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Abstract. Recent research has found deep neural networks to be vulner-
able, by means of prediction error, to images corrupted by small amounts
of non-random noise. These images, known as adversarial examples are
created by exploiting the input to output mapping of the network. For
the MNIST database, we observe in this paper how well the known reg-
ularization/robustness methods improve generalization performance of
deep neural networks when classifying adversarial examples and exam-
ples perturbed with random noise. We conduct a comparison of these
methods with our proposed robustness method, an ensemble of mod-
els trained on adversarial examples, able to clearly reduce prediction
error. Apart from robustness experiments, human classification accuracy
for adversarial examples and examples perturbed with random noise is
measured. Obtained human classification accuracy is compared to the
accuracy of deep neural networks measured in the same experimental
settings. The results indicate, human performance does not suffer from
neural network adversarial noise.

Keywords: Adversarial examples · Deep neural network · Noise
robustness

1 Introduction

In visual recognition problems, deep neural networks (DNN’s) represent the
state-of-the-art models outperforming all the other machine learning algorithms.
The use of neural networks for visual recognition has application in many fields,
from web applications to industrial products such as safeguards in automo-
bile industry. Despite their outstanding performance, they have pitfalls in their
understanding of problem they are trained to solve. Szegedy et al. have dis-
covered robustness flaws in many machine learning methods [11]. Despite the
fact that the most of machine learning methods exhibit these flaws, this arti-
cle specializes exclusively on deep neural networks. Deep neural networks have
problems to correctly classify images altered by non-random noise, imperceptibly
different from images that have been classified correctly. Such flaw is unaccept-
able if neural networks are used for safety protocols or for verification programs.
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In this work we define robustness as the ability to correctly classify similar inputs.
Without a robust solution, attacker is able to create examples that can perturb
the network.

We approach the problem by testing several robustness methods and by
comparing their results. The article provides investigation of robustness not only
to adversarial noise, but also to random noise. All experiments are performed on
the MNIST [8] data-set. Different approaches, such as various configurations of
dropout or pre-processing the input are examined. Robustness experiments are
finalized with a study of adversarial training and robustness of various types of
committees.

Several articles report human visual recognition accuracy on certain data-
sets [1,12]. We provide an estimate of human perception ability on noisy MNIST
images and we compare it to the accuracy of deep neural networks.

The paper is organized as follows, Sect. 2 presents an outline of a related
work in the field. Perturbations and robustness methods we use in experiments
are briefly described in Sect. 3. Method description is followed by experimental
setup (Sect. 4) and results of the experiments (Sect. 5). The paper is finalized by
the main conclusions and by a discussion of their aspects (Sect. 6).

2 Related Work

Recent discoveries by Szegedy et al. [11] opened a whole new branch for research
of DNNs. Instead of describing improvement in DNNs’ generalization perfor-
mance, they focused on discovering neural networks’ weaknesses. Firstly, Szegedy
et al. showed that it is the entire space of activations rather than individual units
that contains semantic information. The rest of their work is oriented in finding
the DNN’s blind spots. The most important findings made by Szegedy et al. in
[11] are:

1. For all the networks studied, for every tested image, the authors were able
to generate an adversarial example, which was for humans visually almost
indistinguishable from original image, that was misclassified by the original
network.

2. Cross model generalization: a large number of adversarial examples are mis-
classified by networks trained with different hyper-parameters (number of
layers, initial weights, etc.).

3. Cross training-set generalization: a large number of examples are misclassified
by networks trained on a disjoint training set.

These discoveries pose question related to how the universal approximators
can be so vulnerable against such subtle changes. This discovery undermines
smoothness property of neural networks claiming that inputs close to each other
are supposed to be assigned to the same class. Their experimental results suggest
that using adversarial examples in training process may improve generalization
performance.
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Moreover, Nguyen et al. [9] were experimenting with creating visually mean-
ingless images, which were classified by a neural network as one of the image cate-
gories with high confidence reaching 99.99 %. The authors named these examples
“fooling images”. Nguyen et al. made a hypothesis that these fooling examples
are caused by the discriminative nature of classifier, permitting the algorithm to
find an example that is far away from discriminative boundary as well as from
all the data that have been seen before.

