Census of Quadrangle Groups Inclusions

Antonio Breda d’Azevedo, Domenico A. Catalano, Jan Karabas
and Roman Nedela

Abstract In a classical result of 1972 Singerman classifies the inclusions between
triangle groups. We extend the classification to a broader family of triangle and
quadrangle groups forming a particular subfamily of Fuchsian groups. With two
exceptions, each inclusion determines a finite bipartite map (hypermap) on a 2-
dimensional spherical orbifold that encodes the complete information and gives a
graphical visualisation of the inclusion. A complete description of all the inclusions
is contained in the attached tables.

1 Introduction

The search for inclusions between triangle groups, and more generally between Fuch-
sian groups, was motivated by the theory of Riemann surfaces and algebraic geom-
etry. Triangle and quadrangle groups are particular instances of Fuchsian groups,
which are finitely generated discrete subgroups of PSL(2, R), the group of confor-
mal automorphisms of the upper-half plane. Inclusions of Fuchsian groups played
an important role in the investigation of Teichmiiller spaces, see for instance Green-
berg [10, Theorem 1]. Later Singerman extended some of Greenberg’s results and
obtained a complete list of normal inclusions between Fuchsian groups having the
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same Teichmiiller space dimension. In addition, he gives all non-normal inclusions
between triangle groups [14, 15]. Another motivation for looking at inclusions of
Fuchsian groups in triangle groups comes from the connection between algebraic
curves over complex numbers, Riemann surfaces and dessins d’enfant, established
explicitly by a result of Belyi [1], see also [17]. It follows that every hypermap
endows its underlying closed orientable surface with a complex structure by lifting
the complex structure of the Riemann sphere via a Bely! function, a meromorphic
function ramified above at most three points (located at 0, 1 and o). A natural ques-
tion arises: Under which conditions do two hypermaps determine the same Riemann
surface? In certain circumstances, inclusions of Fuchsian groups in triangle groups
with spherical quotients correspond to Riemann-surface-preserving transformations
of hypermaps, see [5, 16].

The main aim of this paper is to present a complete list of finite index inclusions
P < Q, with both P and Q being either a triangle or a quadrangle group (with finite
periods). In what follows, we give an outline of the proof followed by instructions
how to read the attached census.

2 Generalised Quadrangle Groups and Constellations

Quadrangle groups. By a generalised quadrangle group we mean a Fuchsian group
Q with presentation

Q(k,l,m,n):(x,y,z,w|xk=y]=z'"=w”=xyzw:1),

where k, [, m, n are positive integers satisfying % + % + % + % < 2. Clearly, at most
one of k, [, m, n can be equal to one. Therefore a generalised quadrangle group is
either a triangle or aquadrangle group. In what follows, we assume that the parameters
k, 1, m, and n are ordered in a non-decreasing order. This is motivated by the fact
that a permutation of the parameters (or of the generators) in the above presentation
gives an isomorphic copy of Q(k, [, m, n). In particular, the group Q(1, 1, m, n) is
just the triangle group A(l, m, n). Inclusions between triangle groups were classified
by Singerman in [15] and they are listed in Appendix (see Tables 1 and 2).
Constellations. Let P = Q(p, g, r,s) and Q = Q(k, [, m, n) be two generalised
quadrangle groups and let P be a subgroup of index N in Q. We write P <y Q. The
meaning of the parameters N, p, g, r, s, k, [, m, and n will be fixed throughout the
whole paper. There is an induced action of Q on the (right) cosets of P represented by
four permutations ., 7y, 7, 7, corresponding to the images of the four generators
of Q in the natural homomorphism into the symmetric group Sym(N ). In accordance
with Lando and Zvonkin [13, Chap. 1], we call the four-tuple ¢ = [n,, 7y, 7, 7]
a constellation (or a 4-constellation) of degree N and the sequence [A,, Ay, A;, A,,]
of partitions of N, where each 1, is the cycle structure of the permutation 7, the
passport of the constellation €. The monodromy group Mon(%) of the constellation
% is the group (my, my, 7;, m,) < Sym(N). By definition, the action of Mon(%) is
transitive on the set {1, 2, ..., N} and 7wy, = 1. We write the cycle structure
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of a permutation in the exponential notation: for instance, the permutation o =
(1,2,3)(4,5)(6, 7, 8)(9) has the cycle structure [1.2.3?]. For convenience, each cycle
structure in a passport in the census is ordered in a non-decreasing order.

Two constellations ¢’ = [m, 7y, ., m,] and ¢” = [7,, 7}, 7., )] of degree N
are equivalent if there exists « € Sym(N) such that the corresponding permutations
are simultaneously conjugated by «. In particular, if P < Q and P’ < Q are two
inclusions of generalised quadrangle groups, then the associated constellations are
equivalent if and only if the subgroups P and P’ are conjugate in Q. In fact, an inclu-
sion P < Q determines a constellation ¢ = [n, 7y, 7, m,] Which corresponds
to a Q-marked hypermap & = (Q/P; xP*, yP*, zP*), where P* is the core of
P in Q and 7., m,, 7, are the actions of x P*, yP*, zP* on the N cosets of P
in Q respectively (see [3] for definitions). Replacing & by Q in [3, Theorem 19],
we have that two Q-marked hypermaps & and ¥ = (Q/K; xK*, yK*, zK*),
corresponding to the inclusions P < Q and K < Q respectively, are isomorphic
if and only if P and K are conjugate in Q, say K = P¢, for some g € Q; the
isomorphism is the conjugation morphism ¢ : Q/P — Q/K, Pq +— Q%¢8. If
Y1 :Q/P — {1,2,...,N}and ¥, : Q/K — {1,2,..., N} are the bijections to
their transversals, thena = /| 184, isthe permutation that makes the constellations
corresponding to &7 and % equivalent.

Our approach will follow the one outlined in Singerman’s classification of inclu-
sions between triangle groups [15]. The census is obtained in two steps. First, we
find all admissible sets of parameters N; p, g, r, s; k, [, m, n satisfying the Riemann-
Hurwitz equation with additional numerical constrains. Each such numerical solution
gives rise to a passport. Secondly, for each passport we either find all equivalency
classes of constellations with that passport, or we show that such a constellation does
not exist. Both steps are computer-assisted. As a byproduct, we confirm Singerman’s
classification of triangle group inclusions. More details follow.

