2(x) are examples of linear Lagrange interpolation
functions and they have the properties that �1(x1) = �2(x2) = 1, �1(x2) = 0,
and �2(x1) = 0. In other words, each �i(x) is linear, equal to one when x = xi

and equal to zero at the other xj data point.
It is relatively easy to generalize this idea and write down the quadratic

Lagrange interpolation functions. Namely, if the data points are (x1, y1),
(x2, y2), and (x3, y3) then

�1(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
,

�2(x) =
(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
,

�3(x) =
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
.

188 5 Interpolation

By design, each �i(x) is quadratic, equal to one when x = xi and equal to
zero at the other xj data points. Using these functions the corresponding
quadratic interpolation polynomial is

p2(x) = y1�1(x) + y2�2(x) + y3�3(x). (5.4)

For this to be well-defined it is required that the xi’s are distinct, which
means that x1 �= x2, x1 �= x3, and x2 �= x3. Also, although it looks different,
(5.4) produces the same function as given in (5.2) in the case of when n = 2.

Generalizing the above results we have that given data points (x1, y1),
(x2, y2), · · · , (xn+1, yn+1), with the xi’s distinct, the interpolation polynomial
can be written as

pn(x) =

n+1∑
i=1

yi�i(x), (5.5)

where the Lagrange interpolation functions are defined as

�i(x) =
(x− x1)(x− x2) · · · (x− xi−1)(x− xi+1) · · · (x− xn+1)

(xi − x1)(xi − x2) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn+1)
(5.6)

=

n+1∏
j=1
j �=i

x− xj

xi − xj
. (5.7)

In a similar manner, as in the linear and quadratic examples, each �i(x) is
an nth degree polynomial, it is equal to one when x = xi, and it equals zero
when x = xj for j �= i.

Example

To find the global polynomial that interpolates the data in Table 5.1, first note
that the data is (x1, y1) = (0, 1), (x2, y2) = (1/2,−1), and (x1, y1) = (1, 2).
Consequently, the polynomial is

p2(x) = y1�1(x) + y2�2(x) + y3�3(x)

= �1(x)− �2(x) + 2�3(x),

where �1(x) = 2(x−1/2)(x−1), �2(x) = −4x(x−1), and �3(x) = 2x(x−1/2).
�

x 0 1/2 1

y 1 −1 2

Table 5.1 Data for example.

5.2 Global Polynomial Interpolation 189

The Lagrange interpolation formulas in (5.5) and (5.7) have an advantage
over the direct formula, given in (5.2), in that the Vandermonde matrix is
avoided. There is still a potential computational problem related to overflow,
particularly for (5.6). This is the same problem explored in Exercise 1.7. It
can help to rescale the data, and this is explained in Exercise 5.28. However,
writing the formula in factored form as in (5.7) significantly reduces the
possibility of overflow.

The price paid for avoiding the Vandermonde matrix is the effort needed
to evaluate the �i’s, and this is often stated to be a drawback of the method.
For a large number of data points, evaluating �i(x) can require about 2n2

flops. To translate this into computing time, if you use 20 data points and
2,000 evaluation points, the computing time is about 1msec. Similarly, if
you use 200 data points and 20,000 evaluation points, the computing time
is about 1 sec. In other words, the computational time is not particularly
significant unless you are working with a large data set. In such cases there
are more efficient ways to write the interpolation formulas, using something
called barycentric weights, and these are explored in Exercise 5.29. However,
there is a more significant problem with this method and this is explained
next.

5.2.3 Runge’s Function

Now that the ill-conditioned matrix problem has been avoided it is time to
explain the other problem with using a global interpolation polynomial. For
this we can use the top two plots in Figure 5.4. It is seen that with the 10
data points we have obtained a fairly accurate approximation of the original
functions. Always trying to improve things, one might think that by adding
data points that the approximation will be even better. For many functions
this does indeed happen but there are functions where it does not (and you
would think it should). The example many use to demonstrate this is

f(x) =
1

1 + 25x2
, (5.8)

and this is known as Runge’s function. This is plotted in Figure 5.5, along
with p4(x) and p12(x). The interpolation polynomials are constructed using
equally spaced data points. It is seen that in the center of the interval the
approximation improves but it gets worse towards the endpoints. Increasing
the number of data points makes the situation worse in the sense that the
magnitude of |pn(x)| near the endpoints increases. For example, when n = 40
the maximum in |pn(x)| is about 104, while for n = 100 the maximum in
|pn(x)| is about 1014. Moreover, this behavior is not limited to equally spaced
points. If you take the points randomly from the interval, the maximum in
|pn(x)| is often even larger.

190 5 Interpolation

x-axis
-1 -0.5 0 0.5 1

y-
ax

is

-4

-3

-2

-1

0

1

Runge
n = 4
n = 12

Figure 5.5 The Runge function (5.8) along with two interpolating polynomials.

The conclusion from the above discussion is that using a global interpola-
tion polynomial works well for small data sets but has limited value as the
number of data points increases. One solution for larger data sets is to break
them into small groups, use interpolation on the subgroups, and then connect
the information into a coherent whole. This is considered in the next section.
If you are set on using a global polynomial then you need to consider where
the xi’s are placed in the interval, and this is considered in Section 5.5.4.

5.3 Piecewise Linear Interpolation

We will consider using linear interpolation between adjacent data points. This
is effectively what is done in a child’s connect the dots puzzle. An example
is shown in Figure 5.6 where the line between (x1, y1) and (x16, y16) is pre-
drawn in the puzzle.

Figure 5.6 A typical
child’s puzzle of connect
the dots.

5.3 Piecewise Linear Interpolation 191

Figure 5.7 Intervals and functions used for piecewise linear interpolation.

To be able to write down the mathematical formula used for piecewise
linear interpolation, assume that the data points are (x1, y1), (x2, y2), · · · ,
(xn+1, yn+1), where x1 < x2 < · · · < xn+1. The linear function connecting
adjacent data points is given as

gi(x) = yi +
yi+1 − yi
xi+1 − xi

(x− xi), for xi ≤ x ≤ xi+1. (5.9)

Assembling these into a complete description of the interpolation function
we get

g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1(x) if x1 ≤ x ≤ x2

g2(x) if x2 ≤ x ≤ x3

...
...

gn(x) if xn ≤ x ≤ xn+1.

(5.10)

An illustration of this is given in Figure 5.7.
It is possible to write g(x) is a form that can be easier to use, and looks a lot

simpler than the expression in (5.10). To do this we introduce the piecewise
linear function Gi(x), with G(xi) = 1 and G(xj) = 0 if j �= i. The formula
for this function is

Gi(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ xi−1,
x− xi−1

xi − xi−1
if xi−1 ≤ x ≤ xi,

x− xi+1

xi − xi+1
if xi ≤ x ≤ xi+1,

0 if xi+1 ≤ x,

(5.11)

Figure 5.8 The piecewise linear function Gi(x) defined in (5.11).

192 5 Interpolation

and a sketch of this is given in Figure 5.8. In the case of when the points
are equally spaced, so xi+1 − xi = h, this can be written in a more compact
form as

Gi(x) = G

(
x− xi

h

)
, (5.12)

where

G(x) =

{
1− |x| if |x| ≤ 1,

0 if 1 ≤ |x|. (5.13)

Note that the defining properties of Gi(x) are very similar to the proper-
ties that were used to define the Lagrange interpolation functions �i(x) in
Section 5.2.2.

With this, the piecewise linear interpolation function (5.10) can be
written as

g(x) =

n+1∑
i=1

yiGi(x). (5.14)

Just so it’s clear, this expression produces the same interpolation function as
the expanded version given in (5.10). Also, because of its shape, Gi(x) has a
variety of names, and they include the hat function and the chapeau function.

As a final comment, to define G1 it is necessary to introduce x0, with
x0 < x1, and for Gn+1 we need to add in xn+2, with xn+1 < xn+2. Exactly
where these two points are located in not important because they have no
affect on the interpolation function over the interval x1 ≤ x ≤ xn+1.

x-axis
-1 -0.5 0 0.5 1

0

0.5

1

x-axis
-1 -0.5 0 0.5 1

y-
ax

is

-1

0

1

-1 -0.5 0 0.5 1

0

0.5

1

-1 -0.5 0 0.5 1

y-
ax

is

-0.2

0

0.2

0.4

Figure 5.9 Using a piecewise linear function to fit the data in Figure 5.3.

5.3 Piecewise Linear Interpolation 193

Example

Using a piecewise linear function to fit the data in Figure 5.9 produces the
curves shown in Figure 5.9. These curves are not bad fits but they are also not
great. They are not bad because they do not contain the over- and under-
shoots seen in Figure 5.9. However, they are not great because they are
jagged. Note that in some applications, such as the one in Figure 5.6, jagged
is what is desired but in many applications this is something one wants to
avoid. �

Example

Find the piecewise linear function that interpolates the data in Table 5.2.
Note that in this case, x1 = 0, x2 = 1/2, and x2 = 1.

Method 1: Using (5.10),

g(x) =

{
g1(x) if 0 ≤ x ≤ 1/2
g2(x) if 1/2 ≤ x ≤ 1,

where

g1(x) = y1 +
y2 − y1
x2 − x1

(x− x1)

= 1− 4x,

and

g2(x) = y2 +
y3 − y2
x3 − x2

(x− x2)

= −4 + 6x.

Method 2: Using (5.14),

g(x) = y1G1(x) + y2G2(x) + y3G3(x)

= G1(x)−G2(x) + 2G3(x),

x 0 1/2 1

y 1 −1 2

Table 5.2 Data for example.

