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Abstract The realization of memristor in nanoscale size has received considerate
attention recently because memristor can be applied in different potential areas such
as spiking neural network, high-speed computing, synapses of biological systems,
flexible circuits, nonvolatile memory, artificial intelligence, modeling of complex
systems or low power devices and sensing. Interestingly, memristor has been used as
a nonlinear element to generate chaos in memristive system. In this chapter, a new
memristive system is proposed. The fundamental dynamics properties of such mem-
ristive system are discovered through equilibria, Lyapunov exponents, and Kaplan–
York dimension. Especially, hidden attractor and hyperchaos can be observed in
this new system. Moreover, synchronization for such system is studied and simula-
tion results are presented showing the accuracy of the introduced synchronization
scheme. An electronic circuit modelling such hyperchaotic memristive system is also
reported to verify its feasibility.
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1 Introduction

After the discovery of Lorenz’s model for atmospheric convection [1], there has been
significant interest in chaotic systems [2–9]. In the past few decades, different chaotic
systems have been reported such as Rössler system [10], Arneodo system [11], Chen
system [6], Lü system [12], Vaidyanathan system [13], time-delay systems [14] and
so on [15, 16]. Chaotic behaviors are useful and have been applied in many fields,
for example a double-scroll chaotic attractor has been used to generate true random
bits [17], chaotic path planning has been generated for autonomous mobile robots
[18], fingerprint images encryption scheme based on chaotic attractors has been
implemented, or applications of time delay systems in secure communication have
been proposed [19] due to their complex dynamics.

In addition, hyperchaotic system was introduced and studied [20]. Hyperchaotic
system is characterized by more than one positive Lyapunov exponent and, thus,
presents a higher level of complexity with respect to chaotic system [21]. As a result,
hyperchaos is better than conventional chaos in a variety of areas, for instance, hyper-
chaos increases the security of chaotic-based communication systems significantly
[22, 23]. Moreover hyperchaos has used in diverse applications such as cryptosys-
tems [24], neural networks [25], secure communications [22, 23], or laser design [26].
Especially, the intrinsic nonlinear characteristic of memristor has been expointed in
designing hyperchaotic oscillators. Some recent researches show that memristor is a
potential candidate for generating hyperchaos [27, 28].

In this chapter, our work introduces a memristive systemwhich can exhibit hyper-
chaotic attractors. Moreover such memristive system does not have equilibrium
points. This chapter is organized as follows. Section2 summarized related works.
Section3 gives a brief representation to the memristive system. Dynamics and prop-
erties of such memristive system is introduced in Sect. 4 while the adaptive synchro-
nization scheme is studied in Sect. 5. Section6 presents circuital implementation of
memristive system using SPICE. Finally, conclusions are drawn in Sect. 7.

2 Related Work

Motivated by complex dynamical behaviors of hyperchaotic systems and special fea-
tures ofmemristor, somememristor-basedhyerchaotic systemshavebeen introduced,
recently. Hyperchaos was generated by combining a memristor with cubic nonlinear
characteristics and a modified canonical Chua’s circuit [28]. This memristor-based
modified canonical Chua’s circuit is a five-dimensional hyperchaotic oscillator. By
extending the HP memristor-based canonical Chua’s oscillator, a six-dimensional
hyperchaotic oscillator was designed [29]. Authors used a configuration based on
two HP memristors in antiparallel [27]. Four-dimensional hyperchaotic memristive
systems were discovered by Li et al. [30, 31]. A 4D memristive system with a
line of equilibrium was presented in [30] while another memristive system with an
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uncountable infinite number of stable and unstable equilibria was reported in [31].
Amemristor-based hyperchaotic systemwithout equilibriumwas introduced in [32].
These memristive systems belong to a new category of chaotic systems with hidden
attractors [33, 34].