Goodfellow et al. [3] were trying to discover the reason why adversarial exam-
ples exist. They claim, existence of adversarial examples stem from models being
too linear. Authors believe, adversarial perturbations are dependent on model’s
weights, which are similar for different models learned to perform the same
task. They observed, a generalization of adversarial noise across different nat-
ural examples is caused by the fact that adversarial perturbations are not depen-
dent on a specific point in space but on direction of the perturbation. Further
in the work by Goodfellow et al., experiments comparing resistance of models
with different capacity against adversarial and fooling examples have been per-
formed. In their paper it was shown that models, which are simple to optimize
yield easily to adversarial and fooling examples, thus they have no capacity to
resist these perturbations. Adversarial training is presented by Goodfellow et al.
as a possible tool for further regularization (than solely use methods such as
dropout).

Gu and Rigazio [4] used various pre-processing methods to diminish adver-
sarial perturbations. They have tested several denoising procedures including:
injection of additional Gaussian noise with subsequent Gaussian blurring, more
sophisticated methods using autoencoder trained on adversarial examples, and
a standard denoising autoencoder. Gu and Rigazio believe DNN’s sensitivity is
affected by training procedure and the objective function rather than by net-
work topology. As a possible solution to achieve local generalization in the input
space, they propose a deep contractive neural network.

The contribution of this work, in relation to the mentioned studies is in
investigating the network sensitivity to adversarial noise affected by dropout
regularization applied to various combinations of network layers. Apart from
adversarial noise examination, robustness methods are inspected when dealing
with random noise. Moreover, this research contains a study of adversarial noise
resistance of committees and combinations of robustness methods. Human object
recognition accuracy has been reported [1,12] and compared to accuracy of DNNs
examined on natural images. An open question is how the accuracy changes on
noisy images. To answer this question, this paper presents a comparison of human
visual recognition ability of images distorted by different types of noise, with the
performance of the state of the art deep convolutional neural network.

3 Perturbations and Robustness Methods

This section introduce the different types of perturbations used in the experi-
ments, along with well-known robustness methods and the proposed method.
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3.1 Perturbations

To examine neural network robustness, various perturbations are designed to
corrupt an image. A perturbed image X̃ is composed of original image X where
each element is in range (0, 1) and additive noise R, expressed as X̃ = X + R.
In our framework, two noise types are used as an additive noise. Random noise
taken from Gaussian distribution and non-random adversarial noise obtained by
gradient sign method [3]:

R = ε sign(∇XL(θ,X,y)). (1)

The adversarial noise is created by a model with parameters θ for input data
X with the corresponding target vector y via a sign function for the gradient of
the loss function L(θ,X,y).

3.2 Distortion Measure

To make a simple comparison of the amount of noise that is injected to images,
a measure is designed, the average distortion per pixel dist for the whole data
set, independent of type of the noise:
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Average noise is calculated over all color channels c, image height h and image
width w for every picture in the set containing n elements.

This distortion measure facilitates a comparison of perturbed images at sim-
ilar noise quantification levels. Images perturbed with Gaussian-generated noise
and with gradient sign noise, which are the main concern of the article, are
visually compared in Fig. 1.

3.3 Robustness Methods

To face problems caused by adversarial noise, several methods for increasing
robustness of DNN’s have been proposed. The following section start with
description of well-known robustness methods and end by characterizing the
proposed method for dealing with adversarial noise.

Dropout. Dropout is a regularization method presented by Hinton et al. [5],
which prevent networks from overfitting by dropping out random nodes along
with their connections in each training iteration. This method can be applied to
one or more layers. For each layer, a different probability to skip a node may be
used. In each training iteration, a different thinned network is trained. Output
from all the thinned networks can be easily approximated by using the whole
network with activations scaled by the probability of the node is used in the
training phase. The method comes with a price of longer training time (two to
three times as reported by Srivastava et al. [10]).
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Fig. 1. Visualization of MNIST images affected by random and gradient sign noise at
different distortion levels.

Low-Pass Filter. Low-pass filtering is an input pre-processing method, which
uses blurring/denoising convolution to clean noise, see Gu and Rigazio [4]. To
boost the blurring effect on adversarial noise, before applying the convolutional
filter, regions created by adversarial noise are destroyed with additive Gaussian
noise. This process aims to move input image from unrecognizable regions to the
form in which it can be correctly classified.

Denoising Autoencoder. Denoising autoencoder (DAE) is a generative neural
network that is used to reconstruct corrupted inputs. It was used by Gu and
Rigazio [4] as a pre-processing method with purpose to clean input image
of adversarial noise. This is facilitated by its symmetric bottleneck network
topology.