194 5 Interpolation

where

G1(x) =

⎧⎪⎨
⎪⎩
1 + 2x if − 1/2 ≤ x ≤ 0,

1− 2x if 0 ≤ x ≤ 1/2,

0 otherwise,

G2(x) =

⎧⎪⎨
⎪⎩
2x if 0 ≤ x ≤ 1/2,

2− 2x if 1/2 ≤ x ≤ 1,

0 otherwise,

and

G3(x) =

⎧⎪⎨
⎪⎩
−1 + 2x if 1/2 ≤ x ≤ 1,

3− 2x if 1 ≤ x ≤ 3/2,

0 otherwise. �

5.4 Piecewise Cubic Interpolation

The principal criticism of piecewise linear interpolation is that the approx-
imation function has corners. One method that is often used to avoid this
is to replace the linear functions with cubics. Instead of (5.10), we have a
interpolation function of the form (see Figure 5.10)

s(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s1(x) if x1 ≤ x ≤ x2

s2(x) if x2 ≤ x ≤ x3

...
...

sn(x) if xn ≤ x ≤ xn+1 ,

(5.15)

where in the ith interval the function is

si(x) = ai+ bi(x−xi)+ci(x−xi)
2+di(x−xi)

3, for xi ≤ x ≤ xi+1. (5.16)

To satisfy the interpolation conditions it is required that

si(xi) = yi, si(xi+1) = yi+1, for i = 1, 2, · · · , n. (5.17)

This will determine two of the four constants in si. We will also require that
the transition between intervals is as smooth as possible. First, the slopes
must match and this means that

s′i(xi+1) = s′i+1(xi+1), for i = 1, 2, · · · , n− 1. (5.18)

Second we will require that the second derivatives also match, and so

s′′i (xi+1) = s′′i+1(xi+1), for i = 1, 2, · · · , n− 1. (5.19)

5.4 Piecewise Cubic Interpolation 195

Conditions (5.17)–(5.19) are the basic requirements for s(x) to be a cubic
spline. However, s(x) has 4n coefficients that we need to determine, and
these conditions produce 4n− 2 equations. In other words, we are short two
conditions. What is usually done is to specify conditions at the left and right
ends of the data interval. Some of the commonly made choices are as follows:

• Natural Spline: s′′1(x1) = 0 and s′′n(xn+1) = 0

This produces a spline with an interesting property related to curvature,
and this will be explained later.

• Clamped Spline: s′1(x1) = y′1 and s′n(xn+1) = y′n+1

This requires knowing the value of the derivative at the endpoints, some-
thing that is not usually available.

Figure 5.10 Intervals and functions used for piecewise cubic interpolation.

• Not-a-Knot Spline: s′′′1 (x2) = s′′′2 (x2) and s′′′n−1(xn) = s′′′n (xn)

This is the default choice in MATLAB.

Whichever choice is made, the resulting function s(x) provides a smooth
interpolation of the given data points.

Example

To find the natural cubic spline that interpolates the data in Table 5.3, we
use (5.15) and write

s(x) =

{
s1(x) if 0 ≤ x ≤ 1/2
s2(x) if 1/2 ≤ x ≤ 1,

where
s1(x) = a1 + b1x+ c1x

2 + d1x
3,

and
s2(x) = a2 + b2(x− 1/2) + c2(x− 1/2)2 + d2(x− 1/2)3.

196 5 Interpolation

x 0 1/2 1

y 1 −1 2

Table 5.3 Data for example.

From the interpolation conditions (5.17),

s1(0) = 1 : a1 = 1,
s1(1/2) = −1 : a1 +

1
2b1 +

1
4c1 +

1
8d1 = −1,

s2(1/2) = −1 : a2 = −1,
s2(1) = 2 : a2 +

1
2b2 +

1
4c2 +

1
8d2 = 2.

Also, from (5.18) and (5.19)

s′1(1/2) = s′2(1/2) : b1 + c1 +
3
4d1 = b2,

s′′1(1/2) = s′′2(1/2) : 2c1 + 3d1 = 2c2.

Finally, to qualify to be a natural cubic spline it is required that

s′′1(0) = 0 : c1 = 0,
s′′2(1) = 0 : 2c2 + 3d2 = 0.

It is now a matter of solving the above equations, and after doing this one
finds that

s1(x) = 1− 13

2
x+ 10x3,

and

s2(x) = −1 + (x− 1/2) + 15(x− 1/2)2 − 10(x− 1/2)3. �

To find s(x) it remains to solve 4n equations with 4n unknowns. It is pos-
sible to just solve the resulting matrix equation for the unknowns, but there
are better ways to find the coefficients. One possibility is to mathematically
simplify the equations, and reduce the problem to solving a system with n
unknowns. Another approach is to use cubic B-splines. This will also reduce
the problem down to having to solve for (approximately) n unknowns. The
advantage of B-splines is that they are easier to code. They are also very use-
ful for least squares fitting of data (see Exercise 8.32), as well when solving
differential equations numerically [Holmes, 2007].

5.4 Piecewise Cubic Interpolation 197

5.4.1 Cubic B-Splines

The idea is to write the interpolation function in the form

s(x) =
∑

aiBi(x). (5.20)

The functions Bi(x) are called cubic B-splines, and a sketch of a typical
B-spline is given in Figure 5.11. The above expression has a passing similar-
ity to the expressions used for Lagrange interpolation and piecewise linear
interpolation. However, one important difference is that the coefficient ai in
the above sum is not necessarily equal to the data value yi.

The derivation of (5.20) consists of two steps. The first is the construction
of the cubic B-splines Bi(x). This only has to be done once, which means
that these functions do not need to be rederived if the data set is changed.
Once this is complete, then the problem used to find the ai’s is determined.
The values of the ai’s do depend on the data, and so this problem must be
solved each time the data set is changed.

Finding the Bi’s

Each Bi(x) is a piecewise cubic function and has the form

Bi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ xi−2,

qi−2(x) if xi−2 ≤ x ≤ xi−1,

qi−1(x) if xi−1 ≤ x ≤ xi,

qi+1(x) if xi ≤ x ≤ xi+1,

qi+2(x) if xi+1 ≤ x ≤ xi+2,

0 if xi+2 ≤ x,

(5.21)

where qj(x) = Aj +Bj(x− xj) +Cj(x− xj)
2 +Dj(x− xj)

3. We will assume
that the xi’s are equally spaced, with h = xi+1 − xi, so the function Bi(x) is
symmetric about x = xi. Note that one consequence of the symmetry is that
B′

i(xi) = 0.

xi–2

qi–2 qi+2

qi–1 qi+1

xi–1 xi xi+1 xi+2

B
–S

p
lin

e

Figure 5.11 Sketch of the various components of a cubic B-spline.

198 5 Interpolation

The coefficients of the qj ’s in (5.21) are determined from the requirement
that Bi ∈ C2(−∞,∞). This is accomplished by requiring the following:

x = xi−2: qi−2(xi−2) = 0, q′i−2(xi−2) = 0, and q′′i−2(xi−2) = 0

x = xi−1: qi−2(xi−1) = qi−1(xi−1), q′i−2(xi−1) = q′i−1(xi−1), and

q′′i−2(xi−1) = q′′i−1(xi−1)

x = xi: qi−1(xi) = qi+1(xi), q′i−1(xi) = q′i+1(xi), and

q′′i−1(xi) = q′′i+1(xi)

with similar conditions at x = xi+1 and x = xi+2. From the conditions
at x = xi−2 one easily concludes that qi−2(x) = Di−2(x − xi−2)

3. In a
similar way, it is found that qi+2(x) = Di+2(x − xi+2)

3, where from the
symmetry, Di+2 = −Di−2. From the smoothness requirements at xi−1, and
the requirement that B′(xi) = 0, one finds that

qi−1(x) = Di−2

[
h3 + 3h2(x− xi−1) + 3h(x− xi−1)

2 − 3(x− xi−1)
3
]
.

A similar equation can be derived for qi+1(x). This leaves one undetermined
constant and the convention is to take Bi(xi) = 2/3, which means that
Di−2 = 1/(6h3). With this, Bi(x) is completely defined and the functions in
(5.21) are

qi−2(x) =
1

6h3
(x− xi−2)

3,

qi−1(x) =
1

6
+

1

2h
(x− xi−1) +

1

2h2
(x− xi−1)

2 − 1

2h3
(x− xi−1)

3,

qi+1(x) =
1

6
− 1

2h
(x− xi+1) +

1

2h2
(x− xi+1)

2 +
1

2h3
(x− xi+1)

3,

qi+2(x) = − 1

6h3
(x− xi+2)

3.

By factoring the above polynomials it is possible to show that

Bi(x) = B

(
x− xi

h

)
, (5.22)

where

B(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

3
− x2

(
1− 1

2
|x|
)

if |x| ≤ 1,

1

6
(2− |x|)3 if 1 ≤ |x| ≤ 2,

0 if 2 ≤ |x|.

A plot of the resulting function is shown in Figure 5.12. At xi−1 and xi+1 the
curve makes such a smooth transition across the respective data point that
you would not know that the cubics change there. The same is true at xi−2

and xi+2 where the function makes a smooth transition to zero.

5.4 Piecewise Cubic Interpolation 199

Finding the ai’s

The cubic spline interpolation function can now be written as

s(x) =

n+2∑
i=0

aiBi(x). (5.23)

Just so it is clear, this function satisfies the smoothness conditions in (5.18)
and (5.19), but does not yet satisfy the interpolation conditions in (5.17) or
the specific end conditions (clamped, natural, etc.). Also, the sum is over
all possible Bi’s that are nonzero on the interval x1 ≤ x ≤ xn+1. This has
required us to include the i = 0 and i = n+ 2 terms even though there is no
x−1, x0, xn+2, or xn+3 in the original data set. We will deal with this shortly.
First note that at xi only Bi−1, Bi, and Bi+1 are nonzero. In particular,
using the values given in Table 5.4,

s(xi) = ai−1Bi−1(xi) + aiBi(xi) + ai+1Bi+1(xi)

=
1

6
(ai−1 + 4ai + ai+1).