The terminology “hidden attractor” has been introduced recently although the
fact that the problem of analyzing hidden oscillations and to the finding of hidden
oscillations in automatic control systemswere studied a long time ago.According to a
new classification of chaotic dynamics proposed by Leonov and Kuznetsov [33–35],
there are two types of attractors: self-excited attractors and hidden attractors. A self-
excited attractor has a basin of attraction that is excited from unstable equilibria. In
contrast, hidden attractor cannot be found by using a numerical method in which
a trajectory started from a point on the unstable manifold in the neighbourhood
of an unstable equilibrium [35]. The discovery of dynamical systems with hidden
attractors is a great challenge due to their appearance in many research fields such
as in mechanics, secure communication and electronics [34, 36–39]. For example,
hidden attractor in smooth Chua’s system was reported in [40]. Hidden oscillations
in mathematical model of drilling system [41] and hidden oscillations in nonlinear
control systems [42] were witnessed. Various examples of hidden attractors were
summarized in [43–46]. Hidden attractors were observed in a 4-D Rikitake dynamo
system [47] or 5-D hyperchaotic Rikitake dynamo system [48]. Hidden attractors
in a chaotic system with an exponential nonlinear term were introduced in [49]. In
addition, algorithms for searching for hidden oscillations were presented in [50, 51].

Motivated by complex dynamical behaviors of chaotic systems, noticeable char-
acteristics ofmemristor, and unknown features of hidden attractors, studyingmemris-
tive hyperchaotic systemswith hidden attractors is still an attractive research direction
[30, 31].

3 Model of the Memristive System

A flux-controlled memristor is considered in this work. Its memductance is a second
degree polynomial function:

W (ϕ) = α + 3βϕ2, (1)

with α = 0.4 and β = 0.001. Memductance (1) is similar to known memductance
[28, 30, 52, 53]. Using this memristor, a four-dimensinal memristive system is pro-
posed as ⎧

⎪⎪⎨

⎪⎪⎩

ẋ = 36y − 36x
ẏ = −2xz + 20y − axW (ϕ) − b
ż = 2xy − 3z
ϕ̇ = 2x,

(2)
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where a, b are parameters, and W (ϕ) is the memductance as introduced in (1). It
is noting that the memristive system (2) has an uncountable number of equilibrium
points when b = 0. Moreover, system (2) generate hyperchaos for different values of
the parametera. For example, hyperchaotic attractors is obtainedwhena = 30,b = 0
and the chosen initial conditions are (x (0) , y (0) , z (0) ,ϕ (0)) = (0.5, 0, 0.5, 0). In
this case, memristive system (2) is similar to the reported one in [31], therefore it
will be not discussed in the next sections.

4 Dynamics and Properties of the Memristive System

The memristive system (2) is investigated when b �= 0. It is easy to obtain the equi-
librium points for system (2) by solving ẋ = 0, ẏ = 0, ż = 0, and ϕ̇ = 0 that is

36y − 36x = 0, (3)

−2xz + 20y − axW (ϕ) − b = 0, (4)

2xy − 3z = 0, (5)

2x = 0, (6)

From (3), (5) and (6), we have x = y = z = 0. As a results, Eq. (4) reduces to b = 0,
which is an contradiction. Hence there are not equilibrium points in memristive
system (2).

In this work, the parameters are selected as a = 30, b = 0.001 and the initial
conditions are

(x (0) , y (0) , z (0) ,ϕ (0)) = (0.5, 0, 0.5, 0) . (7)

Lyapunov exponents, which measure the exponential rates of the divergence and
convergence of nearby trajectories in the phase space of the chaotic system [8, 54],
are calculated using the well-known algorithm in [55]. The Lyapunov exponents of
the system (2) are

λ1 = 0.2590,λ2 = 0.0658,λ3 = 0,λ4 = −19.3246. (8)

It is noting that the sum of the Lyapunov exponents is negative, and so the novel
memristive hyperchaotic system is dissipative. There are two positive Lyapunov
exponents, one zero and one negative Lyapunov exponents. Thus, the memtistive
system (2) is a four-dimension hyperchaotic system according to [20]. It is worth
noting that thismemristive systemcanbe classified as a hyperchaotic systemwith hid-
den strange attractor because its basin of attractor does not contain neighbourhoods
of equilibria [33, 34]. The 3-D and 2-D projections of the hyperchaotic attractors
without equilibrium in this case are illustrated in Figs. 1, 2, 3, 4, 5 and 6.
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Fig. 1 3-D projection of the
hyperchaotic memristive
system without equilibrium
(2) in the (x, y, z)-space
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Fig. 2 3-D projection of the
hyperchaotic memristive
system without equilibrium
(2) in the (y, z,ϕ)-space
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Fig. 3 2-D projection of the
hyperchaotic memristive
system without equilibrium
(2) in the (x, y)-plane

