
Census of Quadrangle Groups Inclusions

António Breda d’Azevedo, Domenico A. Catalano, Ján Karabáš
and Roman Nedela

Abstract In a classical result of 1972 Singerman classifies the inclusions between
triangle groups. We extend the classification to a broader family of triangle and
quadrangle groups forming a particular subfamily of Fuchsian groups. With two
exceptions, each inclusion determines a finite bipartite map (hypermap) on a 2-
dimensional spherical orbifold that encodes the complete information and gives a
graphical visualisation of the inclusion. A complete description of all the inclusions
is contained in the attached tables.

1 Introduction

The search for inclusions between triangle groups, andmore generally betweenFuch-
sian groups, was motivated by the theory of Riemann surfaces and algebraic geom-
etry. Triangle and quadrangle groups are particular instances of Fuchsian groups,
which are finitely generated discrete subgroups of P SL(2,R), the group of confor-
mal automorphisms of the upper-half plane. Inclusions of Fuchsian groups played
an important rôle in the investigation of Teichmüller spaces, see for instance Green-
berg [10, Theorem 1]. Later Singerman extended some of Greenberg’s results and
obtained a complete list of normal inclusions between Fuchsian groups having the
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J. Širáň and R. Jajcay (eds.), Symmetries in Graphs, Maps, and Polytopes,
Springer Proceedings in Mathematics & Statistics 159,
DOI 10.1007/978-3-319-30451-9_2

27



28 A.B. d’Azevedo et al.

same Teichmüller space dimension. In addition, he gives all non-normal inclusions
between triangle groups [14, 15]. Another motivation for looking at inclusions of
Fuchsian groups in triangle groups comes from the connection between algebraic
curves over complex numbers, Riemann surfaces and dessins d’enfant, established
explicitly by a result of Belyı̆ [1], see also [17]. It follows that every hypermap
endows its underlying closed orientable surface with a complex structure by lifting
the complex structure of the Riemann sphere via a Belyı̆ function, a meromorphic
function ramified above at most three points (located at 0, 1 and ∞). A natural ques-
tion arises: Under which conditions do two hypermaps determine the same Riemann
surface? In certain circumstances, inclusions of Fuchsian groups in triangle groups
with spherical quotients correspond to Riemann-surface-preserving transformations
of hypermaps, see [5, 16].

The main aim of this paper is to present a complete list of finite index inclusions
P < Q, with both P and Q being either a triangle or a quadrangle group (with finite
periods). In what follows, we give an outline of the proof followed by instructions
how to read the attached census.

2 Generalised Quadrangle Groups and Constellations

Quadrangle groups. By a generalised quadrangle group wemean a Fuchsian group
Q with presentation

Q(k, l, m, n) = 〈x, y, z, w | xk = yl = zm = wn = xyzw = 1〉 ,

where k, l, m, n are positive integers satisfying 1
k + 1

l + 1
m + 1

n < 2 . Clearly, at most
one of k, l, m, n can be equal to one. Therefore a generalised quadrangle group is
either a triangle or a quadrangle group. Inwhat follows,we assume that the parameters
k, l, m, and n are ordered in a non-decreasing order. This is motivated by the fact
that a permutation of the parameters (or of the generators) in the above presentation
gives an isomorphic copy of Q(k, l, m, n). In particular, the group Q(1, l, m, n) is
just the triangle groupΔ(l, m, n). Inclusions between triangle groups were classified
by Singerman in [15] and they are listed in Appendix (see Tables1 and 2).

