Chapter 2
Proximities Revisited

Fig. 2.1 Som Naimpally

This chapter takes another look at the very rich proximity landscape. An overview
of the proximity landscape is given in the life and work of S.A. Naimpally (Som).
For a recent picture of Som, see Fig.2.1 and for an overview of Som’s research
contributions, see [1]. This is a remarkable story of a mathematician who began
studying proximity space theory after he completed his Ph.D. as a result of a chance
meeting at the University of Michigan between Som and a visitor from Cambridge
University Press, who invited him to write a monograph on proximity. This he did
together with his graduate student B.D. Warrack, leading to a complete overview of
proximity space theory until 1970 [2].

The study of the nearness of sets now spans more than 100 years, starting with
the address by F. Riesz at the International Congress of Mathematicians in Rome in
1908 [3], recently commented on by S.A. Naimpally [4, 5] and A. Di Concilio [6-8].
One of the earliest introductions to nearness (proximity) relations was given by
E. Cech during a 1936-1939 Brno seminar, published in 1966 [9, Sect.25.A.1].
Cech used the symbol p to denote a proximity relation defined on a nonempty set
X, which Cech axiomatized. Cech’s work on proximity spaces started two years
after V.A. Efremovi¢’s work (in 1933), who introduced a widely considered axiom-
atization of proximity, which was not published until 1951 [10]. For a detailed
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Fig. 2.2 A 0p B (descriptively near sets)

presentation of Efremovic’s proximity axioms, see, e.g., [8, 11] and for applications,
see, e.g., [12-16].

This chapter revisits a number of familiar proximities. It also introduces Delaunay
triangulation and takes another look at Voronoi diagrams. The focus in this second
look at proximities is on finite proximity spaces and the strong nearness of sets and
points to sets. For example, let X be a finite topological space on the set of points
in the digital image in Fig.2.2 and let X be endowed with the descriptive Lodato
proximity de.

Let A be that part of Fig.2.2 showing the hand and torso and let B be that part of
the image showing detected edges.' Let a description @ (A), A C X be defined by the
shape descriptor gradient orientation of the edge pixels in A. Clearly, A d¢ B, since,
for instance, the gradient orientation of the edge pixels along the top edges of the
hand in A are exactly the same as the gradient orientation of the edge pixelsalong the
top edges of the hand in B. In fact, this is an example of strong descriptive nearness

N
with A 0, B.

"Many thanks to Braden Cross for the webcam image in Fig.2.2, captured using the Matlab Com-
puter Vision System toolbox and Matlab implementation of the Canny edge detection algorithm.
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2.1 Cech Proximity

A nonempty set X endowed with the Cech proximity relation § is a proxim-
ity space, denoted (X, d). Distant (far, remote) sets A, B are not near, denoted
by A §B.In a metric topology endowed with a proximity, sets are remote, provided
D(A, B) > 0. In a finite proximity space, remote sets can be defined without refer-
ence to ametric. Thatis, A §B, provided A and B have no points in common. Remote
sets play an important role in applications of topology [14] and the topology of digital
images [17]. That is, remote sets are disjoint, having no elements in common.
Remote sets are separated sets in any space. For example, separated sets of
picture elements in the layered digital image in Fig.2.2 correspond to the remote
image regions such as the set of hand pixels A, which is separated from the set of
hand edge pixels B. By identifying image regions remote from each other, we have
a means of identifying separated image patterns, distinguishing one from the other
by characteristics such as
1? smooth, continous, thick region edges such as those in the hand region A in
Fig.2.2.
2° non-smooth, fragmented, thin region edges such those in as in the hand region B
in Fig.2.2.

Edgewise in Fig.2.2, A and B are remote (edges are separated spatially
and are different descriptively). Hence, we write A § B (edges A are
not close to edges B) and A J, B (edges A are not descriptively the
same as B). [ |

3¢ skin-colour hand with solid shapes and with highlighted (chiaroscuro) parts in
region A in Fig.2.2.

4 white hand edge-enclosed shapes on a densely black background and with no
highlighting (chiaroscuro) parts in region B in Fig.2.2.

Shape-wise in Fig.2.2, A and B are remote (shapes are separated spa-
tially and are different descriptively). Hence, again, we write A § B
(shape A isnotclose to shape B) and A §4 B (shape A is notdescriptively
the same as B). |

The Cech proximity § is the most elementary form of proximity relation. The
relation 0 (close, near, proximal) is a Cech proximity relation on the family of all
subsets 2% of X, provided it satisfies the axioms (P1)—(P4) given earlier in Sect. 1.4,
introduced during the mid-1930s by E. Cech [9, Sect.25, p. 439]. Let A, B be non-
empty subsets in X. The expression A § B reads A close to Band A § B reads A is
not close to B. Also recall that @ denotes the empty set. A set E is empty, provided E
has no elements, members, points. The intersection of A and B (denoted by A N B)
is the set of points that are common to (in both) A and B, i.e.
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ANB={xe AUB:x e Aandx € B}.

Let X be a nonempty set, x € X, A, B C X. The Cech proximity § (or any of the
other proximities in Sect. 1.4) can be used to define the closure of a set. Recall that

clB ={x € X : x § B} (Closure of a set).

The union of A and B (denoted by A U B) is the set of points that are in A or
B. The Kuratowski [18] closure operator cl leads to refinements of each of the usual
proximities.

Definition 2.1 Let X be a nonempty set, A, B C X. The closure operator is a self
map on 2% the power set of X (collection of all subsets of X) satisfies the following
axioms.

K1 clg =g2.

K2 B CclB.

K.3 cl(A U B) =clA U clB.
K.4 cl(clB) = clB.

The following axioms stem from finite sets.

K.5 If X is finite, then clX = X (Kuratowski [18, Sect. 4, III]).
K.6 A subset B C X is closed, if and only if c1B = B.

For a brief overview of Kuratowski closure, see Appendix B. |

From Axiom K.6, a subset B in X is closed if and only if B coincides with its
closure, i.e., c1B = B [19].

Example 2.2 Closed Sets.

Let X be a finite subset in Euclidean space R, A, B, S C X, p,q,r € S. Further,

let bdy A denote the boundary of A, intA = Axbdy the interior of A. Here are some

examples of closed sets.

