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Abstract From the mechanical system point of view, third-order derivatives of
displacement or the time rate of change of acceleration is the jerk, while the fourth
derivative has been known as a snap. As a result, a dynamical system which is pre-
sented by an nth order ordinary differential equation with n > 3 describing the time
evolution of a single scalar variable is considered as a hyperjerk system. Hyperjerk
system has received significant attention because of its elegant form. Motivated by
reported attractive hyperjerk systems, a 4-D novel chaotic hyperjerk system has been
introduced and studied in this work. Interestingly, this hyperjerk system displays an
infinite number of equilibrium points because of the presence of amemristive device.
In addition, an adaptive controller is proposed to achieve synchronization of such
novel hyperjerk systems with two unknown parameters. In order to confirm the fea-
sibility of the mathematical hyperjerk model, its electronic circuit is designed and
implemented by using SPICE.
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1 Introduction

Chaotic systems have applied in several fields of science and engineering [2, 3, 7, 9,
46, 50, 66] after the vital discovery of Lorenz’s model for atmospheric convection
[31]. There are well-known chaotic systems such as Rössler system [42], Arneodo
system [1], Chen system [7], Lü system [32] etc. In addition, various new chaotic
systems have been introduced recently [16, 20, 34, 37, 40, 57, 63].

There is significant interest in investigating novel jerk chaotic systems [47]. From
the view point of mathematics, a jerk system is presented by an explicit third-order
ordinary differential equation which describes the time evolution of a single scale
variable, for example x . Therefore, a jerk system is given as

d3x

dt3
= f

(
d2x

dt2
,

dx

dt
, x

)
(1)

From the view point of mechanics, system (1) is called jerk system because when the
scalar x represents the position of a moving object at the time t , the third derivative
indicates the jerk [44]. Interestingly, well-known chaotic systems, i.e. Lorenz and
Rössler systems, can be represented in jerk forms [21, 28].

Different examples of jerk systems were reported in the literature. A piecewise
exponential jerk system was investigated by Sun and Sprott [52]. Another simple
chaotic jerk system with exponential nonlinearity was presented in Munmuangsaen
et al. [35]while its elegant electronic circuital implementation, including six resistors,
three capacitors, four operational amplifiers and a silicon diode only, was introduced
in Sprott [48]. A six-term 3-D novel jerk chaotic system with two hyperbolic sinu-
soidal nonlinearities was proposed by Vaidyanathan et al. [59]. Multi-scroll chaotic
attractors could be generated in the jerk mode [30] or jerk circuits [33, 67] while
multi-scroll and hypercube attractors were also achieved from a general jerk circuit
using Josephson junctions [65].

By generalizing the definition of a jerk system [45], a hyperjerk system can be
considered as

d(n)x

dtn
= f

(
d(n−1)x

dtn−1
, . . . ,

dx

dt
, x

)
, (2)

with n ≥ 4 [47]. Hyperjerk form can described all periodically forced oscillators and
many of the coupled oscillators [29] while transformation of 4-D dynamical systems
to hyperjerk form was reported in Elhadj and Sprott [12]. Chaotic hyperjerk system
including fourth and fifth derivatives was introduced [8]. In addition, Chlouver-
akis and Sprott found hyperchaotic hyperjerk flows. More recently, Sundarapandian
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proposed a 4-D novel hyperchaotic hyperjerk system by adding a quadratic nonlin-
earity to the Chlouverakis–Sprott hyperjerk system [60].

It is easy to see that reported jerk/hyperjerk systems have a finite number of equi-
librium points. It is very interesting to ask naturally whether there exists a chaotic
jerk/hyperjerk system without equilibria or with an unlimited equilibrium set. Some
authors have recently answered this attractive question. Wang and Chen [64] con-
structed a jerk systemwith no equilibriumpoint, but still generated a chaotic attractor.
A chaotic memory system with infinitely many equilibria was designed by using the
concept of memory element [4]. Studying such jerk/hyperjerk systems with special
features is still an open research direction.

