
Chapter 2
Smooth Finite T-norms and Their
Equational Axiomatization

Francesc Esteva, Àngel García-Cerdaña and Lluís Godo

Abstract In this paper, as homage to Professor Gaspar Mayor in his 70 anniversary,
we present a summary of results on BL-algebras and related structures that, using
the one-to-one correspondence between divisible finite t-norms and finite BL-chains,
allows us to provide an equational characterization of any divisible finite t-norm.

2.1 Introduction

In the early 90s, Mayor and Torrens introduced in [15] the notion of divisible finite
t-norms and proved they can be represented as finite ordinal sums of copies of finite
Łukasiewicz and finite Gödel t-norms. Some years later, Hájek introduced in his
influential monograph [14] his Basic Fuzzy logic (BL), that has become the reference
system in Mathematical fuzzy logic, and showed it was complete with respect to the
class of linearly ordered BL-algebras, or BL-chains. BL-chains were characterized
by Hájek [13] and Cignoli et al. [7] as ordinal sums of Łukasiewicz, Gödel and
Product linearly ordered algebras, but also as ordinal sums of Wajsberg hoops by
Aglianò and Montagna [1]. Moreover the variety generated by a finite BL-chain has
been proved to be finitely axiomatizable see e.g. Busaniche and Montagna [5].

In this paper, as homage to Professor Gaspar Mayor in his 70 anniversary, we
present a summary of these results that, using the one-to-one correspondence between
divisible finite t-norms and finite BL-chains, allows us how to provide an equational
characterization of any divisible finite t-norm. In more detail, after this short intro-
duction, we first overview in Sect. 2.2 themain results byMayor and Torrens on finite
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t-norms, while in Sect. 2.3 we focus on the relationship between finite t-norms and
their residua. Then in the first part of Sect. 2.4 we recall the decomposition of finite
t-norms as ordinal sums of Wajsberg hoops, which is used in the second part to show
how to derive a set of equations that characterize a given finite divisible t-norm. We
end up with some conclusions.

2.2 Mayor and Torrens’ Results on T-norms
over Finite Chains

In the paper [15] Mayor and Torrens study directed algebras over totally ordered
finite sets, inspired by the structures on the real unit interval [0, 1] called De Morgan
triplets and defined by a t-norm, a strong negation and its dual t-conorm.

Definition 2.2.1 A directed algebra is a structure 〈L ,≤, 0, 1, T, S, N 〉, where:
(1) (L ,≤, 0, 1) is a bounded linearly ordered finite set,
(2) T, S are associative and commutative binary operations on L such that T (1, x) =

x and S(0, x) = x ,
(3) N is an order-reversing involution,
(4) for all x, y ∈ L , N (T (x, y)) = S(N (x), N (y)),
(5) T and S are divisible, that is, for all x, y ∈ L ,

x ≤ y if and only if there exists z ∈ L such that x = T (y, z), and
x ≤ y if and only if there exists z ∈ L such that y = S(x, z).

Since L is finite and linearly ordered, N is obviously univocally defined on L , and
S is also determined from T and N by duality (item (4) of the definition). Therefore,
a directed algebra over a finite chain L is univocally defined by a binary operation T
on L satisfying conditions (2) and (5). Moreover, as the authors observe, T satisfies
all the conditions of a continuous t-norm but over a finite set instead of [0, 1], and,
dually, S satisfies all the conditions of a continuous t-conorm in a finite setting. Notice
also that the divisibility condition in item (5) stipulates that any element x ∈ L in the
interval [0, y] belongs to the image of the unary operation T (y, ·) : L → L . In fact,
in [0, 1] this condition is equivalent to the continuity for a t-norm (see e.g. [2] for a
proof).

Consider the following definition of a finite t-norm operation.

Definition 2.2.2 Let C be the chain a0 < a1 < · · · < an . A finite t-norm over C is
a binary operation ∗ : C × C → C such that:

• the operation ∗ is associative, commutative and non-decreasing in each variable,
• a0 is an absorbent element, i.e., for all x ∈ C , x ∗ a0 = a0,
• an is a neutral element, i.e., for all x ∈ C , x ∗ an = x .

Therefore, the operation T in a directed algebra 〈L ,≤, 0, 1, T, S, N 〉 is nothing
but a divisible finite t-norm in L . Main examples of divisible finite t-norms on a chain
C = {a0 < a1 < · · · < an} are the (n + 1)-valued Łukasiewicz t-norm
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ai ∗Ł a j = amax(0,i+ j−n),

and the (n + 1)-valued minimum t-norm

ai ∗min a j = amin(i, j).