Adversarial Training. A one way to increase robustness of a neural network is
to train the network on its own adversarial examples. Szegedy et al. [11] tested
a procedure, in which a neural network was trained on set regularly updated
by a pool of newly created adversarial examples. Goodfellow et al. [3] used
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another approach, training a neural network on an ordinary training set using
an adversarial objective function.

Adversarial Committee. It has been shown [11] that other models are
less affected by adversarial examples than the model, which the examples are
designed to perturb. Models trained on adversarial examples show good perfor-
mance when classifying adversarial examples of another model. Based on these
observations, we propose a committee of models trained on adversarial examples.
A standard model, trained on natural training set is consecutively trained on its
own adversarial examples. Adversarial examples used to train the model are cre-
ated in two stages. In the first stage, gradient sign noise examples are created.
The second stage involves addition of gradient scaled by a constant to the gradi-
ent sign noise examples. For many natural images, a magnitude of the gradient
is too small compared to the range of input parameters. Gradient magnitude of
an adversarial example greatly exceeds gradient magnitude of the natural image,
hence we use the gradient sign noise images to produce the gradient instead of
natural images. The training image

X̃ = X + R + c∇XL(θ,X + R,y)) (3)

is produced as a linear combination of a gradient sign noise example X + R
(Eq. 1) and a gradient of the loss function for the gradient sign image scaled
by a constant c. After a fixed amount of training iterations a snapshot of the
model is saved and used to produce new examples that update training set pool.
All of these snapshots including the model trained purely on natural training
set are combined into a committee. In deployment stage, the committee outputs
an average prediction of all committee members. An advantage of this method
is that it is difficult to generate gradient sign noise for the committee, since
its members are trained to recognize images corrupted with noise derived from
other committee members.

4 Experimental Setup

The robustness is observed on MNIST data-set, for which the baseline is obtained
from a modification of the original LeNet network [7], see Fig. 2. The network is
initialised by Xavier algorithm [2], trained by stochastic gradient descent while
using momentum and L2 regularization.

4.1 Robustness Experiments

We measure robustness in form of generalization error obtained for 100 test sets,
all originated from MNIST test set, perturbed to have different distortion levels.
Results from different test sets facilitate graphical visualization of how the error
changes with increased distortion.
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Fig. 2. Architecture of LeNet network, composed of two convolution layers, two max-
pooling layers, and two fully connected layers.

Table 1. Layer-specific dropout rate (rate at which nodes are being randomly dropped
out) of models used in experiments.

Abbreviation Input Conv1 Conv2 Full Output Train iterations

Inp 0.2 0 0 0 0 35000

All 0.2 0.2 0.2 0.5 0.5 40000

At first, a robustness of models with dropout applied to various layers is
measured. Details (dropout rates) of models created by performing dropout on
different layers of LeNet are contained in Table 1.

Further experimentation determines effect of low-pass filter and denoising
autoencoder pre-processing on models’ robustness. Low-pass filter is used to
remove high frequencies representing the noise. For this purpose, three Gaussian
convolution kernels of sizes 3× 3, 5× 5 and 7× 7 were designed. Each kernel
was filled with Gaussian function defined in range (-3, 3). Function’s variance
was chosen for each filter separately, under restriction that classification error on
clean set cannot cross 1 %. Variances of 0.6, 1.3 and 7 were chosen for filters of
size 7, 5 and 3 respectively. The effect of filtering applied to adversarial examples
is enhanced by injecting Gaussian noise to images before the filter is applied.

Low-pass filter pre-processing is compared with pre-processing of denoising
autoencoder (DAE). Experimental DAE with structure 784-1000-500-250-30-
250-500-1000-784 is trained by Nesterov’s accelerated gradient. Denoising effect
is achieved by applying dropout on the input layer. Robustness to adversar-
ial noise is facilitated by stacking fully trained denoising autoencoder to the
bottom layer of LeNet. Denoising autoencoder cleans data from noise and feed
clean images to LeNet’s input layer. Three stacked networks have been created:
denoising autoencoder stacked to LeNet and denoising autoencoder stacked to
LeNet with dropout on input layer and to LeNet with dropout on input, conv1,
conv2, full and output layer (Table 1).

Adversarial training in the proposed constellation is realized by training the
model with its own adversarial examples. Networks trained on adversarial exam-
ples originate from LeNet model trained for 10000 iterations, regularized by
weight decay. This model is further consecutively trained for 5 times, each time
for 5000 iterations on current set of adversarial examples joined with training
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sets of previous models. After every phase of adversarial training a new model
is created. All of these 6 models are combined to a committee. To point out
their robustness, a comparison with basic committee composed of 6 models is
demonstrated.