−6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

x

y

Fig. 4 2-D projection of the
hyperchaotic memristive
system without equilibrium
(2) in the (x, z)-plane
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Fig. 5 2-D projection of the
hyperchaotic memristive
system without equilibrium
(2) in the (y, z)-plane
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Fig. 6 2-D projection of the
hyperchaotic memristive
system without equilibrium
(2) in the (x,ϕ)-plane
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It is known that the Kaplan–Yorke fractional dimension, which presents the com-
plexity of attractor [56], is defined by

DK Y = j + 1
∣
∣λ j+1

∣
∣

j∑

i=1

λi , (9)

where j is the largest integer satisfying
j∑

i=1
λi ≥ 0 and

j+1∑

i=1
λi < 0. The calculated

fractional dimension of memristive system (2) when a = 30, b = 0.001 is

DK Y = 3 + λ1 + λ2 + λ3

|λ4| = 3.0168. (10)

Equation (10) indicates a strange attractor.
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5 Adaptive Anti-synchronization of the Memristive System

The possibility of synchronization of two coupled chaotic systems [57–60] is one
of the most vital characteristics relating to chaotic systems and their applications.
Different research activities using synchronization of nonlinear systems have been
investigated in literature [38, 61–69]. For instant, synchronized states in a ring of
mutually coupled self-sustained nonlinear electrical oscillators were considered in
[70], ragged synchronizability of coupled oscillators was observed in [71], various
synchronization phenomena in bidirectionally coupled double-scroll circuits were
reported in [72], or observer for synchronization of chaotic systems with applica-
tion to secure data transmission was studied in [73]. Many synchronization schemes
have been introduced such as lag synchronization [74], frequency synchronization
[75], projective-anticipating synchronization [76], anti-synchronization [77], adap-
tive synchronization [78], or hybrid chaos synchronization [63], etc.Herewe consider
the adaptive synchronization of identical memristive hyperchaotic systems with two
unknown parameters.

In this section, we consider the memristive sytem (2) as the master system as
follows ⎧

⎪⎪⎨

⎪⎪⎩

ẋ1 = 36y1 − 36x1
ẏ1 = −2x1z1 + 20y1 − ax1W (ϕ1) − b
ż1 = 2x1y1 − 3z1
ϕ̇1 = 2x1.

(11)

The states of themaster system (11) are x1, y1, z1,ϕ1, andW (ϕ1) is thememductance
as given in (1). The slave system is considered as the controlled memristive system
and its dynamics is given as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ2 = 36y2 − 36x2 + ux

ẏ2 = −2x2z2 + 20y2 − ax2W (ϕ2) − b + uy

ż2 = 2x2y2 − 3z2 + uz

ϕ̇2 = 2x2 + uϕ,

(12)

where x2, y2, z2, ϕ2, are the states of the slave system while ux , uy , uz , uϕ are the
adaptive controls. These controls will be constructed for the anti-synchronization of
the master and slave systems. In order to estimate unknown parameters a and b, A(t)
and B(t) are used.

The anti-synchronization error between memristive systems (11) and (12) is
described by the following relation

⎧
⎪⎪⎨

⎪⎪⎩

ex = x1 + x2
ey = y1 + y2
ez = z1 + z2
eϕ = ϕ1 + ϕ2.

(13)
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Therefore, the anti-synchronization error dynamics is determined by

⎧
⎪⎪⎨

⎪⎪⎩

ėx = 36ex − 36ey + ux

ėy = −2 (x1z1 + x2z2) + 20ey − a (x1W (ϕ1) + x2W (ϕ2)) − 2b + uy

ėz = 2 (x1y1 + x2y2) − 3ez + uz

ėϕ = 2ex + uϕ.

(14)

Our goal is to find the appropriate controllers ux , uy , uz , uϕ to stabilize the
system (14). Thus, we propose the following controllers for system (14):

⎧
⎪⎪⎨

⎪⎪⎩

ux = −36ex + 36ey − kx ex

uy = 2 (x1z1 + x2z2) − 20ey + A (t) (x1W (ϕ1) + x2W (ϕ2)) + 2B (t) − kyey

uz = −2 (x1y1 + x2y2) + 3ez − kzez

uϕ = −2ex − kϕeϕ,

(15)

where kx , ky , kz , kϕ are positive gain constants for each controllers and A(t), B(t)
are the estimate values for unknown system parameters. The update laws for the
unknown parameters are defined as

{
Ȧ = −ey (x1W (ϕ1) + x2W (ϕ2))

Ḃ = −2ey .
(16)

Next, the main result of this section will be presented and proved.