The notion of ordinal sum of t-norms naturally extends to the finite setting.

Definition 2.2.3 Let C be the chain a0 < a1 < · · · < am < am+1 < · · · < an and
let ∗1 be a finite t-norm on the sub-chain C1 = {a0 < a1 < · · · < am}, and let ∗2 be
a finite t-norm on sub-chain C2 = {am < am+1 < · · · < an}. Then the ordinal sum
of ∗1 and ∗2 is the finite t-norm on C defined as follows:

x ∗1,2 y =
{

x ∗i y, if x, y ∈ Ci

min(x, y), otherwise

The main result of Mayor and Torrens’s paper [15] is the characterization of
divisible finite t-norms.

Theorem 2.2.4 [15] The only divisible finite t-norms over a chain of n elements are
the Łukasiewicz n-valued t-norm (∗Łn ), the minimum n-valued t-norm (minn) and
ordinal sums of copies of finite Łukasiewicz and minimum t-norms.

This is a result that extends to divisible finite t-norms the well-knownMostert and
Shields ordinal sum representation theorem of continuous t-norms.1

On the other hand, in a previous paper [10], with the goal of avoiding arbitrary
numerical representations of linguistically expressed uncertainty, Godo and Sierra
considered operators over a linearly ordered, finite set of linguistic terms or labels.
In fact, in [10] the authors introduced what they called r -smooth t-norms over finite
chains C = {a0 < a1 < · · · < an} to model conjunction operators. These are finite
t-norms ∗ : C × C → C such that, for any ai , a j , ak, as ∈ C ,

If ai ∗ a j = ak and ai ∗ a j+1 = as, then s − k ≤ r.

Here we will be interested in 1-smooth t-norms that, for simplicity, will be simply
called smooth in what follows.

In [16], Mayor and Torrens prove a very interesting fact for our purposes.

Theorem 2.2.5 [16] A finite t-norm is smooth if and only if it is divisible.

The basic idea of the proof is that the two properties are equivalent to the fact
that, given a finite t-norm ∗ : C × C → C , for any x ∈ C , the x-row of the table of ∗
has to contain all the elements of the interval [a0, x]. In some sense, these properties
correspond to the continuity of a t-norm operation with respect to the order topology

1Take into account that there are no finite product chains different from the Boolean chain of two
elements.
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in any infinite complete chain, like [0, 1], where the divisibility is equivalent to the
continuity (see [2, 11] for a complete study of this problem). As a consequence we
have the following result.

Theorem 2.2.6 A finite t-norm is smooth if and only if it is a finite ordinal sum of
copies of finite Łukasiewicz and minimum t-norms.

As a direct consequence of this result, Mayor and Torrens further prove the fol-
lowing results.

Proposition 2.2.7

(i) A smooth (divisible) finite t-norm ∗ is univocally determined by the set I∗ of its
idempotent elements.

(ii) There are as many smooth t-norms over a chain C = {a0 < a1 < · · · < an} as
subsets of the set C \ {a0, an}, i.e. 2n−1.

The first result (that it is not true for divisible t-norms in general) follows from
the fact that the set of idempotent elements univocally determines the structure of
the t-norm, i.e. the sequence of Łukasiewicz and Gödel components. In particular,
maximal sets of consecutive elements in I∗ correspond to Gödel components, the
rest determine intervals that are Łukasiewicz components. The second result is an
easy consequence of the first one.

2.3 About Smooth (Divisible) Finite T-norms
and Their Residua

As usual in logic, in order to define a logical calculus over a finite set of truth-values
or linguistic terms, it is necessary to have some formof implication operation defined.
In fuzzy logic two main types of implications are usually considered: S-implications
and R-implications.

Definition 2.3.1 Let 〈C,≤〉 be a complete (bounded) chain.

• A S-implication on C is a binary operation defined as x →S y = ¬C x ⊕ y, where
¬C is an involutive negation on C and ⊕ is a t-conorm on C .

• A R-implication on C is a binary operation defined as x →R y = sup{z | x ∗ z ≤
y}, where ∗ is a t-norm on C .