Constellations. Let P = Q(p, q, r, s) and Q = Q(k, l, m, n) be two generalised
quadrangle groups and let P be a subgroup of index N in Q. We write P <N Q. The
meaning of the parameters N , p, q, r , s, k, l, m, and n will be fixed throughout the
whole paper. There is an induced action of Q on the (right) cosets of P represented by
four permutations πx , πy , πz , πw corresponding to the images of the four generators
of Q in the natural homomorphism into the symmetric group Sym(N ). In accordance
with Lando and Zvonkin [13, Chap. 1], we call the four-tuple C = [πx , πy, πz, πw]
a constellation (or a 4-constellation) of degree N and the sequence [λx , λy, λz, λw]
of partitions of N , where each λa is the cycle structure of the permutation πa , the
passport of the constellation C . The monodromy group Mon(C ) of the constellation
C is the group 〈πx , πy, πz, πw〉 ≤ Sym(N ). By definition, the action of Mon(C ) is
transitive on the set {1, 2, . . . , N } and πxπyπzπw = 1. We write the cycle structure
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of a permutation in the exponential notation: for instance, the permutation � =
(1, 2, 3)(4, 5)(6, 7, 8)(9)has the cycle structure [1.2.32]. For convenience, each cycle
structure in a passport in the census is ordered in a non-decreasing order.

Two constellations C = [πx , πy, πz, πw] and C ′ = [π ′
x , π

′
y, π

′
z, π

′
w] of degree N

are equivalent if there exists α ∈ Sym(N ) such that the corresponding permutations
are simultaneously conjugated by α. In particular, if P < Q and P ′ < Q are two
inclusions of generalised quadrangle groups, then the associated constellations are
equivalent if and only if the subgroups P and P ′ are conjugate in Q. In fact, an inclu-
sion P < Q determines a constellation C = [πx , πy, πz, πw] which corresponds
to a Q-marked hypermap P = (Q/P; x P∗, y P∗, z P∗), where P∗ is the core of
P in Q and πx , πy , πz are the actions of x P∗, y P∗, z P∗ on the N cosets of P
in Q respectively (see [3] for definitions). Replacing Θ by Q in [3, Theorem 19],
we have that two Q-marked hypermaps P and K = (Q/K ; x K ∗, yK ∗, zK ∗),
corresponding to the inclusions P < Q and K < Q respectively, are isomorphic
if and only if P and K are conjugate in Q, say K = Pg , for some g ∈ Q; the
isomorphism is the conjugation morphism ιg : Q/P → Q/K , Pq 
→ Qgqg . If
ψ1 : Q/P → {1, 2, . . . , N } and ψ2 : Q/K → {1, 2, . . . , N } are the bijections to
their transversals, then α = ψ−1

1 ιgψ2 is the permutation that makes the constellations
corresponding toP and K equivalent.

Our approach will follow the one outlined in Singerman’s classification of inclu-
sions between triangle groups [15]. The census is obtained in two steps. First, we
find all admissible sets of parameters N ; p, q, r, s; k, l, m, n satisfying the Riemann-
Hurwitz equationwith additional numerical constrains. Each such numerical solution
gives rise to a passport. Secondly, for each passport we either find all equivalency
classes of constellations with that passport, or we show that such a constellation does
not exist. Both steps are computer-assisted. As a byproduct, we confirm Singerman’s
classification of triangle group inclusions. More details follow.

Numerical solution. If we have an inclusion between generalised quadrangle
groups P <N Q with parameters N ; p, q, r, s; k, l, m, n, then the Riemann-Hurwitz
formula holds true

N =
2 −

(
1
p + 1

q + 1
r + 1

s

)

2 − (
1
k + 1

l + 1
m + 1

n

) . (1)

Our aim is to determine all possible solutions N ; p, q, r, s; k, l, m, n with their
associated passports. To do this, the following two well known facts are useful:

• elements of finite order in P SL(2,R) are elliptic,
• any element g of finite order in a Fuchsian group is conjugate to a power of an
elliptic generator h; in symbols g � h.

Let a, b, c, d be the generators of P of orders p, q, r , s, respectively. If P < Q,
then one of the following four cases (up to a group isomorphism) happens:

Case 1. a, b, c, d � w, which implies p|n, q|n, r |n and s|n,
Case 2. a � z and b, c, d � w, which implies p|m and q|n, r |n and s|n,
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Case 3. a, b � z, and c, d � w, which implies p|m, q|m and r |n, s|n
Case 4. a � y, b � z and c, d � w, which implies p|l, q|m and r |n, s|n.
Remark It might appear that the case a � x , b � y, c � z and d � w is missing,
however (1) implies N = 1, that is, P = Q in this case.