1° Each region V), in a Voronoi diagram V (§) is a closed set, since clV, =V,
(from Axiom K.6). Every region V), is a solid polygon with nonempty interior
and includes its boundary.

2° Each triangle A(pgqr) in a Delaunay triangulation D(S) is a closed set with an
empty interior.

37 In the psychology of human vision, it has been suggested that perceived objects
always include their boundaries [20].

4° Regular closed. A set A is regular closed, provided A = cl(intA). On the other
hand, a set A is regular open, provided B = int(clB). That is, a nonempty set
is open, if it coincides with its interior of its closure. Notice that B C A.

5° The description @ (x) of a pixel x in a digital image A is a closed set, since
each pixel can be completely described without reference to the description of
its adjacent pixels, i.e., {® (x)} = cl({DP (x)}). |
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Problem 2.3 @& Is a set {x} containing a single pixel x in a digital image a regular
open set? |

If A C X contains a single element x € X, then, for simplicity, we write x § B
instead of {x} § B. That is, x is near B.

Then the closure axioms can be rewritten using the nearness relation between
points and sets as in [19, Sect.2]. This is done by defining x 6 B < x € clB. In
that case, the point x is near B. From this, we obtain the following Lodato point-set
proximity axioms.

Definition 2.4 Lodato Point-Set Proximity Revisited.
Let X be a proximity space endowed with a proximity 6, x € X, nonempty sets
A, B, C C X.J is point-set proximity, provided it satisfies the following axioms.
T1 xdB=B#g
T2 x N B # @ = x 0 B (uniformity).
T3 x0 (BUC)< xdBorxdC.
T4 xé Band b d C foreachb € B = x C.
In addition, if X is finite, we have
T.5 x0 B < clxNclB # @ (Wallman). W

A relation § that satisfies Axiom T.2 is called a discrete proximity on the

family of sets of X [8, Sect.2.1, p. 93].

Further, if X is finite, we have

Theorem 2.5 Let X be a finite Cech proximity space, x,y € X,x # &, B C X.
Then the following are equivalent.

1° x 0 B.

2° x € Bimpliesx N B # @.

3° clx C cIB & {x} C B.

4° cl(xNB) C (clx N cIlB) CxNB

Proof
1% 2% xd B4 clxNelB # @ (Axiom T.5) < x € Bimpliesx N B # @.
2° & 37 &40 (]

Theorem 2.6 Let X be a finite Cech proximity space, x,y € X,x # @, B C X.
1° Points x, y are remote, if and only if cIx N cly = @.
2° A point x is separated from B, if and only if clx N cIB = &.

Proof
19: Let B = {x} and the result follows from Axiom T.5.
2°: From Axiom T.5,clx N clB=@ < x § B. O
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Fig.2.3 x dp B

The closure of a picture point (digital image pixel or painting spot)
equals the union of itself and its adjacent (boundary) points, i.e.,

X = set of picture points.
lx — y|| = 1, if and only if x, y are adjacent.
bdy(x) = {y € X : y adjacent to x} .
clx = bdy(x) U {x} (Closure of picture point).

Remote picture points are those points that do not have common adja-
cent points.

Definition 2.7 Types of Remote Picture Points.

Let X be a finite set of picture points endowed with proximities J, d¢. Two basic

types of remote picture points can be found in X.

1? Spatially remote points. Spatially remote picture points are those points that
do not have common adjacent points.

2° Descriptively remote points. Descriptively remote picture points are those
points that do not have matching descriptions. Notice that adjacent points can
be descriptively remote. ]

Example 2.8 Remote Picture Points.

Let X be a finite set of picture points in Fig.2.3 endowed with proximities J, dg,
x,y € X.Then x is spatially remote from y, i.e.,x §y,since clx §cly. Assuming
that x and y have the different gradient orientations, x is descriptively remote from

y,ie,x Jp v |
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Example 2.9 Descriptive Nearness of Points to Sets: Finite Case.

Let X be a finite descriptive point-set proximity space (X, d¢) that consists of the
picture points shown in Fig.2.3, B be the finite set of hand-edge picture points in
Fig.2.3, x € X. The picture point x lies on the outer edge of the hand image and
B is restricted to the set of edge picture points in Fig.2.3. Assume that each picture
point is described by its gradient orientation. In that case, x d¢ B, since the gradient
orientation of x matches the gradient orientation of at least one of the picture points
in B. |

Definition 2.10 Types of Close Picture Points.

Let X be a finite set of picture points endowed with proximities §, . Several basic

types of close picture points can be found in X.

1° Spatially close points. Spatially close picture points are those points that are
adjacent.

2° Strongly close point to a set. A picture point x Strongly close toaset A C X

is a member of A, i.e.,x € A and x § A.

3° Descriptively close points. Descriptively close picture points are those points
that have matching descriptions, i.e., @ (x) € @ (A) (description of x belongs to
the set of descriptions of the points in A. Notice that spatially remote points can
be descriptively close). |

Example 2.11 Near and Strongly Near Picture Points.
Let X be a finite set of picture points in Fig.2.3 endowed with proximities J, dg,
x,y € X.Then x is spatially close to all of is adjacent points. The point y is strongly

M
close to B,i.e.,y § B, since y € B. From Example 2.9, the point x is descriptively
close to at least one edge point in B. |

Example 2.12 Near Polygons.
Polygons A and B in Fig. 2.4 are examples of Voronoi regions in the mesh on hand
image.” A and B have a common edge, clA NclB # @. Hence, from Axiom prox.2,

A B,ie., Aiscloseto B.In fact, A § B, since clA N clB contains more than one
point.

Every point in the common edge shown in Fig. 2.4 is strongly near both A and B,
since A and B overlap. All points y in A not on the common edge are spatially remote
from B,i.e.,y § B.The point x labeled with ared dot @ in A is descriptively near the

N
point y labeled with a red dot e in B, provided @ (x) = @(y). In that case, x J, B,
since @ (x) € @(B), x is strongly close descriptively to B, since, by assumption, the
description of x belongs to the set of descriptions of the points in B. |

Remark 2.13 From this point forward, assume that § is the Wallman proximity. W

2Many thanks to Binglin Li for this hand image in Fig.2.4.