Some fuzzy logicians (see e.g. [14]) argue that S-implications are not adequate
since, in general, they are not compatible with the (linear) order of the chain of truth
values, and hence they advocate the use of R-implications (i.e. residuated implica-
tions) as they have a better behaviour in this respect.
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Definition 2.3.2 Let 〈C,≤〉 be a complete (bounded) chain and let ∗ be a t-norm
overC . Then, the residuum of ∗ is a binary operation→∗ onC such that the following
property is satisfied for all x, y, z ∈ C :

x ∗ y ≤ z if and only if x ≤ y →∗ z (Residuation condition).

The residuum of a t-norm does not always exist. Indeed, if C = [0, 1], a t-norm
∗ on C has residuum if and only if the t-norm is left-continuous. This condition
makes clear that the residuum of ∗ and the R-implication associated to ∗ are not
exactly the same notion, as the R-implication always exists since [0, 1] is complete,
but if the residuum exists (i.e. if ∗ is left-continuous) then they do coincide. Indeed
an easy computation shows that a t-norm and its associated R-implication satisfy
the residuation condition if and only if the supremum in the definition of the R-
implication (see Definition 2.3.1) is, in fact, a maximum.

It is easy to check that if ∗ is left-continuous then:

• its residuum →∗ is univocally defined as

x →∗ y = max{z | x ∗ z ≤ y};

• x →∗ y = 1 if and only if x ≤ y.

Therefore if a t-norm ∗ has a residuum, we will denote it as →∗. Nevertheless we
will write only → if there is no possibility of confusion.

Finally, in [14] it is proved that if a t-norm ∗ has residuum, then the divisibility
condition is equivalent to both the continuity of ∗ and to the satisfaction of the
following equation:

x ∗ (x →∗ y) = min(x, y) (Divisibili t y equation).

This equivalence is well known but, for the reader’s convenience, we will reproduce
the proof for the case of divisible finite t-norms. Suppose ∗ is a finite and divisible t-
norm. Then, for each pair x, y ∈ C such that x ≥ y, there exists z such that x ∗ z = y.
Then, if x ≥ y, by definition of the residuum (that clearly exists for any finite t-
norm), it must hold that x ∗ (x → y) = y = min(x, y). On the other hand, it is clear
that if x ≤ y, then x ∗ (x → y) = x ∗ 1 = x = min(x, y). Notice the interest of this
equivalence for t-norms on [0, 1], since a topological property like continuity can be
equivalently expressed by an equation, the divisibility equation.

In the case of C being a finite chain, the residuum of a (finite) t-norm always
exists (the supremum is always a maximum) but, as we have already observed (see
Theorem 2.2.4), not all finite t-norms are divisible, as the following example shows:

Example 2.3.3 Let ∗ be the t-norm on the finite set C = {0, a, b, 1} with 0 < a <

b < 1, defined by a ∗ b = a ∗ a = 0 and b ∗ b = b, i.e. the nilpotent minimum over
a four elements chain. Obviously ∗ is not divisible since a < b and there is no x ∈ C
such that b ∗ x = a.
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2.4 Axiomatizing Finite Divisible T-norms

In this section we describe how to obtain a finite equational characterization of
any finite divisible t-norm, with equations in the language 〈∗,→,∧,∨, 0, 1〉, that is,
using symbols not only for the t-normoperation but also for its residuum.Actually, the
reader can wonder whether one could do it with equations in the restricted language
〈∗,∧,∨, 0, 1〉 without the residuum →. And it turns out that, as shown by Bou in
[3], equations in this language cannot distinguish for instance on a chain of four
elements the finite t-norm Ł2 ⊕ Ł3 from the t-norm Ł3 ⊕ Ł2. Indeed, Bou shows [3,
Lemma 4] that an equation in the restricted language is valid on an ordinal sum of
hoops A ⊕ B if, and only if, it is valid both in A and in B. Indeed, this proves that the
variety generated by an ordinal sum is indistinguishable from the one generated by
any permutation of the components in the ordinal sum. Therefore there is no hope
to obtain an equational characterization of any (divisible) t-norm different from the
minimum t-norm with equations in the restricted language 〈∗,∧,∨, 0, 1〉.2

Hence we are led to consider equations over a language including an operation
for the residuum of the t-norm as well. In doing so, we are actually prompted in
fact to consider enriched algebraic structures of the kind 〈A,∧,∨, ∗,→∗, 0, 1〉,
where the lattice reduct 〈A,∧,∨, 0, 1〉 is indeed a finite linearly ordered set, ∗ is a
finite divisible t-norm on A and →∗ is its residuum. These structures are examples
of linearly ordered BL-algebras, or BL-chains. BL-algebras are bounded, integral,
commutative, pre-linear and divisible residuated lattices, and they are the algebraic
counterpart of Hájek’s BL logic [14], a logic capturing the common 1-tautologies of
all themany-valued calculi on [0, 1] defined by a continuous t-norm and its residuum.