4.2 Human Noise Processing Experiments

In our experiments, the performance of human ability to recognise digits is
obtained for four different sets of images that are presented to test subjects,
three of them originating from MNIST test set and one from USPS [6] data
set. One of the sets is composed of 15 natural images, the other two sets con-
sists of natural images corrupted either by Gaussian noise or by gradient sign
noise. Each noise type set contains 6 subsets per 15 images with graduating
noise levels. Noise levels are designed to have similar distortions for pairs of
Gaussian and gradient sign noise subsets. Gradient sign noise levels are defined
by ε = 0.07, 0.14, 0.21, 0.28, 0.34, 0.4 matched with Gaussian noise levels created
using σ = 0.09, 0.18, 0.27, 0.36, 0.45, 0.54. The last set of 10 images are taken
from USPS dataset and resized to match dimensions of MNIST pictures. Dig-
its on these images are written in a way that may be difficult for humans to
decipher, thus they are noted in this work as the “human adversarial noise”.

Fig. 3. Generalization error of models regularized with dropout on input layer (Inp-
Dropout) and on all the layers (All-Dropout) compared to standard model when
classifying adversarial examples.
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Each mentioned noise level subset is randomly picked from the whole set
of 10000 images, except for USPS images, of which 5 images per each digit
are available and exactly one per digit is randomly chosen for the test. Subsets
are shuffled and presented to test subject via a Python script, which captures
subject’s decisions and stores them for future analysis.

The data essential to carry out the experiment was gathered from 57 subjects.
Every subject has classified a set of 205 images described in previous paragraphs.
The accuracy is compared for each noise level separately. Each participant con-
tributes with an average accuracy of his choices for each noise type and level
separately. A collection of these accuracies achieved by all tested subjects is
used to compute mean and standard deviation, which are compared with values
obtained from tests of 20 LeNet models in the same experimental setup.

5 Results

5.1 Dropout

A two LeNet models (see Table 1) were trained with dropout regularization and
tested for resistance to gradient sign adversarial noise. Regularizing network
with dropout made the network more robust to adversarial distortion up to large

Fig. 4. Generalization error of models regularized with dropout on input layer (Inp-
Dropout) and on all the layers (All-Dropout) compared to standard model when
classifying images corrupted with Gaussian noise.
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levels of distortion (> 0.15) where all models perform poorly. The most robust
solution was obtained by applying dropout on every layer. Error on adversarial
examples with ε = 0.2 was reduced from basic model error of 78.88% to 42.97%
(see Fig. 3).

The same models regularized with dropout were tested for robustness by
gradually increasing levels of Gaussian noise. As Fig. 4 depicts, the most resistant
model to random noise was a model regularized with dropout only in the input
layer. Applying dropout to other layers seem to have negative effect on robustness
to random noise.

5.2 Pre-processing Methods

In the experiments for pre-processing methods, images are processed either by
low-pass filter or by denoising autoencoder. Pre-processed pictures were further
fed into two different models to be classified, to an ordinary LeNet model and
to a LeNet regularized with dropout. The denoising autoencoder has been found
better at preparing adversarial examples for classification than low-pass filter.
The highest accuracy has been achieved by pre-processing adversarial examples
by a denoising autoencoder and subsequent classification by LeNet regularized
by dropout on all the layers (see Fig. 5).

Fig. 5. Generalization error of LeNet when classifying pre-processed adversarial exam-
ples. Images are pre-processed either by low-pass filter or by denoising autoencoder.
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Table 2. Generalization error (%) of robustness methods on MNIST test set perturbed
at three different distortion levels.

Method dist=0 dist=0.1 dist=0.2

No method 0.83 73.6 96.1

Dropout 0.91 35.7 98.1

Low-pass filter 1.38 52.0 95.0

DAE 1.27 52.4 93.2

Low-pass filter + dropout 2.51 34.8 88.5

DAE + dropout 1.56 21.4 90.3

Standard committee 0.86 70.9 97.2

Adversarial training after 5 stages 0.87 44.5 92.1

Committee of models trained on adv. examples 0.65 9.8 36.5

Fig. 6. Generalization error of LeNet when classifying preprocessed images corrupted
by Gaussian noise. Images are preprocessed either by low-pass filter or by denoising
autoencoder.