Because of the interpolation requirement (5.17) we have that

ai−1 + 4ai + ai+1 = 6yi, for i = 1, 2, · · · , n+ 1. (5.24)

To use this we need to know a0 and an+2, and this is where the two additional
conditions are used. We will use a natural spline, and for this note that

s′′(xi) = ai−1B
′′
i−1(xi) + aiB

′′
i (xi) + ai+1B

′′
i+1(xi)

=
1

h2
(ai−1 − 2ai + ai+1).

Solving s′′(x1) = 0 we get that a0 = 2a1 − a2, and at the other end
one finds that an+2 = 2an+1 − an. In (5.24), when i = 1 one finds that
a1 = y1 and at the other end one gets that an+1 = yn+1. The rem-

xi–2

0

1/3

2/3

xi–1

B
–S

p
lin

e

xi xi+1 xi+2

Figure 5.12 Plot of the cubic B-spline Bi(x) defined in (5.22).

200 5 Interpolation

xi−1 xi xi+1 xj for j �= i, i± 1

Bi
1
6

2
3

1
6

0

B′
i

1
2h

0 − 1
2h

0

B′′
i

1
h2 − 2

h2
1
h2 0

Table 5.4 Values of the B-spline Bi(x), as defined in (5.21), at the grid points used
in its construction.

aining ai’s are found by solving Aa = z where a = (a2, a3, · · · , an)T ,
z = (6y2 − y1, 6y3, · · · , 6yn−1, 6yn − yn+1)

T , and A is the (n − 1) × (n − 1)
tridiagonal matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 1

1 4 1 0
1 4 1

. . .
. . .

. . .

0 1
1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

This positive definite and tridiagonal matrix equation can be solved using the
Thomas algorithm (see Section 3.8). This procedure is very fast, and requires
minimal storage, which means finding the coefficients for a cubic spline is
fairly easy even for a large number of interpolation points.

As a final comment, for a clamped spline it is also necessary to solve an
equation of the form Aa = z, where A and z are given in Exercise 5.30.

Example

Using a natural cubic spline to fit the data in Figure 5.3 produces the solid
(blue) curves shown in Figure 5.13. For comparison, the curves obtained
using a not-a-knot spline are also shown. The interpolation of the top two
data sets is as good as what was obtained using the global polynomial, and
there are few minor differences between the two spline functions. Moreover,
both splines give a better representation than a global polynomial for the
lower two data sets. For the lower right data set some small over- and under-
shoots are present in the spline functions, but they are not as pronounced as
those in Figure 5.4. It is also evident that there are also differences between
the two spline functions, although these occur primarily in the regions close
to the endpoints. �

5.4 Piecewise Cubic Interpolation 201

x-axis
-1 -0.5 0 0.5 1

0

0.5

1

x-axis
-1 -0.5 0 0.5 1

y-
ax

is

-1

0

1

-1 -0.5 0 0.5 1

0

0.5

1

-1 -0.5 0 0.5 1

y-
ax

is

-0.2

0

0.2

0.4

Figure 5.13 Using a natural cubic spline function, the solid (blue) curves, and a
Not-a-Knot spline, the dashed (black) curves, to fit the data in Figure 5.3.

Example

To find the natural cubic spline that interpolates the data in Table 5.1, we
use (5.23) and write

s(x) = a0B0(x) + a1B1(x) + a2B2(x) + a3B3(x) + a4B4(x),

where x0 = −1/2, x4 = 3/2, and Bi(x) = B(2(x− xi)). The interpolation
requirements are

s(0) = 1 : a0 + 4a1 + a2 = 6,
s(1/2) = −1 : a1 + 4a2 + a3 = −6,

s(1) = 2 : a2 + 4a3 + a4 = 12,

and the natural spline end conditions are

s′′(0) = 0 : a0 − 2a1 + a2 = 0,
s′′(1) = 0 : a2 − 2a3 + a4 = 0.

Solving these equations it is found that

s(x) =
17

4
B0(x) +B1(x)− 9

4
B2(x) + 2B3(x) +

15

4
B4(x). �

The question arises as to why the natural cubic spline works so well. There
is a partial answer to this and it involves curvature. Recall that for a curve
y = f(x), the curvature at a point is defined as

202 5 Interpolation

κ =
|f ′′(x)|

[1 + (f ′)2]3/2
.

Assuming the curve is not particularly steep, one can approximate the cur-
vature as κ ≈ |f ′′(x)|. This is brought up because of the next result due to
Holladay [1957].

Theorem 5.1. If q ∈ C2[a, b] interpolates the same data points that the nat-
ural cubic spline function (5.15) interpolates, then

∫ b

a

[s′′(x)]2dx ≤
∫ b

a

[q′′(x)]2dx.

In these integrals, a = x1 and b = xn+1.

What this theorem states is that out of all smooth functions that interpolate
the data, the natural cubic spline produces the interpolation function with
the smallest total curvature (squared). This helps explain why the spline
interpolations in Figure 5.13 do not suffer the significant under- and over-
shoots seen in Figure 5.4.

5.5 Function Interpolation

In using the data sets to test out the various interpolation methods we have
been using a qualitative, or visual, determination of how well they do. We
are now going to make the test more quantitative and this will restrict the
applications. In particular, it is assumed that the data comes from the eval-
uation of a given function f(x) and we are going to investigate how well the
interpolation function approximates f(x) between the data points.

In what follows the data points are (x1, y1), (x2, y2), · · · , (xn+1, yn+1),
where yi = f(xi). Also, unless stated explicitly to the contrary, the step
size h = xi+1 − xi is assumed constant (so the xi’s are equally spaced), with
a = x1 and b = xn+1. What is of interest is whether the approximation gets
better as the step size h gets smaller. In particular, does the error go to zero
as h goes to zero?

5.5.1 Global Polynomial Interpolation

We begin with a global interpolation polynomial pn(x). As explained in Sec-
tion 5.2.3, pn(x) can fail to provide a good approximation of a function if a
large number of equally spaced points are used. However, it is effective for a

5.5 Function Interpolation 203

small number of points, as long as they are not too far apart. In fact, such
approximations are central to several of the methods considered later in the
text. The critical result needed to determine the error when using pn(x) is
given in the following theorem:

Theorem 5.2. If f ∈ Cn+1[a, b], then

f(x) = pn(x) +
f (n+1)(η)

(n+ 1)!
qn+1(x), for a ≤ x ≤ b, (5.25)

where
qn+1(x) = (x− x1)(x− x2) · · · (x− xn+1), (5.26)

and η is a point in (a, b).

Outline of Proof: To explain how this is proved, we will consider the case of
when n = 1. In this case, q2(x) = (x− a)(x− b). The formula in (5.25) holds
when x = a or x = b, so assume that a < x < b. The key step is a trick,
which consists of introducing the function

F (z) = f(z)− p1(z) +
f(x)− p1(x)

q2(x)
q2(z).

Given the way it is defined, F (a) = 0, F (x) = 0, and F (b) = 0. According to
Rolle’s theorem, there must be a point z1, where a < z1 < x and F ′(z1) = 0,
and there must be a point z2, where x < z2 < b and F ′(z2) = 0. Using Rolle’s
theorem again, there must be a point η, where z1 < η < z2 and F ′′(η) = 0.
From the above formula for F (z), one finds that F ′′(η) = 0 reduces to (5.25).
The case of when n > 1 is similar, except one uses Rolle’s theorem n + 1
times (instead of twice). �

An immediate consequence of this theorem is the following:

Theorem 5.3. If f ∈ Cn+1[a, b], then the global interpolation polynomial
pn(x) satisfies

|f(x)− pn(x)| ≤ 1

(n+ 1)!
||f (n+1)||∞||qn+1||∞, for a ≤ x ≤ b,

where
||f (n+1)||∞ = max

a≤x≤b
|f (n+1)(x)|,

and
||qn+1||∞ = max

a≤x≤b
|qn+1(x)|.

It should be pointed out that the above two theorems hold in the case of
when the xi’s are not equally spaced (this fact is used in Section 5.5.4).

204 5 Interpolation

To make use of Theorem 5.3, we need to determine ||qn+1||∞. This is not
hard to do for small values of n, and to illustrate this, consider the case of
when n = 2. For this, q2(x) = (x − x1)(x − x2), where x2 = x1 + h. The
maximum, and minimum, of this function occur either at the endpoints or
at a critical point inside the interval. First note that q2(x1) = q2(x2) = 0.
As for the critical points, solving q′1(x) = 0, one finds that x = x1 + 1

2h.
From this it follows that ||q2||∞ = 1

4h
2. Similarly, if n = 3, then q3(x) =

(x − x1)(x − x2)(x − x3), where x2 = x1 + h and x3 = x1 + 2h. Solving
q′3(x) = 0, one finds two solutions, x = x1 + h ± 1

3h
√
3. From this it follows

that ||q3||∞ = 2
9h

3
√
3. Continuing this, the values in Table 5.5 are obtained.

n ||qn+1||∞
1 1

4
h2

2 2
9

√
3h3

3 h4

4 1
50

(√
145− 1

)√
150 + 10

√
145h5

5 16
27

(7
√
7 + 10)h6

Table 5.5 Value of ||qn+1||∞, which appears in the error formula in Theorem 5.3.