In this chapter, our work has concentrated on a hyperjerk system based on a
memristive device which can exhibit chaotic attractors. Moreover, such hyperjerk
system has an infinite number of equilibrium points. This research work is orga-
nized as follows. Section2 gives a brief introduction to the memristive device. The
memristive hyperjerk system is presented in Sect. 3 while its qualitative properties
are analyzed in Sect. 4. In Sect. 5, we describe the adaptive synchronization design
for achieving global chaos synchronization of the identical novel hyperjerk systems
with two unknown parameters. Section6 shows the circuital implementation of our
memristive hyperjerk system. Finally, conclusions are drawn in the last section.

2 Model of Memristive Device

Memristor was proposed by L.O. Chua as the fourth basic circuit element beside the
three conventional ones (the resistor, the inductor and the capacitor) [10]. Memris-
tor presents the relationship between two fundamental circuit variables, the charge
(q) and the flux (ϕ). Hence, there are two kinds of memristor: charge-controlled
memristor and flux-controlled memristor [10, 54]. A charge-controlled memristor is
described by

vM = M (q) iM , (3)

where vM is the voltage across the memristor and iM is the current through the
memristor. Here the memristance (M) is defined by

M (q) = dϕ (q)

dq
, (4)

while the flux-controlled memristor is given by

iM = W (ϕ) vM , (5)

where W (ϕ) is the memductance, which is defined by

W (ϕ) = dq (ϕ)

dϕ
. (6)
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Moreover, by generalizing the original definition of a memristor [11, 54], a memris-
tive system is given as: {

ẋ = F (x, u, t)
y = G (x, u, t) u,

(7)

where u, y, and x denote the input, output and state of the memristive system,
respectively. The function F is a continuously differentiable, n-dimensional vector
field and G is a continuous scalar function.

Based on the definition of memristive system [4, 11, 38, 54], a memristive device
is introduced in this section and used in our whole chapter. The memristive device
is described by the following form:

{
ẋ1 = x2
y = (1 − x1) x2.

(8)

Here x2, y, and x1 are the input, output and state of thememristive device, respectively.
An external bipolar periodic signal is applied across terminals of memristive

device (8) to investigate its fingerprint [51, 54, 55]. The external sinusoidal stimulus
is given by

x2 = X2 sin (2π f t) , (9)

where X2 is the amplitude and f is the frequency. From the first equation of (8), the
state variable of the memristive device is obtained as

x1 (t) =
t∫

−∞
x2 (τ ) dτ = x1 (0) +

t∫
0

X2 sin (2π f τ ) dτ

= x1 (0) + X2

2π f
(1 − cos (2π f t)) , (10)

with x1 (0) is the initial condition of the internal state in the memristive device. Thus,
the initial condition of the internal state variable is given by

x1 (0) =
0∫

−∞
x2 (τ ) dτ . (11)

Substituting (9) and (10) into (8), it is easy to derive the output of the memristive
device

y (t) =
[
1 − x1 (0) − X2

2π f
(1 − cos (2π f t))

]
X2 sin (2π f t)

=
(
1 − x1 (0) − X2

2π f

)
X2 sin (2π f t) + X2

2

4π f t
sin (4π f t) . (12)
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Fig. 1 Hysteresis loops of
the proposed memristive
device (8) driven by a
sinusoidal stimulus (9) when
changing the frequency f
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From Eq. (12), it is easily seen that the output y depends on the frequency of the
applied input stimulus. Hysteresis loop of the memristive device (8) when driven
by a periodic signal (9) with different frequencies are shown in Fig. 1. Exhibited
“pinched hysteresis loop” in the input–output plane indicates the vital fingerprint of
memristive device (8).

3 A 4-D Novel Memristive Hyperjerk System

In this chapter, a novel 4-D memristive system is proposed by using the memristive
device (8) and the reported approach in Bao et al. [4]. The novel memristive system
is given in system form as⎧⎪⎪⎨

⎪⎪⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x3 − ax4 − bx3x4 − y,

(13)

where a, b are positive parameters and y = (1 − x1) x2 is the output of memristive
device (8).