By examining the resistance of these methods to random noise, different
results were obtained. Low-pass filter prepared randomly distorted images for
classification better than denoising autoencoder. When dealing with Gaussian
noise, encouraging results were achieved by low-pass filtering of images, later
classified by LeNet regularized with dropout on the input layer (see Fig. 6).
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Fig. 7. Generalization error of committees on adversarial noise. Performance of com-
mittee trained on adversarial noise is compared to performance of a basic committee.

5.3 Adversarial Training and Committees

As has been shown before [3], a standard committee does not provide desired
robustness. To demonstrate the resistance of a committee of models trained on
adversarial examples we propose, robustness tests comparing generalization error
of this committee with the error of a standard committee and a single model are
conducted (see Fig. 7). A committee of 6 models trained on adversarial examples
gave an error of 36.5% on MNIST adversarial examples with ε = 0.37 compared
to error of a single model 96.1% or to the error of a basic averaging committee
with the same amount of members, 97.2%. Table 2 compares results with other
robustness methods.

5.4 Human Recognition Experiments

The performance is evaluated by calculating the accuracy as a ratio of correctly
classified images to the total number of tested images. The results of human
vision experiments are illustrated as curves composed of mean values for gradu-
ally increasing levels of each noise type separately, see Fig. 8. Curves are encap-
sulated by their 95 % confidence regions. The experiment indicates that humans
classify images (corrupted by Gaussian noise) with similar accuracy as the deep
neural networks. Experiment also suggests, humans find adversarial and random
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Fig. 8. Classification accuracy of humans compared to the accuracy of 20 LeNet models
when classifying adversarial examples. Mean values are bounded by 95 % confidence
regions. Plot depicts, the performance of LeNet on adversarial noise is far inferior to
performance of humans.

noise similarly problematic. In contrary, DNNs suffer a significant decrease in
classification performance when classifying adversarial examples, compared to
human performance on adversarial examples (see Fig. 8) or to DNNs’ perfor-
mance on random noise.

6 Discussion and Conclusion

For the MNIST dataset, we exploited fast and simplistic method (the gradient
sign method) of creating adversarial examples. Due to the small number of out-
put classes, one color channel and low image resolution, adversarial examples on
MNIST are notably different from original images, however, far more harmful
than randomly distorted images. Thus robustness experiments might be more
accurate on datasets such as CIFAR100 or ImageNet that contain many image
classes.

Dropout experiments in this paper suggest, regularization by dropout on
every network layer is more effective on adversarial examples than using dropout
just on input layer. Adversarial noise is affecting every layer, through which the
gradient has been backpropagated, making adversarial noise more dependent on
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model’s internal structure. Using dropout on model internal structure compli-
cates creation of new adversarial examples. Random noise is more likely compen-
sated by learning from incomplete inputs than by dropping out nodes in every
network layer. A possible reason to this lies in the fact that, random noise is
independent of model structure. During training, model is learning to recognize
incomplete patterns, becoming more robust to single pixel random deviations.

Moreover, a few observations while comparing input pre-processing methods
deserved to be noted. Low-pass filtering prepares an image distorted by random
noise for correct classification better than the denoising autoencoder. Gaussian
low-pass filter is a simple and powerful tool to suppress random Gaussian noise
by averaging. Our results suggest that, adversarial examples reconstructed by
denoising autoencoder are easier for neural network to classify than adversarial
examples blurred by a low-pass filter. A possible explanation may be that the
gradient sign noise splits image into regions, which are moved by the noise in the
same direction. Averaging filter that performs well on random noise has small
or almost no effect within these regions, whereas autoencoder is not limited to
simple averaging.

Also, models trained on adversarial examples are consistently more robust to
adversarial noise created by other models. Average prediction of these models
forming a committee diminishes the chance to perturb the committee by exploit-
ing the weakest model. We come to conclude, an ensemble of models trained on
adversarial noise is more resistant to adversarial noise than any single model we
have tested so far, for the MNIST dataset.

This paper also reported human accuracy when classifying images corrupted
by random and adversarial noise. From obtained results, we come to an assump-
tion, humans classify images perturbed by adversarial and by random noise with
similar accuracy, unlike DNNs. DNNs’ performance suffers greatly when classi-
fying adversarial examples. Accuracy has been measured on an inconsistent test
set. To avoid overfitting to a small set of images, every test subject was presented
with different subset of images. Hence input set variance may have biased the
results. For future work, there is an opportunity for a similar experiment: test-
ing each participant on the same image set, comparing the results to the results
already obtained by this paper’s experiments.

Acknowledgments. We would like to express our gratitude to all participants of the
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