Example

Suppose that f(x) = cos(2πx) and we use the interpolation polynomial p2(x),
with points x1, x2 = x1 + h, and x3 = x1 + 2h. According to Theorem 5.3,
how small does h need to be to guarantee an error of 10−6, irrespective of the
choice for x1? To answer this, since f ′′′ = −(2π)3 sin(2πx), then ||f ′′′||∞ ≤
(2π)3. With this we have that

1

6
||f ′′′||∞||q3||∞ ≤

√
3

(
2π

3
h

)3

.

Consequently we will achieve the require error bound if
√
3(2πh/3)3 ≤ 10−6,

which means h ≤ 35/6/(200π) ≈ 0.0040. �

Finding ||qn+1||∞ for larger values of n is difficult, and the usual approach
is to find an upper bound on this number. One that is not hard to derive is
(see Exercise 5.31)

||qn+1||∞ ≤ 1

4
n!hn+1. (5.27)

5.5 Function Interpolation 205

Using this, the inequality in Theorem 5.3 can be written as

|f(x)− pn(x)| ≤ 1

4(n+ 1)
||f (n+1)||∞hn+1, for a ≤ x ≤ b, (5.28)

If this is used in the above example, the conclusion is that it is necessary to
have h ≤ (3/2)1/3/(100π) ≈ 0.0036. The fact that this is smaller than the
requirement given in the example is a reflection of the inequality in (5.27).

5.5.2 Piecewise Linear Interpolation

The next easiest method to analyze is piecewise linear interpolation. An
example is shown in Figure 5.14, where f(x) = cos(2πx) is approximated
using 6 points over the interval 0 ≤ x ≤ 1. How well the linear functions
approximate f(x) depends on the subinterval. This is why in the analysis for
the general case in the next paragraph we first determine what happens over
each subinterval xi ≤ x ≤ xi+1.

To determine how well f(x) is approximated by gi(x), given in (5.9), over
the subinterval xi ≤ x ≤ xi+1 we can use Theorem 5.3. In this case, n = 1
and q2(x) = (x− xi)(x− xi+1). Consequently,

|f(x)− gi(x)| ≤ 1

2
max

xi≤x≤xi+1

|f ′′(x)| max
xi≤x≤xi+1

|q2(x)|

=
1

8
h2 max

xi≤x≤xi+1

|f ′′(x)|

≤ 1

8
h2||f ′′||∞.

This applies to each subinterval, which gives the next result.

Theorem 5.4. If f ∈ C2[a, b] then the piecewise linear interpolation function
(5.9) satisfies

|f(x)− g(x)| ≤ 1

8
h2||f ′′||∞, for a ≤ x ≤ b,

where ||f ′′||∞ = maxa≤x≤b |f ′′(x)|.

This means that the piecewise linear interpolation function converges to the
original function and the error is second order (because of the h2). Conse-
quently, if the number of interpolation points is doubled, the error in the
approximation should decrease by about a factor of 1/4.

206 5 Interpolation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-axis

-1

-0.5

0

0.5

1
y-

ax
is

Exact
P-Linear

Figure 5.14 Piecewise linear interpolation of f(x) = cos(2πx).

Examples

1. Piecewise linear interpolation is used to approximate f(x) = cos(2πx) in
Figure 5.14. According to Theorem 5.4, what is the error bound for this
approximation?

The interval in this case is 0 ≤ x ≤ 1. Since f(x) = cos(2πx), then
f ′′(x) = −4π2 cos(2πx) and from this it follows that ||f ′′||∞ = 4π2. Given
that h = 1/5, the error bound is |f(x)−g(x)| ≤ π2/50, where π2/50 ≈ 0.2.
�

2. For f(x) = cos(2πx), where 0 ≤ x ≤ 1, how many interpolation points are
needed to guarantee an error of 10−4?

Since ||f ′′||∞ = 4π2, then we want π2h2/2 ≤ 10−4. This gives

h ≤
√
2× 10−2/π.

If n is the number of interpolation points, then h = 1/(n − 1), and com-
bining our results, n ≥ 1 +

√
2π2 × 102 ≈ 1396.8. Therefore, we need to

take n ≥ 1397. �

3. According to Theorem 5.4, for what functions will there be zero error using
piecewise linear interpolation, no matter what the interpolation interval?

This requires ||f ′′||∞ = 0, which means that f ′′(x) = 0 for a ≤ x ≤ b.
Therefore, to have zero error it must be that f(x) = α + βx, i.e., it must
be a linear function in this interval. �

5.5 Function Interpolation 207

5.5.3 Cubic Splines

This brings us to the question of how well the cubic splines do when inter-
polating a function. The answer depends on what type of spline function is
used (natural, clamped, or not-a-knot). To illustrate, in Figure 5.15 the func-
tion f(x) = cos(2πx) is approximated using both a natural and a clamped
cubic spline. The clamped spline provides a somewhat better approximation
but this is not surprising because it has the advantage of using the deriva-
tive information at the endpoints. It is possible to determine the error for
the clamped spline, but because this requires some effort to derive only the
result will be stated (see Hall and Meyer 1976 for the proof).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y-
ax

is

-1

-0.5

0

0.5

1

Exact
Natural

x-axis
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y-
ax

is

-1

-0.5

0

0.5

1

Exact
Clamped

Figure 5.15 Natural and clamped cubic spline interpolation of f(x) = cos(2πx).

Theorem 5.5. If f ∈ C4[a, b] then the clamped cubic spline interpolation
function (5.15) satisfies

|f(x)− s(x)| ≤ 5

384
h4||f ′′′′||∞, for a ≤ x ≤ b,

where ||f ′′′′||∞ = maxa≤x≤b |f ′′′′(x)|. Moreover, for a ≤ x ≤ b,

|f ′(x)− s′(x)| ≤ 1

24
h3||f ′′′′||∞,

|f ′′(x)− s′′(x)| ≤ 1

3
h2||f ′′′′||∞.

This is an amazing result because it states that the clamped cubic spline
can be used to approximate f(x) and its first two derivatives. Moreover,

208 5 Interpolation

the error in approximating f(x) is fourth-order (because of the h4). As an
example, if the number of interpolation points is increased by a factor of 10,
the error bound decreases by about a factor of 104. In comparison, according
to Theorem 5.4, the error for piecewise linear interpolation decreases by a
factor of 102.

Examples

1. A clamped cubic spline is used to approximate f(x) = cos(2πx) in
Figure 5.15. According to Theorem 5.5, what is the error bound for this
approximation?

The interval is 0 ≤ x ≤ 1. Since f(x) = cos(2πx), then f ′′′′(x) =
(2π)4 cos(2πx) and ||f ′′′′||∞ = (2π)4. Given that h = 1/5, the error bound
is |f(x)− g(x)| ≤ π4/3000, where π4/3000 ≈ 0.03. �

2. For f(x) = cos(2πx), where 0 ≤ x ≤ 1, how many interpolation points are
needed to guarantee an error of 10−4 when using a clamped spline?

Since ||f ′′′′||∞ = (2π)4, then we want

5

384
h4(2π)4 ≤ 10−4.

This can be rewritten as h ≤ (384/5)1/4/(20π). If n is the number of
interpolation points, then h = 1/(n − 1), and combining our results,
n ≥ 1 + 20π(5/384)1/4 ≈ 22.2. Therefore, we need to take n ≥ 23. �

3. According to Theorem 5.5, for what functions will there be zero error using
a clamped spline, no matter what the interpolation interval?

This requires ||f ′′′′||∞ = 0, which means that f ′′′′(x) = 0 for a ≤ x ≤ b.
Therefore, to have zero error it must be that f(x) is a cubic function. �

The major drawback in the above theorem is that it requires the clamped
end conditions and for many problems f ′(x1) and f ′(xn+1) are not known. It
is possible to obtain the same level of accuracy with a natural cubic spline,
except near the endpoints, as long as enough points are used. This is seen
in Figure 5.15, where the natural spline does almost as well approximating
the function except over the subintervals next to the boundary points. The
exact statement of the result is given next (see [Kershaw, 1971] for the proof).

Theorem 5.6. If f ∈ C4[a, b] then for the natural cubic spline interpolation
function s(x):

5.5 Function Interpolation 209

1. |f(x)− s(x)| ≤ K1h
2, for a ≤ x ≤ b, where K1 is a positive constant.

2. For large n, there are points x� and xr, with a ≤ x� < xr ≤ b, so that

|f(x)− s(x)| ≤ K2h
4, for x� ≤ x ≤ xr,

where K2 is a positive constant. Moreover, x� → a and xr → b as n→∞.

What this theorem states is that the error for a natural cubic spline is at
least second-order. It also states that the error is actually fourth-order except
near the endpoints. Moreover, the regions near the endpoints where it is not
fourth-order shrink as n increases.

5.5.4 Chebyshev Interpolation

We saw earlier that the polynomial that interpolates all of the data points
can be written as

pn(x) =

n+1∑
i=1

yi�i(x), (5.29)

where

�i(x) =

n+1∏
j=1
j �=i

x− xj

xi − xj
. (5.30)

Given that we are now considering function interpolation, it is assumed that
yi = f(xi). One thing to note is that this does not require that the xi’s
are equally spaced. Also, we know that when n is large, and the points are
equally spaced, the above polynomial should not be used for interpolation.
The question we examine now is, is it possible to pick the locations of the
xi’s so pn(x) is capable of producing an accurate interpolation function. It is
possible, and to explain how, we need Theorem 5.2. What is of interest here
is the error term, which is

f (n+1)(η)

(n+ 1)!
qn+1(x),

where qn+1(x) is given in (5.26). In Figure 5.5 we saw that the values of
this can be huge. We want to prevent this from happening. For a given data
set, so n is given, the assumption that f ∈ Cn+1[a, b] means that there is
a positive constant Mn+1 so that |f (n+1)(x)| ≤ Mn+1. So, the part of the
error function that we need to concentrate on is qn+1(x), and what we are
specifically interested in is the value of

Q = max
a≤x≤b

|qn+1(x)|. (5.31)

This brings us to the following question: given n, how do we position the xi’s
in the interval a ≤ x ≤ b to minimize Q.

