
A Design Methodology for the Next Generation
Real-Time Vision Processors

Jones Yudi Mori1,2(B), André Werner1, Arij Shallufa1,
Florian Fricke1, and Michael Hübner1

1 ESIT - Embedded Systems for Information Technology,
Ruhr-University Bochum, Bochum, Germany

{Jones.MoriAlvesDaSilva,Andre.Werner-w2m,Arij.Shallufa,
Florian.Fricke,Michael.Huebner}@rub.de

2 Department of Mechanical Engineering, University of Braśılia, Braśılia, Brazil

Abstract. In this work we present a methodology to design the next
generation of real-time vision processors. These processors are expected
to achieve high throughput with complex applications, under real-time
embedded constraints (time, fault-tolerance, silicon area and power con-
sumption). To achieve these goals, we propose the fusion of two key
concepts: the Focal-Plane Image Processing (FPIP) and the Many-Core
architectures. We show the concepts and ideas to build-up a methodology
able to offer both design space exploration, and a customized program-
ming toolchain for the final architecture. We present implementation
details and results for working parts of the framework, and partial results
and general comments about the work-in-progress.

Keywords: ASIP · Image processing · Processor architecture ·
Real-time

1 Introduction

Smart Cameras are special cameras which do not only acquire, compress and
transmit images, but are capable of processing them to extract useful informa-
tion. Complete IP/CV (Image Processing and Computer Vision) applications
should be executable in modern Smart Cameras. With the growing of the Inter-
net of Things (IoT) and the CyberPhysical Systems (CPS), a single device will
be expected to run several complex applications simultaneously.

A real-time IP/CV system is composed by two main parts: acquisition and
processing. The acquisition part is in general a standard cmos sensor array which
provides a pixel stream and some synchronization signals. The main problem in
standard acquisition systems is the bottleneck in the pixel stream, since the
pixels are transmitted one by one [6]. The hardware architectures commonly
used in the processing part (DSP concepts, VLIW, SIMD operations) are not
able to achieve the constraints in throughput, fault tolerance, silicon area and
power consumption [12].
c© Springer International Publishing Switzerland 2016
V. Bonato et al. (Eds.): ARC 2016, LNCS 9625, pp. 14–25, 2016.
DOI: 10.1007/978-3-319-30481-6 2



A Design Methodology for the Next Generation Real-Time Vision Processors 15

Fig. 1. Readout schemes in a Pixel Array.

Fig. 2. Fill-factor reduction when adding more functionalities to the image sensor.

To eliminate (or, at least, to minimize) the acquisition bottleneck problem,
two main solutions can be found in the literature. The first one is to replicate the
amplifier and ADC (analog to digital converter), adding one pair for each row
(or for each column). The second solution is to have one pair (amplifier/ADC) per
pixel [16]. The last option allows for full acquisition parallelism, however it is too
expensive for standard cameras, being used only in scientific/industrial custom
applications. To better explore the interface acquisition/processing, we propose
a different way to acquire the pixels: to add the pair amplifier/ADC for regions
of the sensor array. As will be explained later in the text, the configuration we
propose offers several advantages in the envisioned architecture. In Fig. 1 we can
see the four types of acquisition systems discussed here.

A different camera concept was created some years ago, with the aim of
achieving high throughput: the Focal-Plane Image Processing (FPIP) concept
is based on inserting small processing elements (PEs) close to the pixel sen-
sors, minimizing the transmitting paths and allowing also for parallel acquisition
[2,11]. In Fig. 2 we can see the structure of single standard pixel. The fill-factor
is the percentage of the chip area which is photosensitive. As can be seen in the
picture, the addition of an ADC and a PE to the pixel area would reduce consid-
erably the fill-factor, and by consequence, the image quality would be degraded.
In addition, due to the limited area available, the PEs found in the literature
are mostly analog filters and/or small digital ones, and do not offer too much
flexibility. Figure 2 shows issues related to the communication structure which



16 J.Y. Mori et al.

Fig. 3. Envisioned hardware configuration: a 3D integration of acquisition and process-
ing parts using TSV technology.

must be present to integrate the PEs. This structure would contribute to reduce
even more the sensor’s fill-factor.