Numerical solution. If we have an inclusion between generalised quadrangle
groups P <y Q with parameters N; p, q, r, s; k, [, m, n, then the Riemann-Hurwitz
formula holds true

2-(S+1+141)
N = f 1q S QY
2-(r+r+uta)

Our aim is to determine all possible solutions N; p,q,r,s; k,l, m,n with their
associated passports. To do this, the following two well known facts are useful:

e clements of finite order in PSL(2, R) are elliptic,
e any element g of finite order in a Fuchsian group is conjugate to a power of an
elliptic generator /; in symbols g - A.

Let a, b, c, d be the generators of P of orders p, q, r, s, respectively. If P < Q,
then one of the following four cases (up to a group isomorphism) happens:

Case 1. a, b, ¢, d - w, which implies p|n, g|n, r|n and s|n,
Case 2.a F zand b, ¢, d - w, which implies p|m and ¢|n, r|n and s|n,
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Case3.a,bt z,and ¢, d - w, which implies p|m, g|m and r|n, s|n
Cased4.at y, b+ zand ¢, d - w, which implies p|l, g|m and r|n, s|n.

Remark It might appear that the case a - x, b - y, ¢ - z and d - w is missing,
however (1) implies N = 1, thatis, P = Q in this case.

Using an argument by Singerman [14, Theorem 1], if there is a constellation
associated to one of the aforementioned cases, then it has one of the following
passports, according to the case it belongs to:

~ N N N N n n n N-— %+%+%+%)
Casel. | k%, [T, mm, —. . —. —.—. n g ’

L p q r s

[ v v m N5 on o onon N-(Z+241)
Case2. | k¥, IT,— -mm ,— - —.—. n _ 7

L p qg r s

[y ox m m M) non v
Case3. kv, T, — - —-m—w ,—-—.pn = ’

L P 4 ros

B L m

v Loxeomo o NGonon NGen)

Cased. |kv,— -1 T ,—-m = ,—-—-n = ’

L V4 q r s

where all of the fractions appearing in the above passports are integers. We adopt the
convention that factors with zero exponent in passports are vacuous (and are not to
be taken as equal to 1). For instance, % . % -n% should be interpreted as % . ’% and not
as - & - 1, which has a different meaning in a passport.

Each passport which belongs to one of the above four cases with parameters
satisfying (1) will be called admissible. Admissible passports may or may not be
passports of constellations.

By definition, the length of each cycle of 7, (resp. 7y, 7r; and mr,,) in a constellation
is a divisor of k (I, m, and n, respectively). A cycle of a permutation 7., 7, 7, or
m,, will be called singular if its length is strictly less then the order k, [ , m or
n of the corresponding generator x, y, z or w. If p # 1, that is, if P is not a
triangle group, then each admissible passport has exactly four cycle lengths that
are proper divisors of k, [, m or n. If P is a triangle group (p = 1), then by [15,
Proposition 5 and Theorem 1], Q is a triangle group as well, or equivalently &k = 1.
In this case there are exactly three singular cycles in the constellation associated
with the inclusion P < Q. The four types of passports are distinguished by their
respective distributions of the singular cycles between the four permutations.

As we already mentioned, not every admissible passport can be realised by an
inclusion P <y Q. To determine the inclusions that realise admissible passports,
we used computer algebra systems MAGMA [2] and GAP [9]. With the exception
of two families described in Table 3, each inclusion P <y Q has the parameter k
equal to 1, which means that Q is a triangle group. In this case Q can be viewed
as a group of orientation preserving automorphisms of an infinite regular hypermap
(or bipartite map) U on the hyperbolic plane with hypervertices (black vertices) of
valency /, hyperedges (white vertices) of valency m and hyperfaces of valency n
(faces of valency 2n). Then P is a group of automorphisms of U and the quotient
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U/P is a hypermap on the Riemann sphere (P is a Fuchsian group of signature
0; {p, q,r, s})), more precisely, the quotient hypermap lies on a spherical orbifold
with exactly 4 or 3 singular points corresponding to the singular cycles of the con-
stellation associated with the inclusion P < Q.

Dessins d’enfant. When Q is a triangle group, kK = 1 and therefore 7, = 1. Then
the inclusion P <y Q gives rise to a 4-constellation % that can be reduced to the
3-constellation [y, 7, ,,]. This can be regarded as a spherical hypermap 5 on
the set {1, 2, ..., N}, whose hypervertices and hyperedges are the orbits of 7, and
7., respectively. The hyperfaces of .7 are the orbits of =,,.

There exists a regular branched covering from the universal infinite hypermap
U = U(l, m, n) on the hyperbolic plane onto the spherical hypermap U/ P either with
exactly four branched points with indexes p, g, r, s, or with exactly three branched
points with indexes ¢, r, s, located at some hypervertices, hyperedges or hyperfaces.
This hypermap (on the spherical orbifold) with the additional information about
the branched points and their respective indices will be called a dessin d’enfant or
simply a dessin. It is more precise to talk about a hypermap on an orbifold with
signature (0; {p, ¢, r, s}), or with signature (0; {g, r, s}) when p = 1, rather than
simply talking of a “hypermap”. There is a one-to-one correspondence between the
singular cycles of m,, 7, and m,, and the branched points of the associated dessin.

Recall that the monodromy group Mon(%) of the constellation associated to
an inclusion P <y Q acts transitively on {1,2, ..., N}. Moreover, Mon(%) acts
regularly on {1, 2, ..., N} if and only if P <y Q is a normal inclusion. In this case
the associated dessin is also called regular.

Families of inclusions. The inclusions may form infinite families parametrised by
one, two or three integer parameters in the signatures (corresponding to the number
of zero exponents in the factors of the respective passport). All the inclusions of an
infinite family share the same (non-parametrised) passport. Note that each member
of an infinite family is represented by the same hypermap in the census. An inclusion
not belonging to an infinite family is called sporadic.

Although there are infinitely many inclusions, the number of admissible passports
is finite. Each admissible passport gives rise to a finite number of constellations (or
dessins), since the index N of any inclusion is finite and bounded by 84 (the Riemann-
Hurwitz bound). Thus, the identification of all dessins associated to quadrangle group
inclusions is a finite problem.

More details (and proofs) on the classification of inclusions of generalised quad-
rangle groups will be discussed in the forthcoming paper [6].

3 How to Read the Census

The attached tables contain the complete list of inclusions P <y Q between gener-
alised quadrangle groups. Two inclusions P <y Q and P’ <y Q are distinguished
up to conjugation in Q; if P’ = P$ forsome g € Q,then P <y Q and P’ <y Q
give equivalent constellations and so the two inclusions are essentially the same.
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Each conjugacy class of inclusions P <y Q of generalised quadrangle groups
forms one entry in the census. Excluding Table 3 (explained below), the correspond-
ing row displays the following data:

o the associated passport A = [Ay, A, A,,] (up to a permutation of its entries),

e the number of realisations, which is equal to the number of non-conjugate sub-
groups of Q isomorphic to P,

e the non-isomorphic dessins with passport A up to mirror images,

e the monodromy group, or a structure description of the monodromy group, or the
prime factor decomposition of its size [8, 9].