The novel memristive system (13) can be rewritten by

d4x1
dt4

= f

(
d3x1
dt3

,
d2x1
dt2

,
dx1
dt

, x1

)
, (14)

where

f = −d2x1
dt2

− a
d3x1
dt3

− b
d2x1
dt2

d3x1
dt3

− (1 − x1)
dx1
dt

. (15)
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Therefore, memristive system (13) is called a hyperjerk system because it involves
time derivatives of a jerk function [45, 47]. In this chapter, the memristive system
(13) is chaotic when the parameters a, and b take the values

a = 0.5, b = 0.4. (16)

For the selected parameter values in (16), the Lyapunov exponents of the novel
memristive system (13) are obtained as

L1 = 0.0730, L2 = 0.0018, L3 = 0, L4 = −0.5755. (17)

For numerical simulations, we take the initial conditions of the novel memristive
system (13) as x1(0) = 0.06, x2(0) = 10−6, x3(0) = 0, and x4(0) = 0. Here the
initial conditionof the input of thememristive device x2(0) should be tiny to guarantee
an appropriate value of the internal state variable of the memristive device. Figures2,
3 and 4 illustrate the 2-D projections and 3-D projections of the new memristive
system (13).

Fig. 2 2-D projections of
the novel chaotic hyperjerk
system (13) in
(x1, x2)-plane,
(x1, x3)-plane,
(x2, x3)-plane, and
(x1, x4)-plane −2 0 2
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Fig. 3 Strange attractor of
the novel chaotic hyperjerk
system (13) in
(x1, x2, x3)-space

−2
0

2
4

−2

0

2
−2

−1

0

1

2

x1
x2

x 3



A Chaotic Hyperjerk System Based on Memristive Device 45

Fig. 4 Strange attractor of
the novel chaotic hyperjerk
system (13) in
(x1, x2, x4)-space
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4 Analysis of the 4-D Novel Memristive Hyperjerk System

4.1 Equilibrium Points

The equilibrium points of the 4-D novel memristive hyperjerk system (13) are
obtained by solving the equations

⎧⎪⎪⎨
⎪⎪⎩

f1(x1, x2, x3, x4) = x2 = 0
f2(x1, x2, x3, x4) = x3 = 0
f3(x1, x2, x3, x4) = x4 = 0
f4(x1, x2, x3, x4) = −x3 − ax4 − bx3x4 − y = 0

. (18)

Thus, the equilibrium points of the system (13) are characterized by the equations

y = (1 − x1)x2 = 0, x2 = 0, x3 = 0, x4 = 0 (19)

Solving the system (19), we get the equilibrium points of the hyperjerk system (13) as

Ec =

⎡
⎢⎢⎣

c
0
0
0

⎤
⎥⎥⎦ , (20)

where c is a real constant. Interestingly, the novel hyperjerk system (13) displays
an infinite number of equilibrium points because of the presence of a memristive
device (8). According to a new classification of chaotic dynamics [24–27], there are
two kinds of attractors: self-excited attractors and hidden attractors. A self-excited
attractor has a basin of attraction that is excited from unstable equilibria. In contrast,
a hidden attractor cannot be discovered by using a numerical approach where a
trajectory started from a point on the unstable manifold in the neighbourhood of an
unstable equilibrium [15, 22, 23]. Therefore, hyperjerk system (13) canbe considered
as a chaotic memristive system with hidden attractor.
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In order to discover the stability type of the equilibrium points Ec the Jacobian
matrix of the novel memristive hyperjerk system (13) is calculated at any point x as

J (x) =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
x2 x1 − 1 −1 − bx4 −a − bx3

⎤
⎥⎥⎦ , (21)

It is noting that

J0
Δ= J (Ec) =

⎡
⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 c − 1 −1 −0.5

⎤
⎥⎥⎦ , (22)

which has the characteristic equation is

λ
(
λ3 + 0.5λ2 + λ + 1 − c

) = 0. (23)

When c = 0.06 the characteristic Eq. (23) has a zero eigenvalue and three nonzero
eigenvalues

λ1 = 0, λ2 = −0.7749, λ3,4 = 0.1375 ± 1.0928i (24)

This shows that the equilibrium point Ec is an unstable saddle-focus point.

4.2 Lyapunov Exponents and Kaplan–Yorke Dimension

For the parameter values a = 0.5, b = 0.4 and c = 0.06, the Lyapunov exponents
of the novel memristive hyperjerk system (13) are obtained using MATLAB as

L1 = 0.0730, L2 = 0.0018, L3 = 0 and L4 = −0.5755 (25)

There is one positive Lyapunov exponents in the LE spectrum (25), thus the novel
memristive hyperjerk system (13) exhibits chaotic behavior.