Before describing how to get an equational characterization of (the BL-chain
defined by) a finite divisible t-norm, mainly based on results from [5], we first recall
an alternative ordinal sum decomposition of a finite BL-chain that has advantages
for our purposes.

2.4.1 An Alternative Decomposition of a Finite Divisible
T-norm as Ordinal Sum of Hoops

First of all we consider an example in order to stress a problem concerning the ordi-
nal sum of (finite) t-norms when the residuated implication is involved. Let ∗ be
a divisible finite t-norm over a chain A that is an ordinal sum of two non-trivial
components ∗1 and ∗2, i.e. ∗ = ∗1 ⊕ ∗2. Suppose now that x ≤ y are elements of the
first component. Then, clearly, x →∗ y = 1, but 1 is not an element of the first com-
ponent. This means that, as an ordinal sum of BL-chains A = 〈A1,∧,∨, ∗1,→∗1 ,

2Note however, that Bou has shown [4] that there is at least one equation in the language
(∗,∧,∨, 0, 1) that is valid for all finite divisible t-norms but fails in some finite non-divisible
t-norm. In particular the exhibited equation in [4] has 9 variables and it fails on a t-norm over a
chain of 33 elements.
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a0, an1〉 ⊕ 〈A2,∧,∨, ∗2,→∗2 , an+1, am〉, the first component A1 is not a subalgebra
of the algebra A defined over the full chain.

As a particular case of a more general result of Aglianò and Montagna in [1], we
recall a slightly different notion of ordinal sum for finite linearly-ordered Wajsberg
hoops. Actually, a hoop is an algebra A = 〈A, ∗,→, 1〉 such that 〈A, ∗, 1〉 is a
commutative monoid and for all x, y, z ∈ A the following equations hold: x → x =
1, x ∗ (x → y) = y ∗ (y → x), x → (y → z) = (x ∗ y) → z. A Wajsberg hoop is
a hoop satisfying the equation: (x → y) → y = (y → x) → x . A bounded hoop
is an algebra A = (A, ∗,→, 1, 0) such that 〈A, ∗,→, 1〉 is a hoop and 0 ≤ x for
all x ∈ A. Then it turns out that bounded Wajsberg hoops are termwise equivalent
to MV-algebras, or in other words, BL-algebras satisfying the equation ¬¬x = x ,
where ¬x = x → 0. Particularly relevant examples of finite Wajsberg hoops are the
following.

Lemma 2.4.1 Any linearly ordered finite (bounded) Wajsberg hoop of n elements is
isomorphic to the hoop Łn = 〈Łn, ∗,→, 1〉, where

• the support of Łn is the set {0, 1
n−1 , . . .

n−2
n−1 , 1},• ∗ is the n-valued Łukasiewicz t-norm, i.e., x ∗ y = max(0, x + y − 1),

• → is the corresponding residuum, i.e., x → y = min(1, 1 − x + y).

Therefore, fromnowon,when speaking about finite linearly orderedWajsberg hoops,
we will directly refer to the hoops Łn . Notice that Ł2 coincide with the two-element
Boolean algebra.

Definition 2.4.2 (Ordinal sums of Wajsberg hoops)
Let Łki = 〈Łki , ∗i ,→i , 1〉 for 1 ≤ i ≤ m be a finite family of finite linearly ordered
Wajsberg hoops such that Łki ∩ Łk j = {1} for all i 
= j . The ordinal sum (as hoops)
of that family is the hoop

Łk1 ⊕ Łk2 ⊕ · · · ⊕ Łkn = 〈
n⋃

i=1

Łki , ∗,→, 1〉,

where:

• the order is defined by: x ≤ y if either both x and y belong to the same component
and x ≤ y, or y = 1, or x ∈ Łki and y ∈ Łk j and i < j .

• x ∗ y = x ∗i y if x, y ∈ Łki , and x ∗ y = min(x, y) otherwise.
• x → y is either x →i y if x, y ∈ Łki , or 1 if x ≤ y, or y if x, y belong to different
components and x > y.