If two dessins form a chiral pair, only one member of the pair is depicted. Thus the
number of the depicted dessins may not match the displayed number of realisations
in the row.

The three cycle structures in a passport describe the following:

1. first item in a passport gives the sequence of hypervertex valencies (degrees of
black vertices),

2. the second item gives the sequence of hyperedge valencies (degrees of white
vertices), and

3. the third item gives the sequence of hyperface valencies.

However, there are 6 possible passports formed by permuting the entries of any
given passport and therefore, each dessin & may be in principle associated with 5
(or 11, if & is chiral) additional non-isomorphic dessins. There is no essential reason
to prefer any particular choice of one of these dessins for the census. The criteria
we took into account were “aesthetic”’—to indicate some symmetry of a dessin—or
“space constraint”—a dual image of a dessin sometimes fits better into the reserved
space—or we chose a dessin that was “triangulation resembling”.

In Table 3 (when Q is not a triangle group) the corresponding row displays:

o the associated passport A = [Ay, Ay, A;, A,,] (up to a permutation of its entries),

e the associated constellation (since there is only one),

e an alternative picture based on A,-marked hypermaps [4]; these have blue, green
and white vertices whose valencies (number of incidences of pairs of blue and
green coloured edges (b, g), in counter-clockwise order) give the first, the second
and the third entry of the passport (the last entry corresponds to face-valencies),

e the monodromy group.

The entries of the census are organised into six tables. In each table, the inclusions
(entries) are ordered by their indices in a non-decreasing order. The first two tables
(Tables 1 and 2) include the case of normal and non-normal inclusions of triangle
groups classified by Singerman [15]. Table 3 contains the two families of inclusions
between (pure) quadrangle groups, while Table4 gives a classification of normal
inclusions of quadrangle groups in triangle groups. Table 5 lists the infinite families
of non-normal inclusions of quadrangle groups in triangle groups. The longest table
is Table 6, which contains the classification of the sporadic inclusions of quadrangle
groups in triangle groups.
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A lot of information on inclusions can be dug from the tables. For instance:

¢ the indices of the inclusions cover all the integers from 2 to 22, additional integers
covered are 24, 26, 27, 28, 29, 30, 36, 37, 44, 45, 52, 60;

e the largest possible index is 60, realised by six inclusions of Q(7,7,7,7) in
AR,3,7);

e the largest number of non-conjugate realisations (16) is achieved by the inclusion
02,3,7,7 < A2, 3,7) of index 44,

o the number of realisations of an inclusion varies from 1 to 16. There are inclusions
such that each of their realisations is chiral, such that each of their realisation is
reflexible, and those that have both chiral and reflexible realisations.

For the sake of completeness, in Table 7 we collect all the solutions of (1) with
the respective admissible passports for which there is no inclusion. Additional infor-
mation on the inclusions of the generalised quadrangle groups can be found at the
web page [7].
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Appendix

Triangle Groups Inclusions

See Tables 1 and 2.

Table 1 Normal inclusions of triangle groups

|Labe1 Inclusion Passport Realisation(s)|
(@ A(m,n,n)<2A(2,2m,n) [2,2,1°] 1 realisation

N Cz

()  A(n,n,n)<3A(3,3,n) [3,3,1°] 1 realisation

(c) A(n,n,n)<A(2,3,2n) [2°,2°,3%] 1 realisation

n

& S5 = PSL(2,2)
n n
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Table 2 Non-normal inclusions of triangle groups

| Label

Inclusion Passport Realisation(s) |

(A)

A(7,7,7) <24 A(2,3,7) [13.73,212,38] 1 realisation

(B)

[12.7,1.24,33] 1 realisation

PSL(2.8)

©)

[1.7,2%,12.3?] 1 realisation

PSL(3,2)

D)

A(4,8,8) <12 A(2,3,8) [17.2.8,2°,3%] 1 realisation

G50-54C 05D 94 (C2:C3): G

35

(continued)
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Table 2 (continued)
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[Label Inclusion Passport

Realisation(s)|

(E) A(3,8,8) <10A(2,3,8) [1°.8,2°,1.37]

1 realisation

(F)

% (C2:C2) 1 C3) 1 Cr) 1 G

1 realisation

(G) A(4,4,5) <6 A(2,4,5) [1.5,2°,1°.4]

¢,
A\ S5 = PGL(2,5)
5

1 realisation

(H) A(n,4n,4n) <o A(2,3,4n) [12.4,23,37]

n
4n @0 @' 542 PGL(2,3)

1 realisation

@) A(n,2n,2n) <4 A(2,4,2n) [12.2,2% 4]

n
2ne—0-e-0-e2n D,

1 realisation

a) AQG,n,3n) <4 A(2,3,3n) [1.3,2%,13]

n
@—0—03’1 Ay 22 PSL(2,3)

1 realisation

(K) A(2,n,2n) <3 A(2,3,2n) [1.2,12,3]

n
20-@-0-®2n  S3=PSL(2,2)

1 realisation
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Normal Inclusions of Quadrangle Groups

See Tables 3 and 4.

Table 3 Inclusions of quadrangle groups in quadrangle groups

[Label Inclusion Passport Constellation|
Q) Q(m,m,n,n) <1, Q(2,2,m,n) [1,17,2,2] [0,0,(12),(12)]
7110—%—‘/71 ey
Q) Q(n,n,mn)<40(2,2,2,m) I,222227]  [0,(12)(34),(13)24),(14)(23)]

G xCy

n n

Table 4 Infinite families of normal inclusions of quadrangle groups in triangle groups

|Label Inclusion Passport Realisation(s)|
(1)  Q(,m,n,n) < A(21,2m,n) [2,2,1%] 1 realisation

® G
xn (a) of Table 1A for [ = 1.

(f2)  Q(m,n,n,n)<3A(3,3m,n) [3,3,17] 1 realisation

me G
v (b) of Table 1A form = 1.