70 2 Proximities Revisited

M
Fig.24 A § B

Problem 2.14 Let X be the set of polygons in the Voronoi mesh on the hand image
in Fig.2.4. Let ¢ be a nearness (proximity) relation on X. Prove that each of the Cech
axioms are satisfied by ¢. In effect, prove that ¢ is the Cech proximity and that (X, &)
is an example of a Cech proximity space.

Hint: From Example2.12, we know that § satisfies Axiom prox.2. So it is only
necessary to prove that the remaining three Cech axioms are satisfied. |

2.2 Cech Closure of a Set

From the Cech proximity relation &, we can derive the closure of a nonempty set [9].
Recall that the closure of a set A (denoted clA) is the union of its interior points
(denoted intA) and its boundary points (denoted bdy A). In fact, in a proximity space,
the closure of a set A is the union of all points near A. Hence, the earlier formulation
of the closure of nonempty set is rewritten in terms of the union of all of its near
points. In a proximity space X, the closure of a subset A C X is defined by

clA = U {x 6 A} (closure of the set A).

xeX

This formulation of the closure of a set is one of the properties of a proximity space’
introduced by V.A. Efremovi€ [10]. The space (X, cl) is called a closure space. A
point is proximal in (X, cl) if and only if x € clX. The closure of a set X contains
all points proximal to X. In a proximity space with the closure property, J is called
a Wallman proximity, named after H. Wallman [21].

3Pointed out by I. Dochviri.
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Let subsets A, B C X, which is a proximity space. The negative of the
Wallman proximity is very interesting, since it paves the way for the
study of the separation of structures, i.e., those that have no points in
common. That is,

A 4 B, if and only if clA NclB = @.

Wallman proximity is particularly important in finding hidden patterns in digital
images, especially if we are comparing and contrasting geometric structures such as
edges, corners, line segments and other convex polygons in images.

2.3 Near Edge Sets

A set endowed with a proximity relation is called a proximity space. A relator is a
nonvoid family of relations R on a nonempty set X. The pair (X, R) (also denoted
X (R)) is called a relator space. Sets A, B are descriptively near (have descriptive
proximity), provided there are one or more pairs of points a € A, b € B with
matching descriptions.

Example 2.15 InFig.2.5, sets A, A,, M’ have EF-proximity (spatially near), since
these sets have points in common. That is, A; 6 M’, A, 6 M', A} 0 A,. Sets
A1, Ay, By, By, M’ have descriptive proximity (descriptively near), since one can
find pairs of points with matching descriptions. All of these sets contain black edge
pOiIltS. Thatis, Ay 6 M’', Ay 6 M', A1 8¢ A and Ay 8¢ By, As 0 By, By 0p B>
and so on. |

Fig. 2.5 Near edge sets




72 2 Proximities Revisited

Fig. 2.6 Delaunay triangle
A(pgr)

2.4 Lodato Proximity

Recall how a Lodato proximity is defined [22-24] (see, also, [5, 11]). Let X be
a nonempty set. A Lodato proximity § is a relation on ?(X) which satisfies the
following axioms for all subsets A, B, C of X:

’ Lodato Proximity Axioms

P0) o JA,VA CX.

(P1) AJ B & BJA.

P2) AN B#o= AdB.

P3) A0 (BUC)& AdJBorAdC.

P4) AdBand{b}éCforeachbe B = AdC. |

Further 0 is separated , if
®5) {xjo{y}=>x=y. N

We can associate a topology with the space (X, §) by considering as closed sets
the ones that coincide with their own closure, where for a subset A we have

clA={xeX:xJ A}

This is possible because of the correspondence of the Lodato axioms with the well-
known Kuratowski closure axioms (see Appendix B).

Example 2.16 Lodato proximal Cameraman Elbow Sets.

Let (X, 0) be a Lodato proximity space represented by set of points in the partial
cameraman image in Fig.2.7, Ay, A, M', By, B, C X. The Lodato axiom (P4) is
satisfied by

M/5A1,A16A2Va €A <=>M/(5A2,
M' 6 By, Bid BoVb € By & M' 6 B,. [ |
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Fig. 2.7 Proximal Ag
cameraman elbow sets

.r; S wf
£l

2.5 Descriptive Lodato Proximity

Descriptive Lodato proximity was introduced in [17]. Let X be a nonempty set,
A, B C X,x € X.Recall that @ (x) is a feature vector that describes x, @ (A) is the
set of feature vectors that describe points in A. The descriptive intersection between
A and B (denoted by A Q B) is defined by

A Q B={x€ AUB:®(x) e ®(A)and ®(x) € &(B)}.

A Descriptive Lodato proximity d¢ is a relation on &2(X) which satisfies the fol-
lowing axioms for all subsets A, B, C of X, which is a descriptive Lodato proximity
space:

’ Descriptive Lodato Proximity Axioms Revisited ‘

(dP0) @ f, A,VAC X.
(dP1) Ady B & By A.
@P2) ANB#Z= Ads B.

(dP4) A e Band{b}dp Cforeachb e B = A dp C. |
Further, the Lodato space (X, d¢) descriptively separated, if, for x, y € X,

(dP5) {x}dg {y} = @(x) = @(y) (x and y have matching descriptions). |

Example 2.17 Descriptive Lodato Proximity on Apple Sets.

Let (X, 0) be a Lodato proximity space represented by set of points in the partial
image of an apple in Fig.2.8, with subsets 1, J, A, K, B C X. The Lodato axiom
(P4) is satisfied by

Fig. 2.8 Descriptive Lodato
near apple sets
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I(S(p A,A6¢ BVCD(CI)G(b(A)@I&p B,
Hop A, Ady BY ®(a) € 5(A) & Hiop B. MW

2.6 Delaunay Triangulation

Delaunay triangulations, introduced by B.N. Delone [Delaunay] [25], represent
pieces of a continuous space. This representation supports numerical algorithms used
to compute properties such as the density of a space. A triangulation is a collection
of triangles, including the edges and vertices of the triangles in the collection. A 2D
Delaunay triangulation of a set of sites (generators) S C R? is a triangulation of the
points in S. Let p, g € S. A straight edge connecting p and ¢ is a Delaunay edge if
and only if the Voronoi region of p [26, 27] and Voronoi region of g intersect along
a common line segment [28, Sect.I.1, p. 3]. For example, in Fig.2.6, V, NV, = Xy.
Hence, pq is a Delaunay edge in Fig.2.6.