A main advantage of this kind of decomposition is that the components
〈Łki , ∗i ,→∗i , 1〉 are substructures (i.e., subhoops) of the whole hoop structure
Łk1 ⊕ Łk2 ⊕ · · · ⊕ Łkn .

From this definition it is easy to prove the following hoop decomposition theorem
for finite divisible t-norms.
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Fig. 2.1 T-norm ordinal sum
versus hoop ordinal sum

Theorem 2.4.3 For any given finite divisible t-norm, its corresponding finite BL-
chain is (isomorphic to) an ordinal sum of a finite family of finite linearly ordered
Wajsberg hoops.

Proof Given a finite divisible t-norm we know, by the Mayor and Torrens result,
that it is an ordinal sum (as t-norms) of copies of finite minimum t-norm and finite
Łukasiewicz t-norms. Take for each minimum component as many Ł2 as elements
has the component minus 1, and for each finite Łukasiewicz component take the
correspondingWajsberg hoop of the same cardinal. An easy computation shows that
the structure 〈C, ∗,→∗, 1〉 is in fact an ordinal sum (as hoops) of components of the
type Łk defined before. �

Example 2.4.4 Take the t-norm ∗ defined by G3⊕ Ł5 as ordinal sum of t-norms over
a finite chain of 7 elements C . Then the (hoop) structure 〈C, ∗,→∗, 1〉 is the ordinal
sum of hoops: Ł2⊕Ł2⊕Ł5 (see Fig. 2.1). As noticed, the components 〈Łk, ∗,→∗, 1〉
are subhoops of 〈C, ∗,→∗, 1〉.

2.4.2 Equational Characterization of a Divisible
Finite T-norm

As a necessary first step, let us focus on the equational characterization of the finite
linearly ordered Wajsberg hoops Łn . In what follows we will denote by xn the result

of the operations x∗ n· · · ∗x , and by n.x the result of the operation x⊕ n· · · ⊕x , where
⊕ is the bounded sumoperation (the dual of the Łukasiewicz t-norm), that is definable
in each Wajsberg hoop as x ⊕ y := ¬(¬x ∗ ¬y).
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Notice that the Wajsberg hoops of the family Łn , besides satisfying the typical
equations of t-norms:

x ∗ y = y ∗ x (2.1)

x ∗ (y ∗ z) = (x ∗ y) ∗ z (2.2)

1 ∗ x = x (2.3)

(x ∧ y) ∗ z = (x ∗ z) ∧ (y ∗ z), (2.4)

they also satisfy the divisibility equation:

x ∗ (x →∗ y) = min(x, y), (2.5)

the involution equation for the negation:

¬¬x = x, (2.6)

and the ∨-definability equation:

(x →∗ y) →∗ y = max(x, y). (2.7)

Actually, to fully characterize the basic Wajsberg hoops Łn we have at hand the
axiomatization provided by Grigolia [12] of the Łn’s as finite MV-algebras (see also
[8]). Indeed, Łn is equationally characterized as MV-algebra by the (finite) set of
equations of axiomatizing the variety of MV-algebras (see e.g. [6]), together with
the following equations in one variable:

xn = xn−1, (τn)

and, if n ≥ 4:
(p · x p−1)n = n · x p, (τνnp)

for every p ∈ {2, . . . , n − 2} that does not divide n − 1.
Since an equation of the kind t (x) = s(x) can be rewritten, using the double

implication, as t (x) ↔ s(x) = 1, the above finite set of equations {(τn)} ∪ {(τνnp) :
p ∈ {2, . . . , n − 2} not dividing n − 1} can be equivalently expressed, using the
conjunction, as a single equation on one variable:

tn(x) = 1. (tn)

Therefore, the equations characterizing Łn will be those of MV-algebras plus (tn).
For example, for Ł3, the equation (t3) is:

x3 ↔ x2 = 1, (t3)
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while the equation (t4) is:

((2x)4 ↔ 4x2) ∧ (x4 ↔ x3) = 1. (t4)

Notice that a set of equations defines a variety of algebras, and thus the equations
given above actually define the variety of Wajsberg hoops generated by Łn . This
implies that the equations characterizing Łn are also satisfied by the subalgebras
of Łn , i.e., by Łk , where k divides n (but the proper subalgebras satisfy equations
that Łn does not). Nevertheless, they do provide a univocal characterization in the
following sense: given a chain 〈C,≤〉 of n elements, then Łn is the unique Wajsberg
hoop defined by a t-norm on C that satisfies the above equations.