Using an argument by Singerman [14, Theorem 1], if there is a constellation
associated to one of the aforementioned cases, then it has one of the following
passports, according to the case it belongs to:

Case1.

[
k

N
k , l

N
l , m

N
m ,

n

p
· n

q
· n

r
· n

s
· n

N−( n
p + n

q + n
r + n

s )
n

]
,

Case2.

[
k

N
k , l

N
l ,

m

p
· m

N− m
p

m ,
n

q
· n

r
· n

s
· n

N−( n
q + n

r + n
s )

n

]
,

Case3.

[
k

N
k , l

N
l ,

m

p
· m

q
· m

N−( m
p + m

q )
m ,

n

r
· n

s
· n

N−( n
r + n

s )
n

]
,

Case4.

[
k

N
k ,

l

p
· l

N− l
p

l ,
m

q
· m

N− m
q

m ,
n

r
· n

s
· n

N−( n
r + n

s )
n

]
,

where all of the fractions appearing in the above passports are integers. We adopt the
convention that factors with zero exponent in passports are vacuous (and are not to
be taken as equal to 1). For instance, n

r · n
s · n0 should be interpreted as n

r · n
s and not

as n
r · n

s · 1, which has a different meaning in a passport.
Each passport which belongs to one of the above four cases with parameters

satisfying (1) will be called admissible. Admissible passports may or may not be
passports of constellations.

By definition, the length of each cycle ofπx (resp.πy ,πz andπw) in a constellation
is a divisor of k (l, m, and n, respectively). A cycle of a permutation πx , πy , πz or
πw will be called singular if its length is strictly less then the order k, l , m or
n of the corresponding generator x , y, z or w. If p �= 1, that is, if P is not a
triangle group, then each admissible passport has exactly four cycle lengths that
are proper divisors of k, l, m or n. If P is a triangle group (p = 1), then by [15,
Proposition 5 and Theorem 1], Q is a triangle group as well, or equivalently k = 1.
In this case there are exactly three singular cycles in the constellation associated
with the inclusion P < Q. The four types of passports are distinguished by their
respective distributions of the singular cycles between the four permutations.

As we already mentioned, not every admissible passport can be realised by an
inclusion P <N Q. To determine the inclusions that realise admissible passports,
we used computer algebra systems Magma [2] and GAP [9]. With the exception
of two families described in Table3, each inclusion P <N Q has the parameter k
equal to 1, which means that Q is a triangle group. In this case Q can be viewed
as a group of orientation preserving automorphisms of an infinite regular hypermap
(or bipartite map) U on the hyperbolic plane with hypervertices (black vertices) of
valency l, hyperedges (white vertices) of valency m and hyperfaces of valency n
(faces of valency 2n). Then P is a group of automorphisms of U and the quotient
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U/P is a hypermap on the Riemann sphere (P is a Fuchsian group of signature
(0; {p, q, r, s})), more precisely, the quotient hypermap lies on a spherical orbifold
with exactly 4 or 3 singular points corresponding to the singular cycles of the con-
stellation associated with the inclusion P < Q.

Dessins d’enfant. When Q is a triangle group, k = 1 and therefore πx = 1. Then
the inclusion P <N Q gives rise to a 4-constellation C that can be reduced to the
3-constellation [πy, πz, πw]. This can be regarded as a spherical hypermap H on
the set {1, 2, . . . , N }, whose hypervertices and hyperedges are the orbits of πy and
πz , respectively. The hyperfaces of H are the orbits of πw.