(f3)  O(n,n,n,n) <14 A(4,4,n) [4,4,1%] 1 realisation

P -

mym,n,n) <4 ,2m,z2n , 27, realisation
f4) O A(2.2m,2n) [22,22.2%] 1 realisati

O
n
xm w n C2 % C2
O

(f5)  Q(n,n,n,n) <gA(2,4,2n) [2%,2%,4%] 1 realisation

=

xn Q Q D4

3

(f6)  Q(n,n,n,n)<12A(2,3,3n) [3%,2°,3* 1 realisation

Ag

37
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Non-normal Inclusions of Quadrangle Groups

See Tables 5 and 6.

Table S5 Infinite families of non-normal inclusions of quadrangle groups in triangle groups

[Label Inclusion Passport Realisation(s)|
(F1) 0(2,m,n,2n) <3 A(2,3m,2n) [1.2,1.2,3] 1 realisation
n S3
xm 2 o (K) of Table 1B form = 1.
(F2)  Q(m,2m,n,2n) <3 A(3,2m,2n) [1.2,1.2,3] 1 realisation
) nom ) S3
MOOEVI Ky of Table 1B form = 1.
(F3) 00, mon,m) <3 A(3,4.2n)  [4,12.2,13] | realisation
2n
2)1X§” 54
(F4) 0(2,2,n,3n) <4 A(2,4,3n) [4,17.2,1.3] 1 realisation
2@
2 S
(F5) 0(2,2,3,n) <4 A(2,3,4n) [4,17.2,1.3] 1 realisation
2
2@ S4
(F6)  Q(m,n,2n,2n) <4 A(2,4m,2n) [12.2,2° 4] 1 realisation
n Dy
xm 2ne—0-e—0-e2n
(I) of Table 1B form = 1.
(F7) 0(2,2,n,n) <4 A(2,4,2n) [12.2,22 4] 1 realisation
2 n n 2 Dy
(F8) 0(3,3,n,3n) <4 A(3,3,3n) [1.3,1.3,1.3] 1 realisation
3®7@—03n As
(F9) 0(3,3,n,n) <4 A(3,3,2n) [1.3,2%,1.3] 1 realisation
n
n@—@—ﬁ Ay
(F10) Q(m, 3m,n,3n) <4 A(2,3m,3n) [1.3,22,1.3] 1 realisation
u@ “ ’71 3n A4
(J) of Table 1B form = 1.
(FID)  Q(2n,3n,3n) <5 A(2,5,3n) |5, 1.22,123] I realisation
.
%)

(continued)
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Table 5 (continued)

39

Label Inclusion Passport Realisation(s)
(F12) 0(2,3,3,n) <5 A(2,3,5n) [5,1.22,12.3] 1 realisation
.9 P As
(F13)  Q(2,n,n,2n) <5 A(2,5,2n)  [5,1.2%,1.27] 1 realisation

Xn
o@ ®2 Ds
(F14)  Q(2,4,n,4n) <5 A(2,4,4n)  [1.4,1.2%,1.4] 2 realisations
2@
o) C5 ZC4
:” @ chiral
(F15)  Q(2,4,2n,3n) <5 A(2,4,6n)  [1.4,1.2%,2.3] 1 realisation
3n 5
Zn Ss
(F16)  Q(n,3n,3n,3n) <6 A(2,6,3n) [6,2°,1°.3] 1 realisation
Xn ﬁ
'@ ‘ $3x G5
(F17) 0(3,3,3,n) < A(2,3,6n) [6,2°,1°.3] 1 realisation
’o ‘” S3 % C3
(F18)  0(2,2,n,5n) <¢ A(2,3,5n)  [1.5,12.2%,37] 1 realisation
2
5 -
2
(F19)  Q(n,n,2n,2n) <¢ A(2,6,2n)  [6,2°,1%.27] 1 realisation
xXn
T -
(F20)  Q(2,2,n,2n) <¢ A(2,3,4n)  [2.4,17.2%,37] 1 realisation
x2n,©
2 S4

(continued)
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Table 5 (continued)

[Label Inclusion Passport Realisation(s)|
(F21)  Q(n,n,2n,2n) <¢ A(3,3,2n)  [3%,12.2%,37] 1 realisation
2 o
F22)  00.%.mn) <4 A(2,3,3n)ﬂ 32172237 1 realisation
2o A
(F23)  Q(5,n,4n 4n) 6 (2 5,4n)  [1.5,2°1%.4] 1 realisation

(G) of Table 1B forn = 1.

(F24)  Q(4,4,n,5n) <g (2 4,5n)  [1.5,2°,1°.4] 1 realisation

(G) of Table 1B forn = 1.

S5n

(F25)  Q(4,4,mn) <¢ A(2,4,3n)  [12.4,25,37] 1 realisation

4

é

(F26)  Q(5,2n,3n,6n) <s A(2,5,6n) [1.5,2°,1.2.3] 1 realisation

x
¥

5

Se

(F27)  Q(2,2n,3n,6n) < A(2,4,6n) [2.4,23,1.2.3] 1 realisation

x2n

S32 N Cz

LD

(F28)  0Q(2,3,1,6n) <7 A(2,3,6n)  [1.6,1.25,1.3%] 2 realisations

n
o c. (C7:G3):C
chiral

®2
(F29)  Q(2,3,2n,5n) <7 A( 2,3 10n) [2.5,1.2°,1.37] 1 realisation

(continued)
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Table 5 (continued)

[Label Inclusion Passport Realisation(s)|
(F30) Q(2,3,3n,4n) <7 A(2,3,12n) [3.4,1.2°,1.3%] 1 realisation

(F31)  Q(n,2n,4n,4n) <g A(2,4,4n [42,2% 17.2.4] 1 realisation

xnQ (C4xC):Ch): Cy

(F32)  0Q(3,3,n,7n) <g A(2,3,7n)  [1.7,2%,1°. 32] 1 realisation

PSL(3,2)
(C) of Table 1B forn =1.

(F33) 0(3,3,n,3n) <g A(2,3,6n) [2.6,2%17.37] 1 realisation

N e

(F34) 0(3,3,n,n) <3 A(2,3,4n) [42,2%17.37] 1 realisation

@@

(F35)  Q(n,n,3n,3n) <g A(2,4,3n) [4%,2%,1%.3%] 1 realisation
S -
(F36)  Q(2,n,7n,7n) <9 A(2,3,7n)  [12.7,1.2%3°] 1 realisation

A\ ﬂ PSL(2,8)

n (B) of Table 1B forn = 1.