We propose a hardware configuration to integrate the acquisition and the
processing parts in a more interesting architecture. Figure 3 shows the concept.
The sensor array has spatially distributed pairs amplifier/ADC, each pair being
responsible for a region of the image. Using the Through Silicon Vias (TSV)
technology, the outputs of the ADCs are sent to an underlying processing layer.
The processing layer is a manycore architecture composed by distributed pixel
registers which receive the pixel stream from the ADCs. A PE is responsible to
process each region, and a communication infrastructure allows for data exchange
among them. With this configuration, both the acquisition and the processing
parts can explore a higher amount of parallelism.

The design of such architecture is not easy, since the PEs and the commu-
nication structure must be developed with focus in the application and in the
embedded hardware constraints (silicon area, power consumption, thermal dis-
tribution and so on). In addition, software related issues must be solved. The
programming model must be able to explore the parallelism in the applications,
considering the spatial distribution of PEs, the distributed input streams, and
the synchronization and data exchange issues.

In this project we show a methodology to help the design of such system,
and also to provide an efficient parallel programming model. This work provides
a general overview of subprojects (complete and work-in-progress) integrated as
a design methodology. Considering this, no exclusive section about literature
review is provided. However, before explaining each subproject, we provide spe-
cific motivation and state-of-art. In Sect. 2 we show in details how the framework
was conceived. Finally, in Sect. 3, we have a discussion about the issues and next
steps of the project.



A Design Methodology for the Next Generation Real-Time Vision Processors 17

2 Design Methodology

In this section we discuss the concepts and ideas behind the proposed method-
ology. We start the analysis with a SystemC/TLM2.0 simulator used to analyze
communication patterns for different IP/CV algorithms. This analysis is used
to determine geometric constraints and a rough structure for the architecture.
After that, we analyze the IP/CV application domain, in order to show how the
domain-specific characteristics shape and constrain the design space. After that,
we show the development of some tools which help in the design decision mak-
ing. The first tool performs a static analysis over the application’s source code,
in order to determine the algorithm’s structure. Then another tool generates a
SystemC/TLM2.0 model which estimates parameters to help the design of the
PEs microarchitectures.

2.1 High-Level Analysis of Communication Patterns

To determine a starting point for the architecture design, we developed a simula-
tion tool based on SystemC/TLM2.0 models. This tool should be able to extract
communication patterns from IP/CV algorithms simulations. Figure 4 shows the
main modules of the developed tool: Px-Unit, Functions Library, and Data-Flow
Controller, described as follows:

– Px-Unit: It is a module that represents an unit with the following content: the
input pixel value; the pixel position in the image; pixel values in intermediate
images; status flags; and the image processing algorithm behavior described
using the Functions Library. It also has a cycle counter (similar to a Program
Counter in processor architectures) responsible for synchronizing the Px-Unit
with the Data-Flow Controller.

– Functions Library: It was created to implement all operations needed to com-
pute each output pixel. It covers since simple arithmetic operations until calls
for memory access. The algorithm behavior of Px-Units is implemented using
these functions, as a common programming library.

– Data-Flow Controller: It is a module created to instantiate an array of
Px-Units representing the Pixel Array. It is responsible for writing the input
values inside each Px-Unit. When a Px-Unit needs a pixel value from another
one, it calls access functions from the Data-Flow Controller which will register
this call (the instant it occurs, the caller and the callee, etc.). After registering
the call, the controller takes the value from the source unit and gives to the
caller unit.

Figure 4 shows how the data exchange among two Px-Units is performed.
The annotations file is the output obtained after a simulation. In the Data-Flow
Controller block, several different parameters can be configured. We performed
simulations for different topologies to determine the communication needs, bot-
tlenecks and possible solutions. These are only rough topology models, consid-
ering the relative position among Pixels and PEs.



18 J.Y. Mori et al.

Fig. 4. Main modules of the simulation tool, and a sample data exchange among two
Px-Units.