In addition, since L1 + L2 + L3 + L4 = −0.5007 < 0, it indicates that the novel
memristive system (13) is dissipative.

The Kaplan–Yorke fractional dimension, that presents the complexity of attractor
[46, 50], is defined by

DK Y = j + 1∣∣L j+1

∣∣
j∑

i=1

Li (26)
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where j is the largest interger satisfying
j∑

i=1
Li ≥ 0 and

j+1∑
i=1

Li < 0. Therefore, the

Kaplan–Yorke dimension of the novel memristive hyperjerk system (13) is calcu-
lated as

DK Y = 3 + L1 + L2 + L3

|L4| = 3.130, (27)

which is fractional.

5 Adaptive Synchronization for the Hyperjerk Memristive
System

One of the most important characteristics relating to chaotic systems and their appli-
cations is the possibility of synchronization of two chaotic ones [5, 13, 17, 36].
A wide range of research activities based on synchronization of nonlinear systems
has been studied [6, 14, 18, 39, 49, 58]. For example, various synchronization phe-
nomena in bidirectionally coupled double scroll circuits were reported in Volos et
al. [61] or image encryption process based on chaotic synchronization phenomena
was presented in [62]. Different synchronization schemes have proposed such as
anti-synchronization [56], adaptive sycnchronization [59], or hybrid chaos synchro-
nization [18], etc. Here we consider the adaptive synchronization of identical 4-D
memristiive hyperjerk systems with two unknown parameters.

The master system is considered as the 4-D novel memristive hyperjerk system
given by ⎧⎪⎪⎨

⎪⎪⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x3 − ax4 − bx3x4 − x2 + x1x2

(28)

where x1, x2, x3, x4 are the states of the system, and a, b are unknown constant
parameters.

The slave system is considered as the 4-D novel memristive hyperjerk system
given by ⎧⎪⎪⎨

⎪⎪⎩

ẏ1 = y2
ẏ2 = y3
ẏ3 = y4
ẏ4 = −y3 − ay4 − by3y4 − y2 + y1y2 + u

(29)

where y1, y2, y3, y4 are the states of the system, and u is a backstepping control to
be determined using estimates â(t) and b̂(t) for a and b, respectively.
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The synchronization errors between the states of the master system (28) and the
slave system (29) are defined as

⎧⎪⎪⎨
⎪⎪⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3
e4 = y4 − x4

(30)

Thus, the error dynamics is easily obtained as follows

⎧⎪⎪⎨
⎪⎪⎩

ė1 = e2
ė2 = e3
ė3 = e4
ė4 = −e3 − ae4 − e2 − b(y3y4 − x3x4) + y1y2 − x1x2 + u

(31)

The parameter estimation errors are defined as:

{
ea(t) = a − â(t)
eb(t) = b − b̂(t)

(32)

Differentiating (32) with respect to t , we obtain the following equations:

{
ėa(t) = −˙̂a(t)

ėb(t) = − ˙̂b(t)
(33)

Next, the main result of this section will be presented and proved.

Theorem 5.1 The identical 4-D novel memristive hyperjerk systems (28) and (29)
with unknown parameters a and b are globally and exponentially synchronized by
the adaptive control law

{
u(t) = −5e1 − 9e2 − 8e3 − [4 − â(t)]e4 + b̂(t) (y3y4 − x3x4)

− (y1y2 − x1x2) − kz4
(34)

where k > 0 is a gain constant,

z4 = 3e1 + 5e2 + 3e3 + e4, (35)

and the update law for the parameter estimates â(t), b̂(t), ĉ(t) is given by

{ ˙̂a(t) = −e4z4˙̂b(t) = − (y3y4 − x3x4) z4
(36)

Proof We prove this result via backstepping control method and Lyapunov stability
theory.
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First, we define a quadratic Lyapunov function

V1(z1) = 1

2
z21 (37)

where

z1 = e1 (38)

Differentiating V1 along the error dynamics (31), we get

V̇1 = z1 ż1 = e1e2 = −z21 + z1(e1 + e2) (39)