(F37)  Q(2,n,3n,6n) <o A(2,3,6n) [1.2.6,1.2%,3°] 1 realisation

1,
@' (C3*:G3): Gy

(F38) 0(2,3n,5n,15n) <9 A(2,3,15n) [1.3.5,12%.3°] 1 realisation

O
5” @ @. Ag
O

3n

o) O
@

(continued)
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Table 5 (continued)
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[Label Inclusion Passport

Realisation(s)|

(F39) Q(2,3n,4n,6n) <¢ A(2,3,12n) [2.3.4,1.2% 3]

4,1 (G % (C*:C2)) 1 C2) 1 G3) 1 G

1 realisation

(F40)  Q(3,n,8n,8n) <19 A(2,3,8n) [1%.8,2°,1.37]

Ag : C; =2 PGL(2,9)
(E) of Table 1B forn = 1.

1 realisation

1 realisation

(F42) Q(3,4n,5n,20n) <19 A(2,3,20n) [1.3°,2°,1.4.5]

O
5 pews
Sio
4

1 realisation

(F43) Q(3,6m,10n,15n) <10 A(2,3,30n) [2.3.5,2°,1.3°]

O
./

1 realisation

(F44)  Q(n,9n,97,9n) <15 A(2,3,9n) [1°.9,2°,3%)

(C3*:Cr) x C3) : Ca) : G
(F) of Table 1B forn = 1.

1 realisation

(F45)  Q(n,4n,8n,8n) <12 A(2,3,8n) [1%.2.8,25,3%]

(C2:G3):

(D) of Table 1B forn = 1.

1 realisation

(F46)

1 realisation

(continued)
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[Label Inclusion Passport Realisation(s)|
(F47)  Q(n,2n,3n,6n) <1 A(2,3,6n) [1.2.3.6,2° 3% 1 realisation
(F48)  Q(n,m,2n,2n) <12 A(2,3,4n)  [2.4%,25,37]  realisation

2n

Table 6 Sporadic non-normal inclusions of quadrangle groups in triangle groups. (There are no
sporadic normal inclusions)

[Label Inclusion Passport Realisation(s)|
) 002,2,2,4) <5 A(2,4,5) 5, 132,14] 1 realisation
2a
% s
S2) 003,3,3,3) <5 A(3,3,5) [5,123,12.3] 1 realisation
ELVEED
g As
(S3) 003,3,4,4) <s AB,4,4)  [14,14,12.3] | realisation
4® %‘ 4 S5
(S4) 0(3,3,3,5) <¢ A(3,3,5)  [1°.3,1.5,37] 1 realisation
3
3 A
(S5) 0(2,3,3,3) <6 A(3,3,4) [1°.3,2.4,37] 1 realisation
3
3 A
(S6) 0(2,2,4,4) <c A(2,4,6)  [172.4,12.2% 6] 2 realisations
! 2
2 4 Ss 40—0—3—0—04 Sy xC
5 2

(continued)
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Table 6 (continued)

[Label Inclusion Passport Realisation(s)|
(S7) 0(2,2,5,5) <¢ A(2,5,5)  [1.5,12.22,1.5] 3 realisations
: E M chiral
(S8) 0(2,2,2,5) <¢ A(2,4,5)  [1.5,12.22,2.4] 2 realisations
5
Ag
Q@é chiral
(S9) 0(4,4,4,4) <4 A(3,4,4) [17.4,1%.4,37] 2 realisations
(S10) 0(2,2,2,3) <7 A( 2,3,7 [7, 13 2% 1. 32 2 realisations
PSL(3,2)
chiral
(S11) [7,1.2°,1° 4] 1 realisation
(S12) [1.6,1.2° 12.5] 3 realisations
S7
chiral
S13)  003.3,5.5)<7A(3,3,5) 125,135,137 1 realisation
S14)  002,2,4,6) <7 A(2,4,6) [1.6,1.25,124] & realisations
4 .0 P2 S7 4 Q) 2 S7
%®6  chiral ,0 >  chiral

(continued)
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Table 6 (continued)

[Label Inclusion Passport Realisation(s)|
(S15) 0(2,3,3,4) <7 A(3,3,4) [1.2.4,1.3°,1.3%] 4 realisations

PSL(3,2) PSL(3,2) PSL(3,2) chiral
(S16) Q(4,4,4,4) <g A(2,4,8)  [8,2%1%.4] 1 realisation
C42 ICz
(S17) 0(5,5,5,7) <g A(2,5,7)  [1.7,2%,1°.5] 1 realisation

5
5§:> Asg
5

(S18) 0(2,2,3,3) <g A(2,3,8)  [8,1%2.2%,1%2.3%] 4 realisations

PSL(3,2):C,  PSL(3,2):C,  GL(2,3) chiral

(S19) 0(2,2,6,6) <g A(2,4,6)  [17.6,17.23 47] 3 realisations
@Z\ psL.2) o (D% ) €):03):C2) s
chiral
(S20) 0(2,4,4,7) <g A(2,4,7)  [12.2.4,2% 1.7] 2 realisations
4
% )% PSL(3,2)
chiral
4
(S21) 0(2,3,4,4) <g A(2,4,6)  [17.2.4,2% 2.6] 1 realisation
4
@2 (G :6):0):
4
(S22) 0(3,3,3,3) <g A(3,3,4) [42 12.32,12.3%] 3 realisations
PSL(3 2) PSL(3,2) SL(Z 3)

(continued)
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Table 6 (continued)

|Label Inclusion Passport Realisation(s) |
(823) 0(6,6,6,6) <g A(2,6,6) [12.6,2%,1%.6] 2 realisations

o) ® 6
“ ﬂ PSL(3,2) : C> oo.oo (DyxCy):Cr):C3) : Gy

6 6
6
(S24) 0(2,2,2,8) <9 A(2,3,8) [1.8, 13.23,33] 2 realisations
(C32:04):C3): &y
chiral
(S25) 0(2,3,3,3) <9 A(2,3,9) 9, 1.247 13.32] 2 realisations
PSL(2,8) : C3
chiral
(S26) 0(3,3,3,4) <9 A(3,3,4) [13.37,1.4%,3%] 1 realisation

(S27) , 4.7, ,4, [1.47,1.2%1%.7) 4 realisations
Ag
chiral
(S528) 2,3,4,6) <9 A(2,4,6) [1 47 1. 24 1.2.6] 4 realisations
m chiral chiral
(S29)  0(3,3,3,3) <10A(2,3,10)  [10,2°,1%.37] 1 realisation

(S30) 1 realisation

(continued)
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Table 6 (continued)

[Label

Inclusion Passport Realisation(s)|

(S31i)

0(2,2,4,4) <10 A(2,4,5)  [5°,2°,1°.2°.4 2 realisations

(S31ii)