210 5 Interpolation

The answer is easy to state, but deriving it requires some work. The result
is given below, and afterwards the derivation is outlined.

Theorem 5.7. The xi’s that produce the smallest value of Q are

xi =
1

2
[a+ b+ (b− a)zi] , for i = 1, 2, · · · , n+ 1, (5.32)

where

zi = cos

(
2i− 1

2(n+ 1)
π

)
. (5.33)

The xi’s in the above theorem are called the Chebyshev points because they
correspond to the zeros of the (n + 1)th Chebyshev polynomial. Note that
the Chebyshev polynomials are usually defined for −1 ≤ x ≤ 1, and when
using a ≤ x ≤ b they are referred to as the Chebyshev polynomials for the
general interval. This distinction is not made in what follows.

There is a simple geometric interpretation for how the xi’s are positioned in
the interval that comes from (5.33). Placing a semi-circle over the interval, as
in Figure 5.16, consider the n+1 points on the semi-circle that are a constant
angle π/n apart, with the first one (on the far right) at an angle π/(2n). Their
x coordinates are given in (5.32) and they are the corresponding Chebyshev
points. This figure also shows why the Chebyshev points are closer together
at the endpoints of the interval, as compared to their placement towards the
center.

In the proof of Theorem 5.7, the following result is also obtained:

Theorem 5.8. With the xi’s given in (5.32), then the global interpolation
polynomial pn(x) given in (5.5) satisfies

|f(x)− pn(x)| ≤ 1

2n(n+ 1)!

(
b− a

2

)n+1

||f (n+1)||∞, for a ≤ x ≤ b,

where ||f (n+1)||∞ = maxa≤x≤b |f (n+1)(x)|.

The fact that 2n(n + 1)! grows rapidly with n means that the error with
Chebyshev interpolation can be quite small. To get an estimate of just how
small, according to Stirling’s formula, for large values of n,

n! ≈
√
2πn

(n
e

)n
. (5.34)

Using this approximation for the factorial, the inequality in Theorem 5.8 can
be replaced with (see Exercise 5.31)

|f(x)− pn(x)| ≤
√

2

nπ
Rn+1||f (n+1)||∞, for a ≤ x ≤ b, (5.35)

5.5 Function Interpolation 211

a (a+b)/2 b

a (a+b)/2 b
x - axis

x - axis

y
-

ax
is

y
-

ax
is

Figure 5.16 The Chebyshev points, which are the red dots along the x-axis, are
determined by equally spaced points on the circumscribed semi-circle. In the top
graph, n = 5, while in the bottom graph, n = 11.

where

R =
(b− a)e

4(n+ 1)
. (5.36)

Consequently, if n is large enough that R < 1, then Rn+1 approaches zero
exponentially fast. Whether this means that the error for Chebyshev inter-
polation approaches zero exponentially fast, however, depends on how the

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x-axis

0

1

y-
ax

is

Runge
Cheb

Figure 5.17 The Runge function (5.8) and the Chebyshev interpolation polynomial
with n = 12.

212 5 Interpolation

f (n+1) term depends on n. This issue is considered in the examples to follow.
Also, it’s worth noting that the error using piecewise linear or cubic splines is
not exponential, and the error in each case approaches zero as a fixed power
of h = (b− a)/(n− 1).

Examples

1. Using the Chebyshev points with n = 12 to fit Runge’s function in (5.8),
the interpolation function shown in Figure 5.17 is obtained. The improve-
ment over using equally spaced points, which is shown in Figure 5.5, is
dramatic. Also shown in Figure 5.17, by small horizontal bars, are the
locations of the xi’s. This shows the non-uniform spacing of the interpo-
lation points, and they get closer together as you approach either of the
endpoints of the interval. �

2. For f(x) = cos(2πx), where 0 ≤ x ≤ 1, according to Theorem 5.8, how
many interpolation points are needed to guarantee an error of 10−4 when
using Chebyshev interpolation?

Since ||f (n+1)||∞ = (2π)n+1, then we want πn+1/(2n(n + 1)!) ≤ 10−4.
From this one finds that n ≥ 9. In comparison, earlier we found that
piecewise linear requires n ≥ 1397, while a clamped cubic spline requires
n ≥ 23. It is also interesting to note that if the number of points is dou-
bled to n = 18, that according to Theorem 5.8, the error bound is about
10−14, and if doubled again to n = 36, the error bound is an astonishing
10−36. In contrast, for a clamped cubic spline, doubling the number of
points decreases the error bound by a factor of 2−4 ≈ 6 × 10−2. This is
a clear demonstration of the benefits of an exponentially converging ap-
proximation, but as we will see shortly, exponential convergence is limited
to certain types of functions. �

Chebyshev Polynomials

To explain how the xi’s are determined, it is assumed that a = −1 and b = 1.
We begin with a definition.

Definition 5.1. The Chebyshev polynomials Tn(x) are defined using the fol-
lowing recursion formula:

Tn+1(x) = 2xTn(x)− Tn−1(x), for n = 1, 2, 3, · · · , (5.37)

where T0(x) = 1 and T1(x) = x.

Using this definition, the first few Chebyshev polynomials are

5.5 Function Interpolation 213

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 20x3 + 5x.

As is seen in the above expressions, Tn(x) is an nth degree polynomial and
the leading coefficient is 2n−1.

Two of the key results needed for finding the xi’s are contained in the
following result:

Theorem 5.9.

1. If Pn(x) = xn + bn−1x
n−1 + · · ·+ b0, where n ≥ 1, then

max
−1≤x≤1

|Pn(x)| ≥ 21−n.

2. If Pn(x) = 21−nTn(x), then

max
−1≤x≤1

|Pn(x)| = 21−n.

The usual proof of the first statement involves contradiction, and using the
oscillatory properties of a polynomial. An illustration of how it is possible to
prove it directly is given in Exercise 5.32.

Note that the qn+1(x) in (5.26) is an example of the function Pn+1(x)
appearing in the above theorem. The first result in the theorem states that
no matter what we pick for the xi’s, the Q in (5.31) satisfies Q ≥ 2−n.
What the second result states is that if we pick qn+1(x) = 2−nTn+1(x), then
Q = 2−n, i.e., it achieves the stated minimum value. Therefore, we should
pick the xi’s so that

2−nTn+1(x) = (x− x1)(x− x2) · · · (x− xn+1).

In other words, the xi’s are the zeros of Tn+1(x).
We need an easy way to find the zeros of Tn+1(x), and this is given in the

next result.

Theorem 5.10.

Tn(x) = cos(n cos−1 x), for n = 0, 1, 2, 3, · · · .

This is a strange looking equation because the right-hand side does not look
to be a polynomial. Nevertheless, the proof is rather simple, and basically

214 5 Interpolation

involves using trig identities to show that the right-hand side satisfies (5.37).
With this it is easy to find the zeros of Tn+1(x), and they are the values of x
that satisfy

(n+ 1) cos−1 x =
π

2
(2i− 1), for i = 1, 2, 3, · · · , n+ 1.

The values given in (5.32) are the resulting positions when the above result
is transformed from −1 ≤ x ≤ 1 to a ≤ x ≤ b.

5.5.5 Chebyshev Versus Cubic Splines

We saw that Chebyshev interpolation has the potential to have an error that
approaches zero exponentially fast as n increases. It also has the distinction
that it produces the smallest Q, as explained in Theorem 5.7. The natural cu-
bic splines, on the other hand, produce the smallest total curvature squared,
as defined in Theorem 5.1. What this means is that we have two interpola-
tion methods that can claim to be optimal. Given this, it is of interest to
compare Chebyshev and cubic spline interpolation on some more challenging
examples.

Example 1

We begin with the Runge’s function in (5.8), and assume 13 data points are
used. The resulting Chebyshev interpolation function is shown in Figure 5.17.
For comparison, the corresponding natural cubic spline is shown in Figure 5.18.
In comparing the two figures, it is clear that the spline provides a better app-
roximation function. To have a more quantitative comparison, suppose g(x)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x-axis

0

1

Runge
Spline

Figure 5.18 The function (5.8) and the natural cubic spline using 13 equally spaced
points. The two curves are indistinguishable.

5.5 Function Interpolation 215

100 101 102 103

n-axis

10-16

10-12

10-8

10-4

100
E

rr
o

r

Spline
Cheb

Figure 5.19 The error, as determined by the area integral in (5.38), when approxi-
mating Runge’s function with a natural cubic spline, and with a Chebyshev interpo-
lation function.

is an interpolation function of a given function f(x). The error is using g(x) to
approximate f(x) will be determined using the area between the two curves,
which means

E =

∫ b

a

|f(x)− g(x)|dx. (5.38)

The value of this integral is given in Figure 5.19, when g(x) is the natu-
ral cubic spline, and when it is the Chebyshev interpolation function. It is
seen that the spline produces a more accurate approximation when using up
to about 60 interpolation points. The reason the spline does better is that
||f (n+1)||∞ grows rapidly with n, which effectively eliminates the exponen-
tial convergence for Chebyshev interpolation. For example, when n = 13,
||f (n+1)||∞ ≈ 5 × 1020, while 2n(n + 1)! ≈ 3 × 1013. It is not until n is
rather large that the exponential convergence kicks in and Chebyshev begins
to produce a better approximation than the spline. �

Example 2

Suppose the function is f(x) = tanh(100x−30), and the interval is 0 ≤ x ≤ 1.
Using 25 interpolation points, the resulting interpolation functions are shown
in Figure 5.20. In this case, both have some difficulty with the rapid rise
in the function. However, the under- and over-shoots in the spline function
die out much faster than those for the Chebyshev function. The associated
error for each interpolation function, as determined using (5.38), is shown in
Figure 5.21. As in the last example, it is not until n is rather large that the
exponential convergence enables Chebyshev to produce a better approxima-
tion than the spline. �

It is evident from the examples that Chebyshev interpolation is capable of
producing a more accurate approximation than cubic splines. However, this

216 5 Interpolation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-axis

-1

0

1
y-

ax
is

Exact
Cheb
Spline

Figure 5.20 The function f(x) = tanh(100x−30), along with Chebyshev and cubic
spline interpolation functions using 25 data points.