Here, we define
z2 = e1 + e2 (40)

Using (40), we can simplify the Eq. (39) as

V̇1 = −z21 + z1z2 (41)

Secondly, we define a quadratic Lyapunov function

V2(z1, z2) = V1(z1) + 1

2
z22 = 1

2

(
z21 + z22

)
(42)

Differentiating V2 along the error dynamics (31), we get

V̇2 = −z21 − z22 + z2(2e1 + 2e2 + e3) (43)

Now, we define
z3 = 2e1 + 2e2 + e3 (44)

Using (44), we can simplify the Eq. (43) as

V̇2 = −z21 − z22 + z2z3 (45)

Thirdly, we define a quadratic Lyapunov function

V3(z1, z2, x3) = V2(z1, z2) + 1

2
z23 = 1

2

(
z21 + z22 + z23

)
(46)

Differentiating V3 along the error dynamics (31), we get

V̇3 = −z21 − z22 − z23 + z3(3e1 + 5e2 + 3e3 + e4) (47)
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Now, we define
z4 = 3e1 + 5e2 + 3e3 + e4 (48)

Using (48), we can simplify the Eq. (47) as

V̇3 = −z21 − z22 − z23 + z3z4 (49)

Finally, we define a quadratic Lyapunov function

V (z1, z2, z3, z4, ea, eb) = V3(z1, z2, z3) + 1

2
z24 + 1

2
e2a + 1

2
e2b (50)

which is a positive definite function on R6.
Differentiating V along the error dynamics (31), we get

V̇ = −z21 − z22 − z23 − z24 + z4(z4 + z3 + ż4) − ea
˙̂a − eb

˙̂b (51)

Equation (51) can be written compactly as

V̇ = −z21 − z22 − z23 − z24 + z4S − ea
˙̂a − eb

˙̂b (52)

where

S = z4 + z3 + ż4 = z4 + z3 + 3ė1 + 5ė2 + 3ė3 + ė4 (53)

A simple calculation gives

S = 5e1 + 9e2 + 8e3 + (4 − a)e4 − b (y3y4 − x3x4) + (y1y2 − x1x2) + u (54)

Substituting the adaptive control law (34) into (54), we obtain

S = − [
a − â(t)

]
e4 −

[
b − b̂(t)

]
(y3y4 − x3x4) − kz4 (55)

Using the definitions (33), we can simplify (55) as

S = −eae4 − eb (y3y4 − x3x4) − kz4 (56)

Substituting the value of S from (56) into (52), we obtain

⎧⎨
⎩

V̇ = −z21 − z22 − z23 − (1 + k)z24 + ea(−e4z4 − ˙̂a)

+ eb

[
− (y3y4 − x3x4) z4 − ˙̂b

] (57)
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Substituting the update law (36) into (57), we get

V̇ = −z21 − z22 − z23 − (1 + k)z24, (58)

which is a negative semi-definite function on R6. Therefore, according to the Lya-
punov stability theory [19, 43] we obtain e1 (t) → 0, e2 (t) → 0, e3 (t) → 0,
e4 (t) → 0, ea (t) → 0, eb (t) → 0 exponentially when t → 0 that is, synchroniza-
tion between master and slave system.

In order to confirm and demonstrate the effectiveness of the proposed synchro-
nization scheme, we consider a numerical example. In the numerical simulations, the
fourth-order Runge–Kutta method is used to solve the systems. The parameters of
the memristive hyperjerk systems are selected as a = 0.5, b = 0.4 and the positive
gain constant as k = 6. The initial conditions of the master system (28) and the
slave system (29) have been chosen as x1 (0) = 0.06, x2 (0) = 10−6, x3 (0) = 0,
x4 (0) = 0 and y1 (0) = 0.02, y2 (0) = 10−4, y3 (0) = 0, y4 (0) = 0, respectively.
We assumed that the initial values of the parameter estimates are â(0) = 0.46 and
b̂(0) = 0.01.