.o@ ®2 (C242A5)2C2

0(2,2,4,4) <10 A(2,4,5) [5°, 12 24 12.47] 5 realisations

0(2,2,3,9) <10A(2,3,9) [1.9,12.2%1.3%] 6 realisations

(S32)
Ajg chiral Ajp chiral Ajq chiral
(S33) 0(2,2,3,4) <10 A(2,3,8)  [2.8,12.2%,1.39) 3 realisations
) - (S 2
° chiral
(S34) 0(4,4,8,8) <10 A(2,4,8) [17.4°,2°1%.§] 3 realisations
(G Cs):Ch):
chiral
(835) 4 realisations

Ay chiral

(continued)
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Table 6 (continued)

|Label Inclusion Passport Realisation(s) |
(S36) 0(2,4,4,6) <10 A(2,4,6) [17.4%,2°,1.3.6] 3 realisations

A5 Cz

(4s-C2): G2 chiral

(S37) 0(3,3,4,4) <10 A(2,4,6) [1°. 42 2°,22.6] 1 realisation

W‘“‘h S5 x Cs

(S38)  0(2,3,3,10) <11 A(2,3,10) [1.10,1.2°,1%.3°] 6 realisations

S11 chiral S chiral S11 chiral
(S39) 0(2,2,4,5) <11 A(2,4,5) [1.5%,1.2°,1.2.4°) 5 realisations
S1i Sty chiral S chiral
(S40) 0(4,4,4,4) <1p A(2,4,6)  [6%,25,1%.47] 2 realisations

(841 1 realisation

(S42)  0(3,3,3,11) <12 A(2,3,11) [1.11,2°,13.3%] 2 realisations

chiral

(continued)
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| Label Inclusion Passport Realisation(s) |
(843) 0(3,3,3,5) <12 A(2,3,10) [2.10,26, 13.33] 1 realisation
(S44)  0(3,3,3,3) <12A(2,3,9) [3.9,2°,1°.37)] 1 realisation
(((C:C) x C3): Ca) : G5
(S45) 0(2,3,3,3) <12 A(2,3,8)  [4.8,20,13.3%] 1 realisation
(S46) 1°.3.6,20,43 1 realisation
(S471) 3 realisations
(S47ii) [12. 52 12.2°,4°] 6 realisations
@ PSL(2,11)
(C° 1 Ag): C2 (C° : Ag) : Ca
chiral chiral

(continued)
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Table 6 (continued)

[Label Inclusion Passport Realisation(s)|
(S48)  Q(2,2,10,10) <12 A(2,3,10) [1%.10,1°.2°,3%] 4 realisations
PSL(2,11): C, PSL(2,11): C, (G’ : As) : G, chiral
(S49) 0(2,2,4,4) <12 A(2,3,8)  [2°.8,1%2.2° 3% 1 realisation

(C42 . C3) . Cz
(S50) 0(3,3,6,6) <12 A(2,4,6)  [4°,2°,1%.2%.6] 1 realisation
XA v
(S51) 0(5,5,5,5) <12 A(2,5,5) [17.5%,2°,1%.5%] 5 realisations
PSL(2,11)
Czs :Ag
chiral
(852) Q(2,3,11,11) <13 A(2,3,11) [1%.11,1.2%,1.3%] 6 realisations
A3 chiral A3 chiral A3 chiral
(S53)  0(2,3,5,10) <13 A(2,3,10) [1.2.10,1.2°,1.3%] 6 realisations
A3 chiral Ay chiral A3 chiral

(continued)
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[Label Inclusion Passport Realisation(s)]

Az

chiral

Az

chiral

(S54) 0(2,3,3,9) <13 A(2,3,9) [1.3.9,1.2°1.3%] 4 realisations

Az

chiral

[1.4.8,1.2°1.3%] 4 realisations

PSL(3,2) chiral G,3 - PSL(3,2) chiral Cy* - PSL(3,2) chiral

(S56) 0(2,2,3,3) <14 A(2,3,7)  [77,17.25,12.3%] 9 realisations

PSL(2,13):C, PSL(2,13):C, (G2 : 1) : C3) : G5 chiral

(S57)  0(3,3,12,12) <14 A(2,3,12) [12.12,27,17.3%] 4 realisations

(S58)  0(3,3,5,5) <14 A(2,3,10) [22.10,27,12.3%] 1 realisation

(S59)

PSL(3,2): G,

2 realisations

(continued)
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Table 6 (continued)

Label Inclusion Passport Realisation(s)
(S60) 0(4,4,6,6) <14 A(2,4,6) [17.67,27,12.4%] 5 realisations

PSL(2,13): G, 645120 chiral 645120 chiral
(S61) 0(2,2,2,7) <15 A(2,3,7)  [1.77,1°.25,3] 3 realisations

Ais

chiral

(S62) 1 realisation

(S63) 2 realisations

(S64)  0(2,5,5,10) <15 A(2,3,10) [1.2%.10,1.27,3°] 1 realisation

(S65) 0(2,2,4,8) <15 A(2,3,8) [1.2.4.8,1.27,3°] 2 realisations

((((C5%: C4) X C5) : C4) : C3) : Gy
chiral

(continued)
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Table 6 (continued)

[Label Inclusion Passport Realisation(s)|
(S66) 0(3,3,3,3) <16 A(2,3,8)  [8%,28,1%.3%] 3 realisations

GL(2,3) PSL(3.2):C, PSL(3.2):C,
(S67) 0(6,6,6,6) <15 A(2,4,6)  [4%,2%,1%.67] 2 realisations

(PSL(3,2) : C3) x &y (D4 xCp):Cy) :C3):Cr) : Gy
(S68) Q(3,13,13,13) <16 A(2,3,13) [1°.13,2% 1.3°] 2 realisations

(S69) 0(2,4,4,5) <16 A(2,4,5) [1.5°,2812.2.45] 3 realisations

(G A5): Gy (Cy* : As) : C, chiral
(S70) Q(3,6,12,12)<16 A(2,3,12) [12.2.12,28,1.35] 3 realisations

214.30.53.72.11.13

chiral

(S71) 0(3,3,3,9) <16 A(2,3,9)  [1.3%.9,28,1.3%] 1 realisation

(continued)
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Table 6 (continued)

|Label Inclusion Passport Realisation(s) |

(S72) 0(2,3,3,8) <17 A(2,3,8)  [17.3°,1.2%,1.8°] 9 realisations

A

chiral

Aj7 chiral
[12.5%,1.2%,1.4% 8 realisations

(S73)

chiral

1 realisation

(S75) 0(3,3,3,4) <13 A(2,3,8) [2.8%,2°,1°.3%] 1 realisation

(continued)
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Table 6 (continued)