There exists a regular branched covering from the universal infinite hypermap
U = U(l, m, n) on the hyperbolic plane onto the spherical hypermapU/P eitherwith
exactly four branched points with indexes p, q, r, s, or with exactly three branched
points with indexes q, r, s, located at some hypervertices, hyperedges or hyperfaces.
This hypermap (on the spherical orbifold) with the additional information about
the branched points and their respective indices will be called a dessin d’enfant or
simply a dessin. It is more precise to talk about a hypermap on an orbifold with
signature (0; {p, q, r, s}), or with signature (0; {q, r, s}) when p = 1, rather than
simply talking of a “hypermap”. There is a one-to-one correspondence between the
singular cycles of πy , πz , and πw and the branched points of the associated dessin.

Recall that the monodromy group Mon(C ) of the constellation associated to
an inclusion P <N Q acts transitively on {1, 2, . . . , N }. Moreover, Mon(C ) acts
regularly on {1, 2, . . . , N } if and only if P �N Q is a normal inclusion. In this case
the associated dessin is also called regular.

Families of inclusions. The inclusions may form infinite families parametrised by
one, two or three integer parameters in the signatures (corresponding to the number
of zero exponents in the factors of the respective passport). All the inclusions of an
infinite family share the same (non-parametrised) passport. Note that each member
of an infinite family is represented by the same hypermap in the census. An inclusion
not belonging to an infinite family is called sporadic.

Although there are infinitely many inclusions, the number of admissible passports
is finite. Each admissible passport gives rise to a finite number of constellations (or
dessins), since the index N of any inclusion is finite and bounded by 84 (theRiemann-
Hurwitz bound). Thus, the identification of all dessins associated to quadrangle group
inclusions is a finite problem.

More details (and proofs) on the classification of inclusions of generalised quad-
rangle groups will be discussed in the forthcoming paper [6].

3 How to Read the Census

The attached tables contain the complete list of inclusions P <N Q between gener-
alised quadrangle groups. Two inclusions P <N Q and P ′ <N Q are distinguished
up to conjugation in Q; if P ′ = Pg for some g ∈ Q, then P <N Q and P ′ <N Q
give equivalent constellations and so the two inclusions are essentially the same.
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Each conjugacy class of inclusions P <N Q of generalised quadrangle groups
forms one entry in the census. Excluding Table3 (explained below), the correspond-
ing row displays the following data:

• the associated passport λ = [λy, λz, λw] (up to a permutation of its entries),
• the number of realisations, which is equal to the number of non-conjugate sub-
groups of Q isomorphic to P ,

• the non-isomorphic dessins with passport λ up to mirror images,
• the monodromy group, or a structure description of the monodromy group, or the
prime factor decomposition of its size [8, 9].

If two dessins form a chiral pair, only one member of the pair is depicted. Thus the
number of the depicted dessins may not match the displayed number of realisations
in the row.

The three cycle structures in a passport describe the following:

1. first item in a passport gives the sequence of hypervertex valencies (degrees of
black vertices),

2. the second item gives the sequence of hyperedge valencies (degrees of white
vertices), and

3. the third item gives the sequence of hyperface valencies.

However, there are 6 possible passports formed by permuting the entries of any
given passport and therefore, each dessin D may be in principle associated with 5
(or 11, ifD is chiral) additional non-isomorphic dessins. There is no essential reason
to prefer any particular choice of one of these dessins for the census. The criteria
we took into account were “aesthetic”—to indicate some symmetry of a dessin—or
“space constraint”—a dual image of a dessin sometimes fits better into the reserved
space—or we chose a dessin that was “triangulation resembling”.

In Table3 (when Q is not a triangle group) the corresponding row displays:

• the associated passport λ = [λx , λy, λz, λw] (up to a permutation of its entries),
• the associated constellation (since there is only one),
• an alternative picture based on Δ2-marked hypermaps [4]; these have blue, green
and white vertices whose valencies (number of incidences of pairs of blue and
green coloured edges (b, g), in counter-clockwise order) give the first, the second
and the third entry of the passport (the last entry corresponds to face-valencies),

• the monodromy group.