A triangle with vertices p, g, r € S is a Delaunay triangle (denoted A(pgr) in
Fig.2.9), provided the edges in the triangle are Delaunay edges.

Example 2.18 Near Sets in a Delaunay Triangulation.

A triangulation is a collection of triangles, including the edges and vertices of the
triangles in the collection. A 2D Delaunay triangulation of a set of sites (generators)
S C R?is atriangulation of the points in S, forming a collection of Delaunay triangles
D. Also let D be endowed with the Cech proximity 6. Let A, B be sets of points along
the edges of the Delaunay triangles A(pgr) and A(grt) in Fig.2.9. AN B # @,

M
since this pair of triangles have a common edge. Hence, A § B. In addition, (D, J)
is called a Delaunay proximity space [29]. |

Example 2.19 Image Corners.

The hand image in Fig. 2.10.1 has dimension 552 x 685. This is reflected in the plot
of the image corners in Fig.2.11. Up to 50 corners were found in the hand image
using MScript 27 in Appendix A.2. The corners are displayed as e dots in Fig.2.10.1.
These corners form a set of sites that can be used to generate a Delaunay mesh. By
connecting each pair of nearest sites belonging to neighbouring Voronoi regions, the

Fig. 2.9 Strongly near
Delaunay triangles A(pgr)
and A(grt)
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2.10.1: Delaunay mesh 2.10.2: Corner Locations

Fig. 2.10 Corner-based Delaunay mesh and corresponding image corners

fit pixels - ]

4. comer

oo f

L L n L n "
b 100 200 300 400 500 i |

Fig. 2.11 Corners in a hand image

mesh in Fig.2.10.2 is constructed. The locations of the Delaunay mesh corners are
shown in the plot in Fig.2.11. For the most part, the corners in the plot follow the

contour of the hand (polygon A in Fig. 2.4 has the highest number of g—neighbouring
polygons). M
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Fig. 2.12 Corner-based
Delauny mesh on a hand
image

Example 2.20 Near and Strongly Near Delaunay Mesh Triangles.

The corner-based Delaunay mesh in Fig. 2.10.2 is superimposed on the hand image
in Fig.2.12. This superimposition of a mesh on an image facilitates image analysis,
since neighbouring triangles are then associated with image regions. In Fig.2.12, let
the set X = |J X;, i € {1, 2, 3, 4}. Then the following things can be observed.

clX; 9§ c1X3, Wallman proximity.
clX; §p c1X4, Wallman proximity.

N

clX; § clXj, strong proximity.
N

clX, § clXj, strong proximity.

N
clX, § clXy4, strong proximity.
X is connected.

X is a mesh nerve.

The fact that X is connected and a mesh nerve is of interest, since this nerve sits on
top of that part of the underlying Voronoi mesh containing a polygon that has the
greatest number of adjacent polygons. |

MScript 27 in Appendix A.2 is also used to construct the corner-based Voronoi mesh
in Fig.2.13.1 and the corresponding mesh is superimposed on the hand image in
Fig.2.13.2. The Voronoi regions of corner points grouped around the contour of the
and the apple held in the hand, lay underneath the Delaunay nerve that includes X4
in Fig.2.12.
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2.13.1: Voronoi mesh 2.13.2: Mesh on Image

Fig. 2.13 Corner-based Voronoi mesh and corresponding image mesh

Fig. 2.14 Combined
corner-based Voronoi and
Delaunay meshes on a hand
image

Example 2.21 Delaunay Triangle-Voronoi Mesh Connectedness.

The combined corner-based Voronoi and Delaunay image meshes in Fig.2.14 are
connected but not strongly connected. Triangles X4 and B in Fig.2.14 correspond to
Voronoi regions A and B in Fig.2.4. |
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Fig. 2.15 Hand image
Voronoi mesh nerve

Theorem 2.22 A Delaunay triangle with a straight edge between a pair of Voronoi

N
region sites is Wallman near but not §-near to the pair of Voronoi regions.

Problem 2.23 &b Prove Theorem 2.22. Hint: Use the fact that a Delaunay triangle
has an empty interior, cuts each neigbouring Voronoi edge in only one point on the
edge common to a pair of Voronofi regions. |

Example 2.24 Voronoi Mesh Closure Nerve.
In Fig.2.12, let X be the set of labelled Voronoi regions shown in Fig.2.15, i.e.,

X = U X;:X;€{Vp,B,C,D,E,F,G,H,1,J,K}.(Set of adjacent Voronoi regions)
Then the following things can be observed.

clA §p clX;VX; € X, Wallman proximity.

N
A § X;VX; € X, strong proximity.
ﬂ clX # @.

X is a mesh closure nerve.
X is not connected, since,e.g., clB NclE = @.

X is not a bornology, since X is not a boundedness.

X is a mesh closure nerve that has nonempty intersection with a Delaunay mesh
closure nerve. |

Problem 2.25 Prove the set X in Example2.24 is a mesh closure nerve. |
Problem 2.26 Prove the set X in Example2.24 is not connected. |

Problem 2.27 Prove the set X in Example2.24 is not a bornology. |
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2.7 Voronoi Diagrams Revisited

This section revisits Voronoi diagrams, introduced during the first decade of the
1900s by G. Voronoti [30-32]. A simple convex set is a closed half plane (all points
on or on one side of a line in R?).

Let S C R? be a finite set of n points called sites, p € S. The set S is called the
generating set [33]. Let H,, be the closed half plane of points at least as close to p
as to g € S\{p}, defined by

Hyy={x € R*:|x —p|l < ||x—q||]-
qes

A convex polygon is the intersection of finitely many half-planes [28, Sect.1.1, p. 2].
See, for example, Fig.2.16.