[Label Inclusion Passport Realisation(s)|
(S76) Q(4,12,12,12) <13 A(2,3,12) [1°.3.12,27,3°%] 1 realisation
(877) 1 realisation
(S78) 0(2,2,8,8) <13 A(2,3,8)  [17.8%,1%2.28 39] 8 realisations

PSL(2,17)

O O
212,33 chiral 212 33 chiral

(S79)

0(6,6,12,12) <13 A(2,3,12) [17.2°.12,2°,39] 1 realisation

(Cﬁz : C3) : Cz

(continued)
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Table 6 (continued)

|Label Inclusion Passport Realisation(s)
(S80) 0(2,3,4,8) <19 A(2,3,8)  [1.2.8%,1.27,1.3%] 10 realisations

S19 chiral S19 chiral S19 chiral

(S81) 0(4,4,4,4) <50 A(2,4,5)  [5%,219)1%.4%] 3 realisations

(C*:Cs): Ag X Cy 21135
(S82) 0(3,3,9,9) <20 A(2,3,9)  [17.9%,21912.35] 9 realisations

O
216,34 52 7 chiral 216 34 52 7 chiral 21634 52 7 chiral

(continued)
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Table 6 (continued)

| Label Inclusion Passport Realisation(s) |
(S83) 0(3,3,4,4) <0 A(2,3,8)  [2°.8%,219/12.35] 4 realisations

PGL(2,9) Ao X Cs Ato % C; chiral
(S84) 0(2,3,3,3) <21 A(2,3,7)  [7°,1.210,13.39] 4 realisations

Az

chiral

(S85) 2 realisations

Az

chiral

(continued)
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Table 6 (continued)

[Label

Inclusion Passport Realisation(s) |

(S86)

0(2,2,3,7) <2 A(2,3,7)  [1.7°,12.219.1.37] 13 realisations

chiral

chiral

Ay, chiral Ay, chiral Ay, chiral
(S87) 0(4,4,5,5) <2 A(2,4,5) [17.5%21112.45] 5 realisations
QG x4 > @ o ¢'> 4D D gz
2183452 711 chiral 2'%.3%.52.7.11 chiral
(S88) 0(5,5,5,5) <24 A(2,4,5)  [17.5%,212 49] 5 realisations

. V st

(Gy° : Ag) : C, chiral PSL(2,11):C,

(continued)
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|Label Inclusion Passport Realisation(s)|

O O
(G :A5): Gy 2143511 2143511

(S89) Q(10,10,10,10) <24 A(2,3,10) [1*.10%,21%,33] 3 realisations

(((C4 X Cz) :C4) : C3) Gy

(S90)  0(2,4,8,8) <4 A(2,3,8) [12.2.4.8%,212.35] 1 realisation

(SO1)  Q(4,4,4,4) <24 A(2,3,8) [2°.8%,212,3%] 1 realisation

(S92)  0(3,3,8,8) <26 A(2,3,8) [12.85,21,12.3%] 5 realisations

PSL(2,25): Cy 2223552 7.11.13 chiral ~ 2%2.35.52.7.11.13 chiral

223.313.56.73.112.132.17.19.23

chiral

(S93)  0(2,8,8,8) <27 A(1,2,3,8) [1°.85,1.213,3°] 2 realisations

(continued)
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[Label Inclusion Passport

Realisation(s)|

(S94)  0(3,3,3,3) < A(2,3,7) [1%,2™173F]

% chinal

5 realisations

PSL(2,13)

G- PSL(3,2)

(S95) 0(3,4,8,8) <23 A(2,3,8) [17.2.87,21% 1.37]

2 realisations

(S96) 0(2,3,3,7) <29 A(2,3,7)  [1.7%,1.21%12.37]

14 realisations

(continued)
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Table 6 (continued)

| Label Inclusion Passport Realisation(s) |

(S97)

(S98) 0(4,4,8,8) <30 A(2,3,8)  [17.2%.8°,215 319] 3 realisations

(continued)
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Table 6 (continued)

|Label Inclusion Passport Realisation(s)|
(S99) 0(8,8,8,8) <36 A(2,3,8)  [1%.8%218 317 4 realisations

(continued)
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[12.75,222,12.31%] 16 realisations

- chiral
<44 A(

2,3,7)

[Label

(S102)  0(3,3,7,7)

inued)
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Table 6 (continued)

| Label Inclusion Passport Realisation(s) |

2393954 73.112.13.17.19 chiral 23939 5% 73 112.13.17.19 chiral

239.39.54.73.11‘13.17.19chiral 239.39.54.73.112.13.17.19hiral
(S103)  0Q(2,7,7,7) <45 A(2,3,7)  [1°.7%,1.222, 3] 2 realisations

(continued)
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Table 6 (continued)

[Label Inclusion Passport Realisation(s)|
(S104)  0Q(3,7,7,7) <50 A(2,3,7)  [1°.77,2°%,1.317] 1 realisation

(S105)  Q(7,7,7,7) <e0 A(2,3,7)  [1%.78,2%0 3%0] 6 realisations

PSL(2,29)

PSL(2,29) 238.30.53.72.11.13 chiral

(continued)
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Numerical Solutions with No Corresponding Inclusions

See Table 7.

Table 7 Admissible passports for which there is no inclusion (Forbidden passports)

Numerical solution Passport Notes

(m,3m,n,n) <4 [1.3,22,22] m=1: AQG,n,n) ¢
(1,2,3m,2n) A(2,3,2n)
(n,3n,3n,3n) <¢ [13.3,32,3%]

(1,3,3,3n)

2,n,4n,4n) <¢ (1,2,4, 4n)

[12.4,23,2.4]

(4,4,n,2n) <¢ (1,2, 4, 4n)

[12.4,23,2.4]

(1,2n,3n,6n) <¢ (1,2,3, 6n)

[1.2.3,23,3%)

(5,n,n,n) <¢ (1,2,5,2n)

[1.5,23,23]

(2,n,n,n) <6 (1,2,4,2n)

[23,23,2.4]

(n,5n,5n,5n) <g
(1,2,4,5n)

[13.5,24, 4%]

n=1: A(5,5.5 ¢
A2,4,5)

(3,3,3n,5n) <g (1,2,3,15n)

[3.5,2%,12.32)

(2n, 3n, 3n, 6n) <g
(1,2,4,6n)

[1.22.3,24 42

(2,n,n,4n) <9 (1,2,3,4n)

[1.4%,1.2%,3%]

(2,2n, 5n, 5n) <9
(1, 2,3, 10n)