The entries of the census are organised into six tables. In each table, the inclusions
(entries) are ordered by their indices in a non-decreasing order. The first two tables
(Tables1 and 2) include the case of normal and non-normal inclusions of triangle
groups classified by Singerman [15]. Table3 contains the two families of inclusions
between (pure) quadrangle groups, while Table4 gives a classification of normal
inclusions of quadrangle groups in triangle groups. Table5 lists the infinite families
of non-normal inclusions of quadrangle groups in triangle groups. The longest table
is Table6, which contains the classification of the sporadic inclusions of quadrangle
groups in triangle groups.
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A lot of information on inclusions can be dug from the tables. For instance:

• the indices of the inclusions cover all the integers from 2 to 22, additional integers
covered are 24, 26, 27, 28, 29, 30, 36, 37, 44, 45, 52, 60;

• the largest possible index is 60, realised by six inclusions of Q(7, 7, 7, 7) in
Δ(2, 3, 7);

• the largest number of non-conjugate realisations (16) is achieved by the inclusion
Q(2, 3, 7, 7) < Δ(2, 3, 7) of index 44;

• the number of realisations of an inclusion varies from 1 to 16. There are inclusions
such that each of their realisations is chiral, such that each of their realisation is
reflexible, and those that have both chiral and reflexible realisations.

For the sake of completeness, in Table7 we collect all the solutions of (1) with
the respective admissible passports for which there is no inclusion. Additional infor-
mation on the inclusions of the generalised quadrangle groups can be found at the
web page [7].
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Appendix

Triangle Groups Inclusions

See Tables1 and 2.

Table 1 Normal inclusions of triangle groups

(a)

(b)

(c)
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Table 2 Non-normal inclusions of triangle groups

(A)

(B)

(C)

(D)

(continued)
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Table 2 (continued)

(E)

(F)

(G)

(H)

(I)

(J)

(K)
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Normal Inclusions of Quadrangle Groups

See Tables3 and 4.

Table 3 Inclusions of quadrangle groups in quadrangle groups

Table 4 Infinite families of normal inclusions of quadrangle groups in triangle groups

(f1)

(f2)

(f3)

(f4)

(f5)

(f6)
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Non-normal Inclusions of Quadrangle Groups

See Tables5 and 6.

Table 5 Infinite families of non-normal inclusions of quadrangle groups in triangle groups

(continued)
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Table 5 (continued)

(continued)
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Table 5 (continued)

(continued)
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Table 5 (continued)

(continued)
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Table 5 (continued)

(continued)
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Table 5 (continued)

Table 6 Sporadic non-normal inclusions of quadrangle groups in triangle groups. (There are no
sporadic normal inclusions)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)



58 A.B. d’Azevedo et al.

Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)

(continued)
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Table 6 (continued)



Census of Quadrangle Groups Inclusions 67

Numerical Solutions with No Corresponding Inclusions

See Table7.

Table 7 Admissible passports for which there is no inclusion (Forbidden passports)

Numerical solution Passport Notes

(m, 3m, n, n) <4
(1, 2, 3m, 2n)

[1.3, 22, 22] m = 1 : Δ(3, n, n) ≮
Δ(2, 3, 2n)

(n, 3n, 3n, 3n) <6
(1, 3, 3, 3n)

[13.3, 32, 32]

(2, n, 4n, 4n) <6 (1, 2, 4, 4n) [12.4, 23, 2.4]
(4, 4, n, 2n) <6 (1, 2, 4, 4n) [12.4, 23, 2.4]
(1, 2n, 3n, 6n) <6 (1, 2, 3, 6n) [1.2.3, 23, 32]
(5, n, n, n) <6 (1, 2, 5, 2n) [1.5, 23, 23]
(2, n, n, n) <6 (1, 2, 4, 2n) [23, 23, 2.4]
(n, 5n, 5n, 5n) <8
(1, 2, 4, 5n)

[13.5, 24, 42] n = 1 : Δ(5, 5, 5) ≮
Δ(2, 4, 5)