In order to axiomatize any finite ordinal sum of finite Wajsberg hoops we need
some preliminary results. In the following, for any natural k we will denote by t∗

k (x)

the term obtained from tk(x) by replacing the constant 0 by xk .

Lemma 2.4.5 (Cf. [5, Lemma 5.4.1]) Let A1 ⊕ · · · ⊕ An be an ordinal sum of finite
linearly ordered Wajsberg hoops and assume Ai is a component with k elements.
Then Ai is isomorphic to Łk if and only if the equation

t∗
k (x) = 1. (t∗

k )

is valid in Ai .

Proof The basic difference between Ai as component of the ordinal sum and Łk is
the minimum element. The minimum of Ai is not 0 (the minimum of the ordinal
sum) but it can be recovered taking xk for any element x < 1 of Ai . Then the result
follows. �

Lemma 2.4.6 Let C be a finite chain with n elements, and let ∗ be a divisible t-norm
defined on C. Then the equation

n∧
i=1

((xi+1 → xi ) → xi ) ≤
n+1∨
i=1

xi . (λn)

is valid on the hoop 〈C, ∗,→, 1〉 if and only if its decomposition as ordinal sum of
hoops Łk’s has a number of components less or equal than n.

Proof Observe first that if xi+1 ≤ xi and they belong to a different component
then ((xi+1 → xi ) → xi ) = 1 → xi = xi and thus the inequality holds. Moreover
if xi , xi+1 belong to the same component then ((xi+1 → xi ) → xi ) = xi ∨ xi+1, and
thus the inequality holds as well. Thus, in order to check whether the inequality
does not hold, we only need to take into account a sequence of n + 1 elements xi

such that they are strictly increasing and each xi belonging to a different compo-
nent. If the number of components is less or equal than n then such a sequence
does not exist, and thus the inequality holds. However, if the number of compo-
nents is greater than n then an strictly increasing sequence xi where each element
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belong to a different component and xn+1 
= 1 exists. But for this sequence and for
each i ∈ {1, . . . , n}, ((xi+1 → xi ) → xi ) = 1 and

∨n+1
i=1 xi = xn+1 
= 1. Thus the

inequality does not hold. �

Lemma 2.4.7 Let C be a finite chain and let ∗ be a divisible t-norm defined on C
such that 〈C, ∗,→, 1〉 = Łk1⊕ Łk2 ⊕ · · · ⊕ Łkn , i.e. the ordinal sum decomposition
has n components. Then the equation

n−1∧
i=1

((xi+1 → xi ) → xi ) ≤
n∨

i=1

xi ∨ (

n∧
i=1

t∗
ki
(xi )) (εn)

is valid on the hoop 〈C, ∗,→, 1〉.
Proof Like in the proof of the previous lemma, the inequality clearly holds in the case
that either xi+1 ≤ xi , and then (xi+1 → xi ) → xi = xi , or both xi , xi+1 belong to the
same component and then (xi+1 → xi ) → xi = xi ∨ xi+1. Then, since the number
of components is n, a strictly increasing sequence xi where each element belong
to a different component with xn 
= 1 exists. Then, for each xi the corresponding
equation t∗

ki
(xi ) defining Łki , has to hold. �

Therefore, the problem is to fix that the number of components is exactly n, but
this is not definable directly because a set of equations defines a variety and if a
variety contain Łk have to contain its subalgebras in particular Łr for r divisor of k.
In the paper [1], Aglianò and Montagna solve the problem in the following way.

Lemma 2.4.8 Let C be a finite chain and let ∗ be a divisible t-norm defined on C
such that 〈C, ∗,→, 1〉 = Łk1⊕ Łk2 ⊕ · · · ⊕ Łkn Then (C, ∗,→, 1, 0) is characterized
by the equations:

n∧
i=1

((xi+1 → xi ) → xi ) ≤
n+1∨
i=1

xi (λn)

t∗
k1(¬¬x) = 1 (t∗

k1
)

together with the set of equations (εr ) for r = 2, . . . , n:

r−1∧
i=1

((xi+1 → xi ) → xi ) →
r∨

i=1

xi ∨
∨
σr

(t∗
kσr (1)

(x1) ∧ · · · ∧ t∗
kσr (r)

(xr )) = 1 (εr )

where for every r , σr ranges over increasing sequences of r elements out of n

Proof By the previous lemmas, we know that ∗ is an ordinal sum with less than
n + 1 components and that if it has n components they have to be the components
of ∗. It only remains to prove that the satisfaction of equations (εr ) implies that ∗
cannot have less than n components. Suppose that ∗ has r < n components. Then
we can define a strictly increasing sequence x1 < x2 < · · · < xr and by equation
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(εr ) we know that there is a sequence σ such that (tkσ(1) (x1) ∧ · · · ∧ (tkσ(r)
)(xr )) = 1.