100 101 102 103

n-axis

10-9

10-6

10-3

100

E
rr

o
r

Spline
Cheb

Figure 5.21 The error, as determined by the area integral in (5.38), when approx-
imating f(x) = tanh(100x − 30) with a natural cubic spline, and with a Chebyshev
interpolation function.

is based on the stipulation that the contribution of the f (n+1)(η) term in the
error is not too large, and it can be difficult to know if this holds. This limits
its usefulness, but it does not dampen the enthusiasm that some have for the
method. To get insight into why they think this way, Trefethen [2012] should
be consulted.

5.5.6 Other Ideas

There are a variety ways of modifying the interpolation procedure. For exam-
ple, given a function f(x) one can construct a piecewise cubic that interpo-
lates f(x1), f(x2), · · · , f(xn+1) as well as the derivative values f

′(x1), f
′(x2),

· · · , f ′(xn+1). This is known as Hermite interpolation and it produces an app-
roximation with an error that is O(h4). This puts it in the same category as
the clamped cubic spline discussed earlier.

There is also the idea of being monotone. The objective here is that if the
data appear to describe a monotonically increasing (or decreasing) function

5.6 Questions and Additional Comments 217

over an interval then the interpolation function should behave the same way
over that interval. As seen in the lower right data set in Figures 5.4 and 5.13,
the global and spline functions fail at this while the piecewise linear function
in Figure 5.9 works. However, for the latter there is the usual problem with
corners. So, the goal is to find a method that does well at preserving mono-
tonicity and is also smooth. This comes under the more general heading of
finding a smooth shape preserving interpolation function. A review of such
methods, such as the Akima algorithm and the Fritsch-Butland procedure,
can be found in Huynh [1993]. It is also worth noting that shape preserving
interpolation is of particular interest in the mathematical finance commu-
nity, and those interested in this application should consult Hagan and West
[2006].

5.6 Questions and Additional Comments

Below are some random questions and comments about interpolation.

1. To fix the corner problem that arises with piecewise linear interpolation, we
used piecewise cubic interpolation. What’s wrong with piecewise quadrat-
ics?

Answer: They have a couple of drawbacks. To explain, quadratics can inter-
polate the data and have a continuous first derivative (see Exercise 5.33).
In comparison, cubic splines have continuous second derivatives, and so
they are smoother. Another issue with quadratics is that they can pro-
duce what can best be described as bumpy curves, and this is illustrated
in Exercise 5.33(d). However, it is possible to adjust the interpolation pro-
cedure to improve the situation and those interested might want to consult
Marsden [1974] or Grasselli and Pelinovsky [2008].

2. The cubic B-spline Bi(x) is nonzero for xi−2 ≤ x ≤ xi+2. Why not use the
smaller interval xi−1 ≤ x ≤ xi+1?

Answer: It simply won’t work (try it).

3. Can the interpolation methods be used to solve the puzzle in Figure 5.6?

Answer: Yes, but if you want to draw something that looks like a flower
then you will need to rewrite the problem because our methods are based
on interpolating a function. Possible solutions would be to break the
data points into sections that can each be described as a function, or to
use parametric coordinates. These ideas can be generalized, which leads

218 5 Interpolation

naturally to something called Bezier curves and surfaces, and geometric
modeling. Those interested might consider looking at Salomon [2006] and
Mortenson [1997].

4. If just one of the yi’s is changed, what happens to the interpolation
function?

Answer: It depends on what method you are using. For piecewise linear, the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-axis

0

1

y-
ax

is

Cheb
Spline

Figure 5.22 Interpolation using Chebyshev and cubic spline interpolation functions
with 15 data points, with all values zero except for the one near 0.8.

interpolation function is only affected over the interval xi−1 < x < xi+1.
If you are using cubic splines or Chebyshev, then the interpolation func-
tion over the entire interval a < x < b is affected. To get an idea of what
happens, if all of the yi’s are zero then the interpolation function is zero
everywhere, irrespective of whether or not you are using a natural cubic
spline or Chebyshev interpolation. Now, suppose one data point is changed
and it is now nonzero. This situation is shown in Figure 5.22 using a nat-
ural cubic spline and Chebyshev interpolation, where the nonzero point
is the one close to 0.8 (the exact point differs between the two methods
due to how they position the points). In both cases, the changes in the
interpolation function over the entire interval are less than the change at
the given data point. In other words, if the data value is changed by a
small amount, then the interpolation function over the interval is changed
by no more than this value. However, it is also apparent that the changes
in the Chebyshev function are more widespread than for the cubic spline.

5. In the early days of spline research, they used the cubic spline version of the
piece linear hat functions Gi(x). These functions were usually designated
as Li(x) and they were defined as the cubic splines that satisfied Li(xi) = 1
and Li(xj) = 0 for j �= i (see, e.g., de Boor and Schoenberg 1976). These
were called the fundamental functions, and one is shown in Figure 5.23.
The reason for introducing them is that they have the nice property that
the spline interpolation function is simply

Exercises 219

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x-axis

0

1
y-

ax
is

Figure 5.23 A fundamental function for (clamped) cubic splines. Shown is L7(x).

s(x) =

n+1∑
i=1

yiLi(x).

However, this hides all the work needed to determine the spline. In par-
ticular, finding the Li’s requires the solution of n+ 1 matrix equations.

Exercises

5.1. In this problem the data are: (x1, y1) = (0, 0), (x2, y2) = (1, 1), and
(x3, y3) = (2, 3).
(a) Find the global interpolation polynomial that fits these data.
(b) Find the piecewise linear interpolation function that fits these data.
(c) Find the natural cubic spline that fits these data.

5.2. This problem concerns the data in Table 5.6.
(a) Find the piecewise linear interpolation function g(x) that fits these data.
(b) Find the global interpolation polynomial p3(x) that fits these data.

5.3. Use a Lagrange interpolating polynomial of degree 1 to find an approx-
imate value for the following. Not all of the data points are needed, and you
should explain which ones you use and why.
(a) f(2.4) if f(2.1) = 1, f(2.3) = 1.2, f(2.6) = 1.3, f(2.7) = 2
(b) f(−0.1) if f(0.1) = 2, f(0) = 0.1, f(−0.2) = −0.1, f(0.4) = −0.5
(c) f(1) if f(0.5) = −1, f(0.8) = −0.5, f(1.1) = 0.5, f(1.2) = 1

5.4. Redo the previous problem but use a Lagrange interpolating polynomial
of degree 2.

5.5. If f(θ) = sin θ, then f(0) = 0, f(π/4) =
√
2/2, and f(π/2) = 1. Use

these data points to answer the following questions. Note that the error that
is asked for is the absolute value of the difference between the exact value
f(π/8) =

√
2−√2/2 and the estimated value.

220 5 Interpolation

0 0.5 1 1.5 2 2.5 3
x-axis

-2

-1

0

1

2

3
y-

ax
is

Second
Fourth

Figure 5.24 Graph used in Exercise 5.6.

x −1 0 1 2

y 0 1 1 0

Table 5.6 Data for Exercise 5.2.

(a) Using piecewise linear interpolation, what is the estimated value of
f(π/8)? What is the error in this estimate?

(b) Using a global interpolation polynomial, what is the estimated value of
f(π/8)? What is the error in this estimate?

(c) Using natural cubic spline interpolation, what is the estimated value of
f(π/8)? What is the error in this estimate?

(d) Using the additional information that f ′(0) = 1 and f ′(π/2) = 0, use
clamped cubic spline interpolation to find an estimated value of f(π/8).
What is the error in this estimate?

(e) Suppose Chebyshev interpolation is used. Determine the three Chebyshev
points in the interval, and evaluate f(θ) at these points. What is the
resulting estimated value of f(π/8)? What is the error in this estimate?

5.6. A function f(x) is going to be approximated using an interpolation func-
tion for 0 ≤ x ≤ 3. The second, f ′′(x), and fourth, f ′′′′(x), derivatives of the
function are plotted in Figure 5.24.
(a) How many data points for piecewise linear interpolation are needed to

guarantee the error is less than 10−8?
(b) How many data points for a clamped cubic spline are needed to guarantee

the error is less than 10−8?

5.7. The function y = log10 x is going to be approximated using an interpo-
lation function for 1 ≤ x ≤ 10.
(a) How many data points for piecewise linear interpolation are needed to

guarantee the error is less than 10−6?

Exercises 221

(b) How many data points for a clamped cubic spline are needed to guarantee
the error is less than 10−6?

(c) How many data points are needed when using Chebyshev interpolation
to guarantee the error is less than 10−6?

5.8. For the following functions, determine a step size h that will guarantee
that the error is less than 10−6 using piecewise linear interpolation.
(a) f(x) = x10, for −1 ≤ x ≤ 1.
(b) f(x) = ln(x), for 1 ≤ x ≤ 2.
(c) f(x) = 2 sin(3x) + 3 sin(2x), for 0 ≤ x ≤ π.