Remark 2.28 The Voronoi region V,, depicted as the intersection of finitely many
closed half planes in Fig.2.16 is a variation of the representation of a Voronoi region
in the monograph by H. Edelsbrunner [26, Sect.2.1, p. 10], where each half plane
is defined by its outward directed normal vector. The rays from p and perpendicular
to the sides of V,, are comparable to the lines leading from the center of the convex
polygon in G.L. Dirichlet’s drawing [34, Sect. 3, p. 216]. |

2.7.1 Sites

Let S C E, a finite-dimensional normed linear space. Elements of § are called sites
(mesh generating points) to distinguish them from other points in E [26, Sect.2.2,
p. 10]. Let p € S. A Voronoi region of p € S (denoted V) is defined by

v, z{erillx—pll < IIX—CIII]~
Yges§

Remark 2.29 A Voronoi region of a site p € S contains every point in the plane that
is closer to p than to any other site in S [33, Sect. 1.1, p. 99]. Let V,,, V, be Voronoi

Fig. 2.16 Voronoi region =
convex polygon




80 2 Proximities Revisited

polygons. If V,, NV, is a line, ray or line segment, then it is called a Voronoi edge.
If the intersection of three or more Voronoi regions is a point, that point is called a
Voronoti vertex. |

Lemma 2.30 A Voronoi region of a point is the intersection of closed half planes
and each region is a convex polygon.

Proof From the definition of a closed half-plane

Hyy = [x eR:x—pl < ||x—q||],
qes

V), is the intersection of closed half-planes H,,, for allg € S — {p} [28], forming a
polygon. From Lemma 1.42, V,, is a convex. ]

A Voronoi diagram of S (denoted by V) is the set of Voronoi regions, one for each
site p € S, defined by
V={]JV,.

peS

Example 2.31 Centroids as Sites in an Image Tessellation.

Let E be a segmentation of a digital image and let S C E be a set of sites, where
each site is the centroid of a segment in E. In a centroidal approach to the Voronoi
tessellation of E, a Voronoi region V), is defined by the intersection of closed half
plains determined by centroid p € S. Centroids can be found using regionprops
available in Matlab®. The centroidal approach to Voronoi tessellation was introduced
by Q. Du, V. Faber, M. Gunzburger [35]. |

2.8 Some Results for Voronoi Regions

Let V,, V. be Voronoi regions of p,z € §, a set of Voronoi sites in a finite-
dimensional normed linear Space E that is topological, clA the closure of a nonempty
set Ain E. V,, V. are proximal (denoted by V, 6 V,), provided P = clV, NclV, #
@ [8]. The set P is called a proximal Voronoi region.

Theorem 2.32 Proximal Voronor regions are convex polygons.

Proof Let P be a proximal Voronoi region. By definition, P is the nonempty
intersection of convex sets. From Lemma 1.42, IP is convex. Consequently, PP is the
intersection of finitely many closed half planes. Hence, from Lemma2.30, P is a
Voronoi region of a point and is a convex polygon. ([

Corollary 2.33 The intersection of proximal Voronoi regions is either a Voronoi
edge or Voronoi point.
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Any two adjacent Voronoi regions intersect along one of their boundaries and
have at most one edge in common. Together, the complete set of Voronoi regions
V cover the entire plane [28, Sect.2.2, p. 10]. For a set of sites S C E, a Voronoi
diagram D of S is the set of Voronoi regions, one for each site in S.

Corollary 2.34 A Voronoi diagram D equals V.

The partition of a plane E with a finite set of n sites into n Voronoi polygons is
known as a Dirichlet tessellation, named after G.L. Dirichlet [36] (see [34]). A cover
(covering) of a space X is a collection U of subsets of X whose union contains X
(i.e.,U 2 X) [37, Sect. 15], [14, Sect.7.1].

Corollary 2.35 A Dirichlet tessellation D of the Euclidean plane E is a covering
of E.

Using Mathematica script 1, we detect the edges in the cameraman image shown
in Fig.2.17.

Mscript 1 Detecting Image Edges.

mmg =

2.17.1: Cameraman 2.17.2: Edges

Fig. 2.17 Cameraman edges detected
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edges = EdgeDetect[img,5] N

Using Mathematica script 2, we obtain a Dirichlet tessellation of the cameraman
image shown in Fig.2.18.

Mscript 2 Dirichlet Tessellation.
imgBounds = Transpose[{{0, 0}, ImageDimensions[img]}];

vm = VoronoiMesh[ImageValuePositions[edges, White], imgBounds]
HighlightMesh[vm, Style[2, Opacity[0.1], Yellow]] [ |

Example 2.36 Sample Dirichlet Tessellation of an Image.

A sample covering of an image with Voronoi regions is accomplished with
Mathematical0® by first detecting the main edges in an image and then using points
along image edges as the sites in a Dirichlet tessellation of a selected image. For
example, Mscript 1 to find the edges in the cameraman image (see Fig.2.17). Then
Mscript 2 is used to tessellate the edges in the cameraman image (see Fig.2.18).
|

Recall that the Euclidean space E = R? is a metric space. The topology in a
metric space results from determining which points are close to each set in the space.
A point x € E is close to A C E, provided the Hausdorff distance d(x, A) =
inf{llx —al :a e A} = 0. Let X, Y be a pair of metric spaces, f : X —> Y is
a function such that for each x € X, there is a unique f(x) € Y. A continuous
function preserves the closeness (proximity) between points and sets, i.e., f(x) is

2.18.1: Dirichlet1 2.18.2: Dirichlet2

Fig. 2.18 Dirichlet tessellation of the cameraman image
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closeto f(B) whenever x is close to B. In a proximity space, one set A is near another
set B, provided A § B, i.e., the closure of A has at least one element in common
with the closure of B. The set A is close to the set B, provided the Cech distance
D(A,B) = inf{lla—>b| :a € A, b e B} = 0. In that case, we write A 0 B (A
and B are proximal). A uniformly continuous mapping is a function that preserves
proximity between sets, i.e., f(A) & f(B) whenever A § B. A Leader uniform
topology is determined by finding those points that are close to each given set in E.

Theorem 2.37 Let S be a set of two or more sites, p € S, V, € D in the Euclidean

space R?. Then

1° 'V, is near at least one other Voronoi region in ID.

2° Let p,y besitesin S. {y} § {p} = {y} 6 V,.

3%V, is close to Voronoi region V, if and only if d(x, Vy) = 0 for at least one
x €V,

4° A mapping f : V, —> V, is uniformly continuous, provided f(V,) d f(V,)
whenever V,, 6 V.

Proof

1°: Assume S contains at least 2 sites. Let p € S, y € S\{y} such that V,,, V, have
at least one closed half plane in common. Then V), § V.

29 If {y} 6 {p}, then ||y — p|| = 0, since y € {y} N {p}. Consequently, {y} N
cl(V,) # @ Hence, {y} 6 cl(V),).

3°:V, 0V, & existsx € cl(V,) N cl(Vy) & d(x,V,) =0.