[22.5,1.2%,33]

(2,n,n,n) <9 (1,2,3,3n)

[33,1.24,3%]

(3,n,2n,6n) <o (1,2, 3, 6n)

[1.3.6,2°,1.3%]

(3,mn,3n,3n) <19 (1,2, 3, 6n)

[22.6,25,1.3%]

(3,n,n,2n) <19 (1,2,3,4n)

[2.42,2°,1.3%)

(3,3n,4n,4n) <19

[32.4,25,1.3%]

1,2,3,12n)
(3n, n, 21n,21n) <12 [12.3.7,2°, 3%
1,2,3,21n)
(n,3n, 120, 12n) <12 [12.4.6,2°, 3%
(1,2,3,12n)
(2n, Tn, Tn, 14n) <12 [1.22.7,20, 3%
(1,2,3, 14n)
(4n, 5n, 101, 20n) <12 [1.2.4.5,25, 3%
1,2,3,20n)
(3n, 5n,5n,15n) <12 [1.32.5,20, 3%
1,2,3,15n)

(3n, 3n,4n, 12n) <12
(1,2, 3, 12n)

[1.3.4%2,20 3%
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Table 7 (continued)

A.B. d’Azevedo et al.

Numerical solution Passport Notes
(n,3n,3n,3n) <12 [23.6,2°,34]

1,2,3,6n)

(6n,10n, 151, 15n) <1» [22.3.5,2°0, 3%

1,2,3,30n)

(3n, 4n, 4n, 6n) <in [2.32.4,20, 3%

1,2,3,12n)

(3,5,5,5) <3 (1,2,5,6) [2.6,2%, 13.5]

(2,2,6,6) <g (1,2,4,6) [12.6, 24,22 .4]

(5.5,5,5) <9 (1,3,3,5) [145,33,3%]

(2,4,4,4) <9 (1,3,3,4)

[33,33,13.2.4]

2,7,7,7) <10 (1,2,4,7)

[2.4%2,25,13.7]

(2,3,6,6) <10 (1,2,4,6)

[2.4%2,25,12.2.6]

(8,8,8,8) <12 (1,2,4,8)

[14.8, 20, 43]

(1,3,7,7) <16 (1,2,3,7)

[12.72,28,1.39]

AB,7,7) £ AQ2,3,7)

(3,5.5,5) <16 (1,2,3,10)

[23.10,28,1.3°]

(2,3,4,4) <16 (1,2,3,8)

[22.4.8,28,1.39]

(2,5,5,5) <15 (1,2,4,5)

[2.4%,2°,13.5%]

(2,2,8,8) <13 (1,2,3,8)

[12.42.8,2°, 3%

(5,5,5,5) <18 (1, 2,3, 10)

[24.10,2°, 3%]

(2,4,4,4) <18 (1,2,3,8)

[23.4.8,29, 3]

(2,4,4,8) <21 (1,2,3,8)

[1.22.82,1.210 37)

(2,3,8,8) < (1,2,3,8)

[12.4.82,211 1.37)

(3,4,4,4) <2 (1,2,3,8)

[23.8%2, 211 1.37]

(3,9,9,9) <04 (1,2,3,9)

[13.3.92,212 3%

References

1.

2.

3.

G. V. Belyi: Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat.
43 (1979), no. 2, 267-276, 479.

W. Bosma, J. Cannon and C. Playoust: The Magma algebra system. 1. The user language, J.
Symbolic Comput., 24 (1997), 235-265.

A. Breda: A theory of restricted regularity of hypermaps, J. Korean Math. Soc. 43 (2006), No.
5,991-1018.

A. Breda: Riemann surfaces and restrictively-marked hypermaps, Ars Math. Contemp. 3
(2010), 87-98.

A.Breda, D. A. Catalano, J. Karabd§ and R. Nedela: Maps of Archimedean class and operations
on dessins, Discrete Math. 338, Issue 10 (2015), 1814-1825.

A. Breda, D. A. Catalano, J. Karabas and R. Nedela: Quadrangle group inclusions, to appear.
A. Breda, D. A. Catalano, J. Karabas and R. Nedela: Atlas of quadrangle group inclusions,
web page, http://www.savbb.sk/~karabas/science.html#atlas.

H. U. Besche, B. Eick, and E. A. O’Brien: The Small Groups library, http://www.icm.tu-bs.
de/ag_algebra/software/small/, 2014.


http://www.savbb.sk/~karabas/science.html#atlas
http://www.icm.tu-bs.de/ag_algebra/software/small/
http://www.icm.tu-bs.de/ag_algebra/software/small/

Census of Quadrangle Groups Inclusions 69

10.
11.

12.
13.
14.

15.
16.

The GAP Group: GAP — Groups, Algorithms, and Programming, Version 4.7.6, 2014, http://
WWW.gap-system.org.

L. Greenberg: Maximal Fuchsian Groups, Bull. Amer. Math. Soc., 69 (1963), 569-573.

G. A. Jones and D. Singerman: Complex Functions, an algebraic and geometric viewpoint,
Cambridge University Press, Cambridge 1988.

S. Katok: Fuchsian groups, The University of Chicago Press, Chicago 1992.

S. K. Lando and A. K. Zvonkin: Graphs on Surfaces and Their Applications, Springer 2004.
D. Singerman: Subgroups of Fuchsian groups and finite permutation groups, Bull. London
Math. Soc., 2 (1970), 319-323.

D. Singerman: Finitely maximal Fuchsian groups, J. London Math. Soc. (2), 6 (1972), 29-38.
D. Singerman and R. I. Syddall: The Riemann surface of a uniform dessin, Beitrige Algebra
Geom. 44 (2003), no. 2, 413-430.

. J. Wolfart: The ‘Obvious’ part of Belyi’s Theorem and Riemann Surfaces with many automor-

phisms, pp. 97-112 in Geometric Galois Actions 1, ed. L. Schneps and P. Lochak, London
Math. Soc. Lecture Notes Ser. 242, Cambridge University Press, Cambridge, 1997.


http://www.gap-system.org
http://www.gap-system.org

2 Springer
http://www.springer.com/978-3-319-30449-6

Symmetries in Graphs, Maps, and Polytopes

S5th SIGMAP Workshop, West Malvern, UK, July 2014
Siraf, J.; Jajcay, R (Eds.)

2016, ¥, 332 p. 46 illus., Hardcover

ISBN: 978-3-319-30449-6



	Census of Quadrangle Groups Inclusions
	1 Introduction
	2 Generalised Quadrangle Groups and Constellations
	3 How to Read the Census
	References