5.9. Redo the previous problem but use a clamped cubic spline.

5.10. The Bessel function of order zero can be written as

J0(x) =
1

π

∫ π

0

cos(x sin s)ds.

(a) Show that |J0(x)| ≤ 1, |J ′
0(x)| ≤ 1, |J ′′

0 (x)| ≤ 1, and in fact, for any
positive integer k, ∣∣∣∣ d

k

dxk
J0(x)

∣∣∣∣ ≤ 1.

In what follows, determine how many interpolation points over the inter-
val 0 ≤ x ≤ 10 are needed so the error is no more than 10−6.

(b) Using piecewise linear interpolation.
(c) Using a clamped cubic spline.
(d) Using Chebyshev interpolation.
(e) The Bessel function of order m can be defined as

Jm(x) =
1

π

∫ π

0

cos(x sin s−ms)ds.

How do your answers in parts (b)–(d) change for this function?

5.11. This problem considers the function

g(x) =

{
2 + 3x2 + αx3 if − 1 ≤ x ≤ 0,
2 + βx2 − x3 if 0 ≤ x ≤ 1.

(a) For what values of α and β, if any, is g(x) a cubic spline for −1 ≤ x ≤ 1?
These values are to be used in the remainder of this problem.

(b) What were the data points that gave rise to this cubic spline?
(c) For what values of α and β is g(x) a natural cubic spline?
(d) For what values of α and β is g(x) a clamped cubic spline?

222 5 Interpolation

5.12. This problem considers the function

g(x) =

{
2(x+ 1)3 + 5(x+ 1)− 13x if − 1 ≤ x ≤ 0,
2(1− x)3 + 9x+ 5(1− x) if 0 ≤ x ≤ 1.

(a) Show that this is a cubic spline, and determine the data values used in
its construction.

(b) Is this a natural cubic spline?
(c) Is this a clamped cubic spline?

5.13. Consider the function

g(x) =

{
x3 − 1 if 0 ≤ x ≤ 1,
−x3 + 6x2 − 6x+ 1 if 1 ≤ x ≤ 2.

Is g(x) a cubic spline for 0 ≤ x ≤ 2? If it is, is it natural, clamped, or neither?
Make sure to justify your answers.

5.14. The data considered here are the population of a country for the years
x1 = 1900, x2 = 1910, x3 = 1920, x4 = 1930, · · · , x12 = 2010. The yi’s are
the corresponding population values, and they should be given per million.
For example, the population of the USA is given in Table 5.7, and this is
from the Wikipedia page Demographics of the United States.
(a) Fit this data with: i) a global polynomial using Lagrange interpolation,

and ii) a natural cubic spline. Plot these two curves and the data on the
same axis. Make sure to include a legend in your plot.

(b) What do each of the two interpolation functions give as the population
in 2005?

(c) What do each of the two interpolation functions predict the population
will be in 2015?

5.15. The data considered here are the temperatures over a 24 hour period,
in two hour increments. So, x1 = 0, x2 = 2, x3 = 4, x4 = 6, · · · , x13 = 24.
The yi’s are the corresponding temperatures. For example, the temperatures
in Troy, NY on June 21 are given in Table 5.8 (in oF).
(a) Fit this data with: i) a global polynomial using Lagrange interpolation,

and ii) a natural cubic spline. Plot these two curves and the data on the
same axis. Make sure to include a legend in your plot.

x 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

y 76.21 92.23 106.0 123.2 132.2 151.3 179.3 203.3 226.5 248.8 281.4 308.7

Table 5.7 Sample population data for Exercises 5.14, 5.28, and 6.9.

Exercises 223

(b) What do each of the two interpolation functions give as the temperature
at 11 AM?

(c) What do the two interpolation functions predict the temperature will be
at 1 AM the next day?

(d) What do the two interpolation functions predict the temperature will be
at 9 AM the next day? Explain why the spline predicts the value it does.

5.16. The data below describe a cross-section of an airfoil where the points
(X,Yu) define the upper surface and the points (X,Y�) describe the lower
surface.
X = [0, 0.005, 0.0075, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1.0]
Yu = [0, 0.0102, 0.0134, 0.017, 0.025, 0.0376, 0.0563, 0.0812, 0.0962, 0.1035,
0.1033, 0.095, 0.0802, 0.0597, 0.034, 0]
Y� = [0, −0.0052, −0.0064, −0.0063, −0.0064, −0.006, −0.0045, −0.0016,
0.001, 0.0036, 0.007, 0.0121, 0.017, 0.0199, 0.0178, 0]
(a) Draw the airfoil by fitting cubic splines separately to the upper and lower

surfaces, and then plotting the results as a single figure. To make it look
like an airfoil you will probably need to resize the plot window.

(b) Redo (a) but use global polynomial interpolation instead of splines.

5.17. This problem considers some of the difficulties interpolating the func-
tion f(x) =

√
x.

(a) If the interpolation interval is 1 ≤ x ≤ 10, how many data points are
needed for piecewise linear interpolation to guarantee that the error is
less than 10−6?

(b) Explain why Theorem 5.4 is not so useful if the interval is 0 ≤ x ≤ 1.
(c) One way to deal with the singularity at x = 0 is to break the interval into

two segments, one is 0 ≤ x ≤ δ and the other is δ ≤ x ≤ 1, where δ is a
small positive number. On the interval 0 ≤ x ≤ δ the function is going to
be interpolated with a single line. What is the equation for this line, and
how small does δ need to be to guarantee that the approximation error
is 10−6?

(d) Assuming that δ is known, how many data points over the interval δ ≤
x ≤ 1 are needed for piecewise linear interpolation to guarantee that the
error is less than 10−6?

5.18. The function f(x) = 1/(1 + x2) is to be approximated using a piece-
wise linear function g(x) over the interval 0 ≤ x < ∞. The requirement is
that |f(x) − g(x)| ≤ 10−4 for 0 ≤ x < ∞. Explain how to determine the
spacing of the xi’s used in the construction of g(x), and how you handle the
approximation over the intervals xn ≤ x ≤ xn+1 and xn+1 ≤ x < ∞, where
xn+1 is the largest node you use.

5.19. This problem concerns interpolating the function f(x) = sinπx over
the interval 1 ≤ x ≤ 3, using three data points, with x1 = 1, x2 = 2, and
x3 = 3.

224 5 Interpolation

x 0 2 4 6 8 10 12 14 16 18 20 22 24

y 59 56 53 54 60 67 72 74 75 74 70 65 61

Table 5.8 Sample temperature data for Exercise 5.15. Note x = 0 and x = 24
correspond to midnight.

(a) Find the global interpolation polynomial that fits this data.
(b) Find the piecewise linear interpolation function that fits this data.
(c) Find the natural cubic spline that fits this data.
(d) Find the clamped cubic spline that fits this data.
(e) Chebyshev interpolation cannot use the stated xi’s. What are the three

Chebyshev interpolation points for this interval, and what is the resulting
interpolation function?

5.20. In this problem xi = i, for i = 1, 2, 3, 4, and

s(x) = B0(x)−B1(x) +B2(x)−B3(x) +B4(x)−B5(x),

for 1 ≤ x ≤ 4.
(a) What data points (xi, yi) were used to produce this cubic spline?
(b) Is this a natural cubic spline?
(c) Is it a clamped cubic spline?

5.21. In this problem xi = i, for i = 1, 2, 3, 4, and

s(x) = B2(x) + 5B4(x),

for 1 ≤ x ≤ 4.
(a) What data points (xi, yi) were used to produce this cubic spline?
(b) Is this a natural cubic spline?
(c) Is it a clamped cubic spline?

5.22. Given a data set (x1, y1), (x2, y2), · · · , (x101, y101) suppose one of the
following interpolation methods is to be used: Lagrange interpolation, piece-
wise linear interpolation, cubic spline interpolation using cubic B-splines.
(a) Order them by the number of flops needed to determine the interpolation

function. Make sure to explain how you arrive at your answer. Assume
the Thomas algorithm is used for the cubic spline (see Section 3.8).

(b) Order the methods by the number of flops needed to evaluate them at a
given point (assume this point isn’t in the data set). Make sure to explain
how you arrive at your answer.

5.23. Suppose Chebyshev interpolation is applied to a function f(x) using
eight interpolation points. Also, suppose that no matter what interpolation
interval is used, the error for the Chebyshev interpolation is zero. What
conclusion can you make about the original function f(x)?

Exercises 225

5.24. Given three points xi−1, xi, and xi+1, this problem considers the
quadratic interpolation formula

p2(x) = yi−1�i−1(x) + yi�i(x) + yi+1�i+1(x).

It is assumed here that xi − xi−1 = h and xi+1 − xi = h.
(a) Show that the above interpolation formula can be rewritten as

p2(x) = yi +
1

2h
(yi+1 − yi−1)(x− xi) +

1

2h2
(yi+1 − 2yi + yi−1)(x− xi)

2.

(b) Calculate p′2(x) and p′′2(x).
(c) Suppose p2(x) interpolates f(x) at xi−1, xi, and xi+1, so yi−1 = f(xi−1),

yi = f(xi), and yi+1 = f(xi+1). Setting x = xi + αh, expand f(x) and
p2(x) about h = 0 and show that

f(x) = p2(x) +
1

6
z(z2 − h2)f ′′′(xi) +

1

24
z2(z2 − h2)f ′′′′(xi) + · · · ,

where z = x− xi.
(d) How does the result in part (c) compare to the result in Theorem 5.2 in

the case of when a = xi − h, b = xi + h, and n = 2?