4°: Let f(V,) 6 f(V,) whenever V, § V,. Then, by definition, f : V, — V, is
uniformly continuous. (]

Theorem 2.38 Every collection of proximal Voronoi regions has a Leader uniform
topology (application of [38]).

Proof Assume DD has more than one Voronoi region. For each V, € D, find all
V, € D that are close to V,. For each V,, this procedure determines a family of
Voronofi regions that are near V,. Let 7 be a collection of families of proximal
Voronoi regions. Let A, B € 7. AN B € T, since either AN B = @ or, from
Theorem2.37.1°, there is at least one Voronoi region V, € AN B, ie., V, J A and
V, 0 B.Hence, AN B € 7. Similarly, AU B € 7, since V, d A or V,, § B for each
V, € AU B. Also, D, @ are in 7. Then, 7 is a Leader uniform topology in ID. (]

2.9 Dirichlet Tessellation Quality and Digital Image Quality

The choice of sites influences the quality of the cells in a Dirichlet tessellations
(Voronoi diagrams) [39]. Let X be a nonempty set of polygons in a Dirichlet tessel-
lation, x, y € X. A polygon x € X in a tessellation is called a cell. A number of cell
quality measures are reported by J.R. Shewchuk in [40, Sect.6.3]. A fair (quality)
measure 2 : X —> R satisfies the following axioms.
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Q.1 2(x) = 0 for 2D cells with zero area.

Q.2 2(x) = 2(y) if and only if the 2D cells x and y are similar.
Q.3 2(x) is finite.

Q4 2(x) €0, 1].

Let S be a set of tessellation cells, A the area of a tessellation containing a 3-sided
polygoncell s € S, [y, [», 5 the lengths of the sides of s with Q(s) the quality of cell
s. Then, for example, R.P. Bhatia and K.L. Lawrence [41], R.E. Bank and J. Xu [42]
as well as D.A. Field [43] use the following smooth quality measure of a 3-sided
cell.

=4/3— .
Qs(s) P+ 2+, 2
Field observes, for triangles with vertices at (0,0), (1,0) and (x, y),x > 0,y > 0,

we have
4\/§y
14+ (1 —x)2 +2y2 4 x%

0s3(s) =

Problem 2.39 % What does a high quality Dirichlet tessellation of a digital image
tell us about the image? Hint: See introduction to convex bodies and Helly’s theorem,
starting in Chap. 11. |

Problem 2.40 % Do the following:

1° P Prove that 03(s) satisfies the axioms for a fair measure of triangular tessel-
lation cell quality.

22 Plot Qs(s) for triangles with vertices at (0,0), (1,0) and (x, y) for fixed x > 0
and varying y > 0. |

Problem 2.41 Do the following:

1 Give a fair measure Q4(s) that satisfies the axioms for a fair measure of a 4-sided
tessellation cell quality.

20 W Prove that your Q4(s) satisfies the fair measure axioms.

3¢ For fixed 4gon lengths [y, I», I3, varying area A and varying length Iy, plot Q4(s)
for 5 different values of A and l4.

4 For fixed 4gon lengths /1, [, varying area A and varying lengths /3, I4, plot Q4(s)
for 5 different values of A and I3, I4. |

Letly, I, ..., [, be the lengths of the edges of an n-sided tessellation polygon.
It has been shown that mesh quality is maximum, provided [y = [, = --- =1, [39,
Sect.5, Theorem 5.1]. When a digital image is the source of sites for tessellation,
then tessellation quality tells us about the quality of the image. This observation can
be used to prove Theorem 2.42.


http://dx.doi.org/10.1007/978-3-319-30262-1_11
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Theorem 2.42 Mesh Quality [39].
For any plane, there exists a set of sites for which the mesh quality is maximum.

Problem 2.43 Do the following:

1° 8 Prove Theorem2.42.

29 Select three digital images.

37 Select several different sets of sites on each of the images. Include centroidal
and keypoint sites in your choices of sites.

4¢ Tessellate the selected with image with Voronoi diagrams using the selected
sites.

5¢ &b Use Mathematica to measure the quality of the tessellated images.

6° Give the quality measurement for each of the tessellated images.

7° Comment on why one choice of sites leads to a higher quality tessellation than
the other choices of sites. |

Support for Image Object Geometry and Analysis.

When the Voronoi regions in a tessellated digital image have sides
approaching equal length, then any line segment in any direction inside
a Voronoi region can be used to identify and measure the geometry of
image objects covered by the Voronof region. |

Example 2.44 Digital Image Quality.

For Fig.2.19, let ~Centroids denotes sites that centroids that are also corners and let
ACentroids denoted centroids that are also edge pixels. In this example, if the sites for
a tessellation are image ~Centroids, then the quality of the image is a function of the
number of centroid-corners, the positions of the centroid-corners and how evenly the

15
210
5
004 06 08 10 - 02 04 06 08 10
Quality Quality
2.19.1: 2.19.2: rCent. 2.19.3: 2.19.4: ACent.
rCentroids Histogram ACentroids Histogram

Fig. 2.19 Corner and edge centroid tessellations and quality histograms [39, Sect. 6]
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centroid-corners are distributed in the image. The tessellation of the face in Fig.2.19.1
is generated by sites that are image rCentroids that are also corner pixels and the
tessellation of the face in Fig.2.19.3 is generated by sites that are image ACentroids
that are also edge pixels. The poor quality of the ACentroids-based tessellation can
be seen in the unevenness of the site quality distribution in Fig.2.19.4. From this, it
is apparent that the greater the number of high quality tessellation cells, the higher
the quality of the image tessellation. |

Conjecture 2.45 A high quality digital image tessellation reflects the fact that high
quality cells are more prevalent in the tessellated image. |

In practical terms, for the tessellation of a digital image, if each pair of sites is
connected by a straight edge for an image img1, the resulting shape more readily
approximates a corresponding shape derived from the edge-connected sites from an
image img?2 representing a class of images. Let sy, ..., s, € S, a set of n sites. For
each image, the edge-connected site form a path from s; to s,,.