When adaptive control law (34) and the update law for the parameter estimates
(36) are applied, the master (28) and slave system (29) are synchronized completely

Fig. 5 Synchronization of
the states x1(t) and y1(t)
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Fig. 6 Synchronization of
the states x2(t) and y2(t)
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Fig. 7 Synchronization of
the states x3(t) and y3(t)
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Fig. 8 Synchronization of
the states x4(t) and y4(t)
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Fig. 9 Time series of the
synchronization errors e1, e2,
e3, and e4
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as shown in Figs. 5, 6, 7 and 8. In such figures, time series of master states are denoted
as blue solid lines while corresponding slave states are plotted as red dash-dot lines.
In addition, the time-history of the complete synchronization errors e1, e2, e3, and e4
are reported in Fig. 9. The obtained results illustrate the correctness of used approach.



A Chaotic Hyperjerk System Based on Memristive Device 53

6 SPICE Implementation of the Memristive Hyperjerk
System

In this section, an electronic circuit is proposed to implement memristive hyperjerk
system (13). The circuit in Fig. 10 has beendesignedby applying the general approach
with operational amplifiers [41, 53]. Thus, the variables x1, x2, x3, x4 of memristive
system (13) are the voltages across the capacitor C1, C2, C3, and C4, respectively.
As shown in Fig. 10 the memristive system is realized by common electronic com-
ponents. Indeed the sub-circuit of memristive device in Fig. 10 only emulates the
memristive device because there are not any commercial off-the-shelf memristive
devices in the market yet. By applying Kirchhoff’s circuit laws, the corresponding
circuital equations of designed circuit can be written as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dvC1
dt = 1

R1C1
vC2

dvC2
dt = 1

R2C2
vC3

dvC3
dt = 1

R3C3
vC4

dvC4
dt = − 1

R4C4
vC3 − 1

R5C4
vC4 − 1

R6C4
vC3vC4 − 1

R7C4
y,

(59)

Fig. 10 Schematic of the circuit which emulating novel hyperjerk system (8) with the presence of
the memristive device
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Fig. 11 Chaotic attractor of
the designed circuit obtained
from Cadence OrCAD in the
(vC1 , vC2 ) phase plane

Fig. 12 Chaotic attractor of
the designed circuit obtained
from Cadence OrCAD in the
(vC1 , vC3 ) phase plane

where vC1 , vC2 , vC3 , and vC4 are the voltages across the capacitors C1, C2, C3, and
C4, respectively. Here the memristive device is described by the following circuital
equations: {

dvC1
dt = 1

R1C1
vC2

y = vC2 − vC1vC2 .
(60)



A Chaotic Hyperjerk System Based on Memristive Device 55

Fig. 13 Chaotic attractor of
the designed circuit obtained
from Cadence OrCAD in the
(vC2 , vC3 ) phase plane

Fig. 14 Chaotic attractor of
the designed circuit obtained
from Cadence OrCAD in the
(vC1 , vC4 ) phase plane

Thepower supplies of all active devices are±15VDC and theoperational amplifiers
TL084 are used in this work. The values of components are selected as follows:
R1 = R2 = R3 = R4 = R7 = R = 100 k�, R5 = 200 k�, R6 = 250 k�, and
C1 = C2 = C3 = C4 = 1nF.

The designed circuit is implemented in the electronic simulation packageCadence
OrCAD and the obtained results are reported in Figs. 11, 12, 13 and 14. Theoretical
attractors (see Fig. 2) are similar with the circuital ones (see Figs. 11, 12, 13 and 14).
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7 Conclusion

A 4-D hyperjerk system is introduced in this work. The hyperjerk system is con-
structed by using a memristive device which creates the special feature of such
hyperjerk system, possessing an infinite number of equilibrium points. This special
feature is rarely observed in other chaotic hyperjerk systems. Dynamical behaviors
of the memristive hyperjerk system are investigated through equilibrium points, pro-
jections of chaotic attractors, Lyapunov exponents and Kaplan–Yorke dimension. In
addition, the capacity of synchronization scheme of memristive hyperjerk systems
is shown via backstepping control approach. To verify the feasibility of such hyper-
jerk system, we present its circuital implementation. Because the designed circuit
modeling the hyperjerk system can generate chaos, it can applied into potential appli-
cations in various fields of chaos-based engineering, such as secure communications,
random bit generation, liquid mixing or path planning for mobile robot, etc.
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