5.25. It is possible when solving for the coefficients for a cubic spline that one
of the si’s turns out to a linear function (versus a full cubic). This exercise
explores this situation. Suppose there are three data points, with x1 = 0,
x2 = 1, and x3 = 2 and let

s(x) =

{
a+ bx if 0 ≤ x ≤ 1,
a2 + b2(x− 1) + c2(x− 1)2 + d2(x− 1)3 if 1 ≤ x ≤ 2.

(a) To be a cubic spline it is required that s ∈ C2(0, 2). What conditions
must be imposed on the coefficients so this happens?

(b) Under what conditions, if any, is this a natural cubic spline?

5.26. This exercise explores some of the differences between a cubic poly-
nomial and a cubic spline. In this problem the data are: (x1, y1) = (0, 0),
(x2, y2) = (1, 1), (x3, y3) = (2, 0), and (x4, y4) = (3, 1).
(a) Find the global interpolation polynomial that fits this data, and then

evaluate this function at x = 1/2.
(b) Find the natural cubic spline that fits this data, and then evaluate this

function at x = 1/2.
(c) The cubic in part (a) satisfies the interpolation and smoothness conditions

required of a spline, yet it produces a different result than the cubic spline
in part (b). Why?

(d) What boundary conditions should be used so the cubic spline produces
the cubic in part (a)?

226 5 Interpolation

5.27. The objective of this problem is to find a method that can evaluate
f(x) = cosx, for 0 ≤ x ≤ 2π, with an error of no more than 10−6. In doing
this, the interpolation points are restricted to those xi’s for which the exact
value of cosxi is known. It is useful to know that, by considering the angles
in a polygon, it is possible to determine the exact values of cosx and sinx
for x = π/10, π/12, π/15, etc. (these are given on the Wikipedia page Exact
trigonometric constants).
(a) Show that if the values of cosx and sinx are known for x = π/k, then

they are known at x = mπ/k, for m = 2, 3, 4, · · · .
(b) For a given value of k, let h = π/k and suppose that the interpolation

points are xi = (i− 1)h, for i = 1, 2, · · · , n+ 1. Find n in terms of k.
(c) According to Theorem 5.4, how small must h be so the error using piece-

wise linear interpolation with f(x) = cosx is no more than 10−6? What
is the smallest value of k so that π/k ≤ h?

(d) According to Theorem 5.6, how small must h be so the error using a
clamped cubic spline with f(x) = cosx is no more than 10−6? What is
the smallest value of k so that π/k ≤ h?

(e) For a given value of x, describe a procedure that uses the exact values of
cosx and/or sinx to evaluate f(x) = cosx, for 0 ≤ x ≤ 2π, with an error
of less than 10−6.

(f) Write a MATLAB program that implements your algorithm in part (e)
and compares the computed values with MATLAB’s built in cosine func-
tion, for x = 1, 2, 5.

5.28. This problem explores how to scale the data to help improve the com-
putability of the interpolation polynomial. We consider the direct approach
to determine pn(x), and as usual the data points are (x1, y1), (x2, y2), · · · ,
(xn+1, yn+1), where x1 < x2 < · · · < xn+1. The x values are going to be
scaled by letting

z =
x− α

β
,

where α and β are given numbers with β > 0. The data point (xi, yi) in
this case changes to (zi, yi), where zi = (xi − α)/β. Also, the interpolation
polynomial also changes to

pn(z) = a0 + a1z + · · ·+ anz
n.

(a) The original data interval is x1 ≤ x ≤ xn+1. What is the data interval
when using z? What matrix equation must be solved to find the ai’s in
the above formula for pn(z)?

(b) The values for α and β are going to be selected so the z data interval is
−1 ≤ z ≤ 1. What are α and β in this case?

(c) Using the population data from Exercise 5.14, plot the interpolation func-
tion using the direct approach on the original xi data set. Also compute
the condition number for V.

Exercises 227

(d) Using the population data from Exercise 5.14, scale the data based on the
result from part (b), and then find the coefficients for pn(z). What is the
condition number of the matrix in this case? Once the ai’s are computed
then in terms of the original x variable,

pn(x) = a0 + a1

(
x− α

β

)
+ a2

(
x− α

β

)2

+ · · ·+ an

(
x− α

β

)n

.

Plot this function and compare the result with what you found in part (c).

5.29. This problem concerns a method to reduce the computational effort to
evaluate the Lagrange interpolation function given in (5.5).
(a) What is the flop count to evaluate (5.5) for a given value of x?
(b) Assuming that x �= xi, for any i, show that (5.5) can be written as

pn(x) = �(x)

n+1∑
i=1

wiyi/(x− xi) ,

where �(x) =
∏n+1

j=1 (x− xj) and

wi = 1/

n+1∏
j=1
j �=i

(xi − xj) .

This is known as the first form of the barycentric interpolation formula,
and wi’s are called barycentric weights.

(c) Suppose the formula in part (b) is used to interpolate the constant func-
tion f(x) = 1. Use this to show that

�(x)
n+1∑
i=1

wi/(x− xi) = 1.

(d) Use the result from part (c) to show that

pn(x) =

∑n+1
i=1 wiyi/(x− xi)∑n+1
i=1 wi/(x− xi)

,

This is called the second (true) form of the barycentric formula.
(e) What is the flop count to evaluate the formula for pn(x) given in part (d)?

5.30. The cubic spline interpolation function is

s(x) =

n+2∑
i=0

aiBi(x).

228 5 Interpolation

For a natural spline we found the ai’s by solving a matrix equation Aa = z.
The purpose of this exercise is to find what this equation is for a clamped
spline. Recall that for a clamped spline it is required that s′(x1) = y′1 and
s′(xn+1) = y′n+1, where y

′
1 and y′n+1 are given. Show a = (a1, a2, · · · , an+1)

T ,
z = (6y1+2hy′1, 6y2, · · · , 6yn, 6yn+1−2hy′n+1)

T , andA is the n×n tridiagonal
matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 2

1 4 1 0
1 4 1

. . .
. . .

. . .

0 1 4 1
2 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Also, once a is determined, then a0 = a2 − 2hy′1 and an+2 = an + 2hy′n+1.

5.31. This problem concerns some of the inequalities arising for function
interpolation.
(a) For qn+1, given in (5.26), assume x is not one of the xi’s. So, there is an

xi so that xi < x < xi+1. With this, it is possible to write

qn+1(x) = (x− xi)(x− xi+1)

i−1∏
j=1

(x− xj)

n+1∏
j=i+2

(x− xj).

Show that |(x− xi)(x− xi+1)| ≤ 1
4h

2. Also show that |∏i−1
j=1(x− xj)| ≤

i!hi−1 and |∏n+1
j=i+2(x− xj)| ≤ (n+1− i)!hn−i. From this, derive (5.27).

Make sure to comment about the case of when x equals one of the xi’s.
(b) It is possible to prove that for every positive integer n [Sandor and Deb-

nath, 2000], √
2πn

(n
e

)n
≤ n!.

Use this, and Theorem 5.8, to derive (5.35).

5.32. This problem considers a direct proof of Theorem 5.9, at least for the
case of when n = 1. This will help demonstrate how this result is independent
of the coefficients of the polynomial.
(a) If P1(x) = x+ b0, explain why

max
−1≤x≤1

|P1(x)| = max{ |1 + b0|, | − 1 + b0| }.

(b) Sketch the two absolute values in part (a) as a function of b0. Use this
to explain why max−1≤x≤1 |P1(x)| = 1+ |b0|. From this derive the result
stated in the theorem.

Exercises 229

5.33. This problem derives the formulas for a piecewise quadratic interpola-
tion function. This function is written as

w(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w1(x) if x1 ≤ x ≤ x2

w2(x) if x2 ≤ x ≤ x3

...
...

wn(x) if xn ≤ x ≤ xn+1,

where

wi(x) = ai + bi(x− xi) + ci(x− xi)
2, for xi ≤ x ≤ xi+1.

The interpolation requirements are wi(xi) = yi and wi(xi+1) = yi+1. Also,
w′(x) is required to be continuous, which means that w′

i(xi+1) = w′
i+1(xi+1)

for i = 1, 2, · · · , n− 1.
(a) Explain why the stated requirements are not enough, and it is necessary

to impose one additional condition. In this problem, it is assumed that
b1 is specified. Explain why this is the same as specifying the value of the
slope w′(x1).

(b) From the stated requirements, deduce that ai = yi for i = 1, 2, · · · , n+1.
Also, bi = −bi−1 + 2(yi − yi−1)/h for i = 2, 3, · · · , n, and ci = (yi+1 −
yi − hbi)/h

2 for i = 1, 2, · · · , n.
(c) Explain why the results from parts (a) and (b) mean that one can deter-

mine the coefficients for w1, then determine the coefficients for w2, then
for w3, etc.

(d) Use w(x) to interpolate f(x) = cos(6πx), over the interval 0 ≤ x ≤ 1.
Plot w(x) and f(x) for the following cases: i) n = 5, ii) n = 10, iii)
n = 15, and iv) n = 30. Comment on how well the interpolation method
works for this particular function.

http://www.springer.com/978-3-319-30254-6

	Preface
	Introduction to Scientific Computing
	Solving A Nonlinear Equation
	Matrix Equations
	Eigenvalue Problems
	Interpolation
	Numerical Integration
	Initial Value Problems
	Optimization
	Data Analysis
	A Taylor's Theorem
	B B-Splines
	C Summary Tables
	References
	Index
	Index.pdf
	Preface
	Introduction to Scientific Computing
	Solving A Nonlinear Equation
	Matrix Equations
	Eigenvalue Problems
	Interpolation
	Numerical Integration
	Initial Value Problems
	Optimization
	Data Analysis
	A Taylor's Theorem
	B B-Splines
	C Summary Tables
	References
	Index