(3, 3, 3n, 5n) <8 (1, 2, 3, 15n) [3.5, 24, 12.32]
(2n, 3n, 3n, 6n) <8
(1, 2, 4, 6n)

[1.22.3, 24, 42]

(2, n, n, 4n) <9 (1, 2, 3, 4n) [1.42, 1.24, 33]
(2, 2n, 5n, 5n) <9
(1, 2, 3, 10n)

[22.5, 1.24, 33]

(2, n, n, n) <9 (1, 2, 3, 3n) [33, 1.24, 33]
(3, n, 2n, 6n) <10 (1, 2, 3, 6n) [1.3.6, 25, 1.33]
(3, n, 3n, 3n) <10 (1, 2, 3, 6n) [22.6, 25, 1.33]
(3, n, n, 2n) <10 (1, 2, 3, 4n) [2.42, 25, 1.33]
(3, 3n, 4n, 4n) <10
(1, 2, 3, 12n)

[32.4, 25, 1.33]

(3n, 7n, 21n, 21n) <12
(1, 2, 3, 21n)

[12.3.7, 26, 34]

(2n, 3n, 12n, 12n) <12
(1, 2, 3, 12n)

[12.4.6, 26, 34]

(2n, 7n, 7n, 14n) <12
(1, 2, 3, 14n)

[1.22.7, 26, 34]

(4n, 5n, 10n, 20n) <12
(1, 2, 3, 20n)

[1.2.4.5, 26, 34]

(3n, 5n, 5n, 15n) <12
(1, 2, 3, 15n)

[1.32.5, 26, 34]

(3n, 3n, 4n, 12n) <12
(1, 2, 3, 12n)

[1.3.42, 26, 34]
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Table 7 (continued)

Numerical solution Passport Notes

(n, 3n, 3n, 3n) <12
(1, 2, 3, 6n)

[23.6, 26, 34]

(6n, 10n, 15n, 15n) <12
(1, 2, 3, 30n)

[22.3.5, 26, 34]

(3n, 4n, 4n, 6n) <12
(1, 2, 3, 12n)

[2.32.4, 26, 34]

(3, 5, 5, 5) <8 (1, 2, 5, 6) [2.6, 24, 13.5]
(2, 2, 6, 6) <8 (1, 2, 4, 6) [12.6, 24, 22.4]
(5, 5, 5, 5) <9 (1, 3, 3, 5) [14.5, 33, 33]
(2, 4, 4, 4) <9 (1, 3, 3, 4) [33, 33, 13.2.4]
(2, 7, 7, 7) <10 (1, 2, 4, 7) [2.42, 25, 13.7]
(2, 3, 6, 6) <10 (1, 2, 4, 6) [2.42, 25, 12.2.6]
(8, 8, 8, 8) <12 (1, 2, 4, 8) [14.8, 26, 43]
(1, 3, 7, 7) <16 (1, 2, 3, 7) [12.72, 28, 1.35] Δ(3, 7, 7) ≮ Δ(2, 3, 7)

(3, 5, 5, 5) <16 (1, 2, 3, 10) [23.10, 28, 1.35]
(2, 3, 4, 4) <16 (1, 2, 3, 8) [22.4.8, 28, 1.35]
(2, 5, 5, 5) <18 (1, 2, 4, 5) [2.44, 29, 13.53]
(2, 2, 8, 8) <18 (1, 2, 3, 8) [12.42.8, 29, 36]
(5, 5, 5, 5) <18 (1, 2, 3, 10) [24.10, 29, 36]
(2, 4, 4, 4) <18 (1, 2, 3, 8) [23.4.8, 29, 36]
(2, 4, 4, 8) <21 (1, 2, 3, 8) [1.22.82, 1.210, 37]
(2, 3, 8, 8) <22 (1, 2, 3, 8) [12.4.82, 211, 1.37]
(3, 4, 4, 4) <22 (1, 2, 3, 8) [23.82, 211, 1.37]
(3, 9, 9, 9) <24 (1, 2, 3, 9) [13.3.92, 212, 38]
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