The set of sites S is connected, provided, for all p, g € S, there is a sequence
Pos - - -, pm Of sites in § so that p = pg and ¢ = p, and site p; is closest to site
pi—1 for 1 < i < m. The sequence py, ..., p, is called a path. What we want is
a pathwise-connected set of sites. The set S is pathwise-connected, provided, for
every pair of sites in X, there is a path connecting the sites. Pathwise-connected sites
yield a connected-sites shape (denoted by @‘).

Let f be a continuous mapping of a set of sites S'1 for a test image to the Euclidean
plane R?. Further, let £(S1) be the & shape of the pathwise-connected sites on test
image imgl. Similarly, let g be a continuous mapping of a set of sites S2 for a
test image to the Euclidean plane R?. In addition, let g(S2) be the o shape of the
pathwise-connected sites on img?2 that represents a class of shapes. If the @ shape
f(S1) is similar in structure to the 82 shape of ¢g(S2), then f(S1) can deformed
(mapped) to f(S2). This means that all of the points in f(S1) map to f(S2). If O
shape f(S1) deforms into e shape ¢(S2), then 2] shape f(S1) belongs to the g(S2)
shapes class and img1 belongs to the img2 class of images.

The approximation of o shape ¢(S2) with o shape f(S1) enters into this, by
computing the distance D(f(S1), g(S2)) defined by

D(f(S1),g(82)) =inf{llf(x) =gl :x € S1,y € S} .

Let £ > 0 be a small real number. The & shape of g(S52) is a good approximation
of the ¥ shape of f(S1), provided D(f(S1), g(S2)) < e. In that case, o shape
f(S1) approximates the members in the g(S2) shapes class. The more closely shape
f(S1) approximates shape g(S2), the higher the likelihood that im g1 belongs to the
img?2 class of images. For more about the comparison of shapes, see Sect.5.1.

Remark 2.46 Image Quality and Geometric Reconstruction.
Image geometry and the structure of objects embedded in an image are revealed by
careful selection of mesh generating points, leading to an image cover with a high
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quality mesh. A digital image often is a very complex object with its own inherent

geometry, which is difficult to detect. The basic computational proximity approach

in solving the image geometry detection problem is to

1° Reconstruct the geometry of an image, approximating what escapes the eye. This
can be done using an approach such as the one introduced by A. Vacavant, D.
Cocurjolly, and L. Tougne [44]. See, also, A. Kuba, L.G. Nyul and K. Palagyi [45]
on image geometry.

29 Tessellate part or all of an image with convex shapes.

3¢ Inspect the structural similaries of the sets of convex shapes in an image tessel-
lation.

4° Carry out image quality assessment using a measure such as the structural simi-
larity index measure (SSIM) introduced by Z. Wang, A.C. Bovik, H.R. Sheikh,
and E.P. Simoncelli [46]:

QCpxpry + C1)2oyy + C2)
(12 +p2 4+ C)(02+ 02+ Cy)

SSIM(x,y) =

The SSIM measures the statistical characteristics of signals x, y in the terms
the mean value, variances, cross correlation between the standard deviations and
constants C; and C,. [ |

Problem 2.47 Do the following:

19 Select a digital image img.

2° Select a set of sites (generating points) .

39 &b Tessellate the image img with a Voronoi diagram V (S).

4° Compute the SSIM(S) for the sets of sites S, using values of C; and C; of your
own choosing.

5¢ Letg; be the quality of each polygon in the diagram V (S) using Field’s approach.
Then, for N polygons in V (S), compute g,; from [39]:

1 N
qall = N ;%

6° ”!" Compare the SSIM value with the ¢,;; value.

7° Repeat the above steps for 10 different images and construct a table showing the
comparison between the SSIM(S) and ¢g,;; values. What can you conclude for
the values in your comparison? |

Remark 2.48 Line Detection and Fragmentation Quality.

Another approach to measuring the quality of a tessellation and, indirectly, the quality
of a digital image is to consider the fragmentation quality measure* introduced by
L. Wenyin and D. Dori [47]. The CP approach in applying the Wenyin-Dori line
segment fragmentation quality measure is summarized in the following steps.

4Many thanks to A. Vacavant for pointing this out.
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Select a digital image img.

Select a set of sites (generating points) S.

Tessellate the image img with a Voronoi diagram V (S).

Tessellate the image im g with a Delaunay triangulation De(S). Notice the edges
of the Delaunay triangles and the Voronoi region polygons overlap. It is this
overlap of each pair of line segments (one from a Delaunay triangle and the
other from a Voronoi polygon) that provides a basis for the next step.

Compute the quality of overlappingline segments using Q (k) (formula (23) in
[47]). |

Problem 2.49 Do the following:

10
20
30
4°
50

6()

70

80
9()

Select a digital image img.

Select a set of sites (generating points) S.

&b Tessellate the image img with a Voronoi diagram V (S).

&b Tessellate the image img with a Delaunay triangulation De(S).

Compute the SSIM(S) for the sets of sites S, using values of C; and C; of your
own choosing.

Let g; be the quality of each polygon in the diagram V' (S) using Field’s approach.
Then, for N polygons in V (S), compute

|
Gall = ﬁ;%

Compute the line fragmentation measure Qy (k) from Remark 2.48. Do this for
each of pair of line segments from the overlapping line segments in diagram
V (S) and triangulation De(S).

&’ Compare the SSIM value with the g,; and Q,(k) values.

Repeat the above steps for 10 different images and construct a table showing the
comparison between the SSIM(S), g.;; and Qj (k) values. What can you conclude
for the values in your comparison? |

2.10 Tessellation Region Centroids

A Voronot tessellation of a plane surface X is a collection of closed planar regions
derived from a set of sites S (generating points). Let s € S be one of the sites. A
Voronoi region V; consists of all points in X that are closer to s than to any other site
in S.Let p : X — (R) be a density function on X, x € X. A centroid is a center of
mass s* of a region V. It corresponds to a measure of central location for a region,
defined by

. Jy xp(x)dx
Jy po)dx
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For more details about region centroids, see [35, p. 638]. Using Mathematica, gen-
erate Voronoi regions from a given set of sites.

Using Mathematica script 3 on a set of random numbers used as region sites, we
generate the Voronoi regions shown in Fig.2.20.

Mscript 3 Generating Voronoi Regions.