Theorem 5.1 If the adaptive controller (15) and the updating laws of parameter
(16) are chosen, the anti-sychronization between the master system (11) and the
slave system (12) is achieved.

Proof Here ea(t) and eb(t) are the parameter estimation errors given as

{
ea (t) = a − A (t)
eb (t) = b − B (t) .

(17)

Differentiating (17) with respect to t , we obtain

{
ėa (t) = − Ȧ (t)
ėb (t) = −Ḃ (t) .

(18)

Substituting adaptive control law (15) into (14), the closed-loop error dynamics
is determined as

⎧
⎪⎪⎨

⎪⎪⎩

ėx = −kx ex

ėy = − (a − A (t)) (x1W (ϕ1) + x2W (ϕ2)) − 2 (b − B (t)) − kyey

ėz = −kzez

ėϕ = −kϕeϕ

(19)
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Then substituting (17) into (19), we have

⎧
⎪⎪⎨

⎪⎪⎩

ėx = −kx ex

ėy = −ea (x1W (ϕ1) + x2W (ϕ2)) − 2eb − kyey

ėz = −kzez

ėϕ = −kϕeϕ

(20)

We consider the Lyapunov function as

V (t) = V
(
ex , ey, ez, eϕ, ea, eb

)

= 1
2

(
e2x + e2y + e2z + e2ϕ + e2a + e2b

)
.

(21)

The Lyapunov function is clearly definite positive.
Taking time derivative of (21) along the trajectories of (13) and (17) we get

V̇ (t) = ex ėx + eyėy + ezėz + eϕėϕ + eaėa + ebėb. (22)

From (18), (20), and (22) we have

V̇ (t) = −kx e2x − ea
[
ey (x1W (ϕ1) + x2W (ϕ2)) + Ȧ

]

−eb
(
2ey + Ḃ

) − kye2y − kze2z − kϕe2ϕ.
(23)

Then by applying the parameter update law (16), Eq. (23) become

V̇ (t) = −kx e2x − kye2y − kze
2
z − kϕe2ϕ. (24)

Obviously, derivative of the Lyapunov function is definite negative. According to the
Lyapunov stability [79, 80] we obtain ex (t) → 0, ey (t) → 0, ez (t) → 0, eϕ (t) →
0, ea (t) → 0, eb (t) → 0 exponentially when t → 0 that is, anti-synchronization
between master and slave system. This completes the proof. �

We illustrate the proposed anti-synchronization schemewith a numerical example.
In the numerical simulations, the fourth-order Runge–Kutta method is used to solve
the systems. The parameters of the memristive hyperchaotic systems are selected as
a = 30, b = 0.001 and the positive gain constant as k = 4. The initial conditions
of the master system (11) and the slave system (12) have been chosen as x1 (0) =
0.5, y1 (0) = 0, z1 (0) = 0.5,ϕ1 (0) = 0 and x2 (0) = −0.9, y2 (0) = −0.4, z2 (0) =
0.8, ϕ2 (0) = 0.5, respectively. We assumed that the initial values of the parameter
estimates are A (0) = 29 and B (0) = 0.5.

It is easy to see that when adaptive control law (15) and the update law for the
parameter estimates (16) are applied, the anti-synchronization of the master (11)
and slave system (12) occurred as illustrated in Figs. 7, 8, 9 and 10. It is noting
that time series of master states are denoted as blue solid lines while corresponding
slave states are plotted as red dash-dot lines in such figures. In addition, the time-
history of the anti-synchronization errors ex , ey , ez , and eϕ is presented in Fig. 11.
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The anti-synchronization errors converge to the zero, which implies that the chaos
anti-synchronization between the memristive systems is realized.

Fig. 7 Anti-synchronization
of the states x1(t) and x2(t)
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Fig. 8 Anti-synchronization
of the states y1(t) and y2(t)
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Fig. 9 Anti-synchronization
of the states z1(t) and z2(t)
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Fig. 10 Anti-
synchronization of the states
ϕ1(t) and ϕ2(t)
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Fig. 11 Time series of the
anti-synchronization errors
ex , ey , ez , and eϕ
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6 Circuit Realization of the Memristive System

Circuital design of chaotic/hyperchaotic systems plays an important role on the field
of nonlinear science due to its applications in secure communication, signal process-
ing, random bit generator, or path planning for autonomous mobile robot etc. [17,
18, 22, 62, 81, 82]. In addition, circuital implementation of chaotic/hyperchaotic
systems is also provide an effective approach for investigating dynamics of such
theoretical models [61, 83]. For example, chaotic attractors can be observed on the
oscilloscope easily or experimental bifurcation diagrams can be obtained by varying
the values of variable resistors [84, 85].