This implies that the r components are Łkσ(1) , . . . , Łkσ(r)
, but the sum of the number

of elements of these components is less than n and thus Łkσ(1) ⊕ · · · ⊕Łkσ(r)
does not

define a t-norm over C . �

To finish the paper we give two examples, the latter being a simpler axiomatic
system for the particular case that the decomposition of ∗ as hoops has only two
components.

Example 2.4.9 Suppose the decomposition of 〈C, ∗,→, 1〉 as ordinal sum is Łs⊕
Łt⊕ Łr . Then the following equations determine ∗:

((x4 → x3) → x3) ∧ ((x3 → x2) → x2) ∧ ((x2 → x1) → x1) ≤ x1 ∨ x2 ∨ x3 ∨ x4
(λ3)

t∗
s (¬¬x) = 1 (t∗

s )

((x2 → x1) → x1) → [x1 ∨ x2 ∨ (t∗s (x1) ∧ t∗t (x2)) ∨ (t∗s (x1) ∧ t∗r (x2)) ∨ (t∗t (x1) ∧ t∗r (x2))] = 1
(ε2)

[((x3 → x2) → x2) ∧ ((x2 → x1) → x1)] → [x1 ∨ x2 ∨ x3 ∨ (t∗s (x1) ∧ t∗t (x2) ∧ t∗r (x3))] = 1 (ε3)

Example 2.4.10 When the decomposition as hoops of a finite t-norm has only two
components, then there is also the following simplified equational characterization
with only two equations. Namely, let C be a finite chain of n elements and ∗ be a
divisible t-norm over C such that the decomposition of 〈C, ∗,→, 1〉 as ordinal sum
of hoops is Łs⊕ Łt , i.e., it has only two components. Then, the following simplified
pair of equations determine ∗:

t∗
s (¬¬x) = 1. (2.8)

t∗
t (¬¬x → x) = 1. (2.9)

The proof is very easy since all the elements of the first component Łs are of the form
¬¬x , with x ∈ C , while all the elements of the second component Łt are of the form
¬¬x → x , with x ∈ C . In otherwords,C = {¬¬x | x ∈ C} ∪ {¬¬x → x | x ∈ C}.
Tofinish the proof, take into account that the chain defined byonly the first component
would satisfy these equations as well, but it would not be a t-norm over C , since it
should coincide with Łs , and s < n.

2.5 Conclusions

The paper has overviewed an approach to characterize divisible t-norms on finite
chains by a finite set of equations that use not only the t-norm itself but also its
residuum. Thus, in fact, these equations characterize the class (variety) of algebraic
structures over finite sets defined by them, namely finite BL-chains.
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If we move from finite divisible t-norms to continuous (or divisible) t-norms over
[0, 1], then each continuous t-normdefines a standardBL-chain, namely the structure
[0, 1]∗ = 〈[0, 1], ∗,→∗, 0, 1〉. In [9] it is proved that there is a finite set of equations
(using the t-norm itself but also its residuum)defining the varietyV ([0, 1]∗)generated
by a standardBL-chain [0, 1]∗. Nevertheless, onlywhen the t-norm∗ is afiniteordinal
sum of copies of Łukasiewicz, product and minimum t-norms, the equations actually
characterize the t-norm, since the only standard BL-chain contained in the variety
V ([0, 1]∗) is [0, 1]∗ itself. However when ∗ is an infinite ordinal sum of copies
of Łukasiewicz, product and minimum t-norms, there exist an infinite number of
continuous t-norms ◦ such that [0, 1]◦ ∈ V ([0, 1]∗).
Dedication

This short note is dedicated to Gaspar Mayor in the occasion of his 70th birthday.
We have taken as starting point the research line initiated in his early works about
representation of finite divisible t-norms and we have ended with the equational
characterization of them. Thanks a lot for your inspiring work and congratulations
Gaspar!
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