(*Find centroids in a Dirichlet tessellation using RegionCentroid.*)
pts = RandomReal[1, {100, 2}];

R = VoronoiMesh[pts, {{0,1},{0,1}}] ®

Next, using MScript 28 in Appendix A.2 on regions in a Voronoi tessellation,
determine the region centroids shown in Fig.2.21.

Example 2.50 Sample Region Centroids.

Sample collections of Voronoi regions in Fig.2.20 are generated using Mathemat-
icalO Mscript 3 using as sites random numbers. These sites are shown as a collection
of black dots in Fig. 2.21. Next, Mscript 2 is used to find the centroid of each Voronoi1
region (see Fig.2.21). |

2.11 Centroid-Based Voronoi Mesh on an Image

This section introduces the construction of centroid-based Voronoi meshes on digital
images. Voronoi regions are a source of centroids used as a source of sites in the
generate a Voronoi mesh .7 . The steps in the construction of centroid-based Voronoi
mesh are given in Algorithm 3.

Example 2.51 Centroidal Voronoi Mesh Scripts.

Algorithm3 is implemented in two different ways in Appendix A.2. Matlab List-
ing A.1 in Appendix A.2 finds image segment centroids, which are used to construct
a Voronoi mesh on an image. MScript 29 uses a different approach in implementing
Algorithm 3. First, image corners are used to construct a Voronoi mesh (each Voronoi
region is an image segment). Then the centroids in each corner-based Voronoi region
are found. Those region centroids are a source of sites used to construct a centroid-
based Voronoi mesh. |

Example 2.52 Centroidal Voronoi Mesh on an Image.

MScript 29 in Appendix A.2 is used on a camera image to find a set centroids that
serve as sites in constructing a Voronoi mesh (shown in Fig.2.22.1). The locations of
centroids in the Voronoi regions are shown with e bullets in Fig.2.22.2. The centroids
on a Nikon® camera image are shown in Fig.2.23.1 and centroidal Voronoi mesh
superimposed on the camera image is shown in Fig.2.23.2. Putting these results to
together leads to the Voronoi mesh plus region centroids superimposed on the camera
image in Fig.2.24. |



90 2 Proximities Revisited

Fig. 2.20 Sample
tessellation derived from
randomly selected sites

2.20.1: Centroid-Based Tessellation

.'.

2.20.2: Tessellation Regionsl

.'.

2.20.3: Tessellation Regions2

Problem 2.53 Use Mathematica to construct a centroid-based Voronoi mesh on 3
digital images of your choosing. In solving this problem, do the following:
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2.21.1: Centroidsl

2.21.2: Centroids2

Fig. 2.21 Region centroids detected

2.22.1: Voronoi Mesh 2.22.2: Centroids on Mesh

Fig. 2.22 Centroidal Voronoi mesh
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2.23.1: Centroids on Mesh 2.23.2: Voronol Mesh

Fig. 2.23 Centroidal Voronoi mesh on image

Fig. 2.24 Centroidal Voronoi mesh on a Nikon® camera image

1° Segment each image using the watershed method. Hint: See Sect.9.11 on water-
shed segmentation.

2° Find the centroid of watershed segment.

3¢ Following steps 3 to 7 in Algorithm 3, superimpose a centroidal mesh on each
image. ]

Problem 2.54 Use Mathematica to implement Step 8 in Algorithm 3 to find several
mesh nerves in 3 digital images of your choosing. In each case, the mesh nerves
are embedded in a centroidal Voronoi mesh. Highlight the Voronoi regions in each
mesh nerve with an appropriate colour, using the opacity property on the parts of the
underlying regions are visible after colouring the regions. |
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Algorithm 3: Construct Centroidal Voronoi Mesh on a Digital Image

Input : Read digital image img.
Output: Centroid-based Voronoi mesh .#

1 img +— segmentedlmg;

2 segmentedImg — segmentCentroids;

3 § < segmentCentroidsCoordinates;

4 /* § contains segment centroid coordinates used as mesh generating points
(sites). */

58S+—— img;

6 S —— VoronoiMesh 4

7 VoronoiMesh .# +——> img ;

8 /* Use Algorithm 1 to construct image mesh nerves in .Z. */ ;

Problem 2.55 Use Mathematica to implement Step 8 in Algorithm 3 to find several

mesh nerves so that the centers of mesh nerves are g—strongly far from each other
in 3 digital images of your choosing. In each case, the mesh nerves are embedded
in a centroidal Voronoi mesh. Highlight the Voronoi regions in each mesh nerve
center with an appropriate colour, using the opacity property so that the parts of the
underlying regions are visible after colouring the regions. |

Problem 2.56 Use Mathematica to implement Step 8 in Algorithm 3 to find several
MmN

mesh nerves so that the centers of mesh nerves are ¢, -strongly far descriptively from
each other in 3 digital images of your choosing. In each case, the mesh nerves are
embedded in a centroidal Voronoi mesh. Highlight the Voronoi regions in each mesh
nerve center with an appropriate colour, using the opacity property so that the parts
of the underlying regions are visible after colouring the regions. |

Problem 2.57 % Give three examples of centers of mesh nerves that are g-strongly

N
far from each other and §,,-strongly near each other descriptively. This means that
strongly far centers of mesh nerves have a nonempty descriptive intersection. Let

m
X a nonempty collection of image mesh nerves, (X, [g J, ]) a proximity space

"N
endowed with the g and J, proximities, and let A, B C X be a pair of image mesh

nerves. We know that A g B is possible from the examples already given. Now
give examples so that

AgBandAQB;éQ. |

Problem 2.58 Use Mathematica to implement Step 8 in Algorithm 3 to find several

N
mesh nerves so that the mesh nerves are §-strongly near each other in 3 digital images
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of your choosing. In each case, the mesh nerves are embedded in a centroidal Voronot
mesh. Highlight the adjacent Voronofi regions in the strongly near mesh nerves with
an appropriate colour, using the opacity property so that the parts of the underlying
regions are visible after colouring the regions. Hint: Voronoi mesh nerves A and B

"N
are §-strongly near, provided A has a Voronoi region edge in common with B. |

N
Conjecture 2.59 The centers of §-strongly near image mesh nerves are g-strongly
far from each other. |

Problem 2.60 % Prove Conjecture2.59. W

Conjecture 2.61 The centers of all image mesh nerves are g-strongly far from each
other. |

Problem 2.62 % Prove Conjecture2.61. M
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