Therefore, in this work, an electronic circuit is introduced to implement mem-
ristive system (2). By using the operational amplifiers approach [85], the circuit is
proposed as shown in Fig. 12. Here the variables x , y, z, ϕ of memristive system
(2) are the voltages across the capacitor C1, C2, C3, and C4, respectively. It is noted
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Fig. 12 Schematic of the circuit which modelling hyperchaotic system (2) with the presence of the
memristor

Fig. 13 Schematic of the circuit emulating the memristor

that the detailed schematic of the memristor in Fig. 12 is presented in Fig. 13. This
sub-circuit of memristor emulates the memristive device only due to the fact that
there are not any commercial off-the-shelf memristive device in the market at the
moment [86]. The corresponding circuital equations of circuit can be described as
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dvC1
dt = 1

R1C1
vC2 − 1

R2C1
vC1

dvC2
dt = − 1

10R3C2
vC1vC3 + 1

R4C2
vC2 − 1

R6C2
Vb

− 1
R5C2

vC1

(
R10
R11

+ R10
100R12

v2
C4

)

dvC3
dt = 1

10R7C3
vC1vC2 − 1

R8C3
vC3

dvC4
dt = 1

R9C4
vC1 ,

(25)

where vC1 , vC2 , vC3 , and vC4 are the voltages across the capacitors C1, C2, C3, and
C4, respectively.

The power supplies of all active devices are ±15VDC and the operational ampli-
fiers TL084 are used in this work. The values of components in Figs. 12 and 13
are chosen as follows: R1 = R2 = 1 k�, R3 = R4 = R7 = 1.8 k�, R5 = 1.2 k�,
R6 = 3.6M�, R8 = 12 k�, R9 = 18 k�, R10 = R = 36 k�, R11 = 90 k�, R12 =
120 k�, Vb = 0.1VDC , and C1 = C2 = C3 = C4 = 4.7nF.

The designed circuit is implemented in SPICE. The obtained results are displayed
in Figs. 14, 15, 16 and 17 which show the hyperchaotic attractors of the designed cir-
cuit in different phase planes (vC1 , vC2), (vC1 , vC3), (vC2 , vC3), and (vC1 , vC4), respec-
tively. Theoretical attractors (see Figs. 3, 4, 5 and 6) are similar with the circuital ones
(see Figs. 14, 15, 16 and 17). Moreover, the designed circuit confirms the feasibility
of the memristive system.

Fig. 14 Hyperchaotic
attractor of the designed
circuit obtained from SPICE
in the (vC1 , vC2 ) phase plane
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Fig. 15 Hyperchaotic
attractor of the designed
circuit obtained from SPICE
in the (vC1 , vC3 ) phase plane

Fig. 16 Hyperchaotic
attractor of the designed
circuit obtained from SPICE
in the (vC2 , vC3 ) phase plane

Fig. 17 Hyperchaotic
attractor of the designed
circuit obtained from SPICE
in the (vC1 , vC4 ) phase plane
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7 Conclusion

A memristive system, which is built by using a memristor, is proposed in this work.
The presence of the memristor creates the special features of such as hyperchaos,
the absence of equilibrium points, and hidden attractors. Fundamental dynamical
behaviors of thememristive hyperchaotic system are investigated through calculating
equilibrium points, phase portraits of chaotic attractors, Lyapunov exponents and
Kaplan–Yorke dimension. In addition, the capacity of synchronization of memristive
systems and the feasibility of suchmemristive systemwithout equilibriumare verified
through anti-synchronization scheme and circuital implementation, respectively.

It is worth noting that the memristive system can exhibit double-scroll hyper-
chaotic attractor despite the equilibrium points have disappeared. It has been known
that equilibrium points of a dynamical system, especially a chaotic one, play an
important role when generating multi-scroll attractors. Therefore, investigating no-
equilibrium memristive systems with multi-scroll attractors will be studied in future
works.

Moreover, the memristive system has potential applications in secure communi-
cations and cryptography because of its hyperchaos and feasibility. Further studies
in this research direction will be presented in future works.
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