There are two main features to determine in this part: (a) if the Pixels will
be stored internally or externally to the PE; (b) how the communication among
PEs will be organized. If we choose the alternative to store Pixels internally to
the PEs, all data requests from outside would cause the PE to stop process-
ing the IP/CV algorithm, to deal with the communication tasks. Considering
that each is surrounded by at least 4 neighbors, depending on the algorithm,
the amount of data requests can lead the system to fail in achieving the desired
throughput. From now on, we assume the Pixels in a location external to the
PEs (a Register File, a Scratch-Pad Memory, etc.). Also, as the requests can
come at the same time from different directions, more than one access should be
possible at the same time. Considering the communication among the PEs, the
action of accessing a Pixel value should be transparent to the PE. In this work



A Design Methodology for the Next Generation Real-Time Vision Processors 19

Fig. 5. Selected system’s topology: mesh Network-on-Chip with special routers.

we consider Networks-on-Chip (NoCs) as good alternatives to solve our commu-
nication needs. NoCs are scalable, and as we have homogeneous communication
patterns, their performance will be efficient enough for most applications.

Figure 5 shows the topology which offers the highest throughput. It is similar
to a standard Mesh NoC [13], but with special Routers able to store internally the
Pixels of an image region. In addition, this topology fits the geometric constraints
defined by the Pixel Array with Region-based readout.

2.2 Analysis of the Application Domain

In the parallel processing domain, one of the most important goals is to identify
and explore the maximum amount of parallelism possible [9]. Looking to the
IP/CV algorithms, and considering the spatial distribution of PEs over the image
area, we can identify a coarse-grained parallelism. In the IP/CV domain, the
OpenCV library [1] is one of the most used collection of algorithms. It is used
for educational, industrial and scientific purposes, and can be considered as a
informal standard.

With the increasing number of complex IP/CV commercial applications,
the industry identified the need for an IP/CV standard de facto. The Chronos
Group [8] released in 2014 the first version of the OpenVX standard. OpenVX
is a set of rules and design patterns created to describe IP/CV applications.
Similar to other standards, like OpenCL and OpenGL, the OpenVX actuates as
a frontend for application’s description. The backend should be created by each
hardware manufacturer, accordingly to its architecture’s characteristics [8].

OpenVX defines a programming model based on graphs, composed by nodes
and links. Each node is a complete IP/CV algorithm (filtering, motion detection,
arithmetic operations among images, and so on) Fig. 6. In general, both input
and output of a node are images. In our approach we consider that each PE is



20 J.Y. Mori et al.

Fig. 6. OpenVX Graph of a simple application.

responsible for computing the output values of a sub-image. This means that the
algorithms in each node must be executed by all the PEs simultaneously. We
define here the concept of Core-Code: the code necessary to generate a single
output pixel. Each OpenVX node can be mapped to a Core-Code. This means
that each PE will execute the Core-Code repeatedly for all Pixels in its own
region. Each PE operate independently from the other when performing the
same node, what means that the only synchronization among PEs occurs when
they start/finish a node [12].

2.3 Static Analysis of Aplication’s Core-Codes

In the last section we determined the Core-Codes as the codes to be executed
in each PE. A complete IP/CV application is composed by several OpenVX
nodes, what means several Core-Codes. The PEs must be designed to be able
to process the sequence of nodes efficiently. There are several works in the lit-
erature regarding the design of Application Specific Instruction-Set Processors
(ASIP). An ASIP is a processor architecture specially tuned for an application
domain. An ASIP should be able to provide a medium term between the flex-
ibility (programmability) of common General Purpose Processors (GPPs), and
the efficiency of direct hardware implementations.

A straightforward approach was used to determine the PE’s microarchitec-
ture from the application’s Core-Codes. A tool for graph generation from the
Core-Codes was created. This tools is based on the Clang compiler from the
LLVM project [10]. The starting point of the analysis is the Abstract Syntax
Tree (AST), which is sintactically, semantically and type-checked. However, no
optimization is performed in this step, what means that our systems depends
on code-quality. To avoid issues, a library of nodes is available for OpenVX
descriptions.

By the time of this work was written, this tool had some restrictions: pointer
variables and arrays not supported; jump operations not supported; the function



A Design Methodology for the Next Generation Real-Time Vision Processors 21

Fig. 7. Graph generator based on LLVM: sample example for a simple function.

may have only one return statement, on its end. The graphs generated have some
properties, like: parameters and literals are inputs; vertices are basic operations
of the C programming language; edges represent dependencies, data and control
flow; function return value is the output. matcher, to extract the algorithm’s
structure and create a the graph. At this moment, this tool is able to handle
most of the ANSI C language specification. For each Core-Code in an application,
a new graph is generated. Figure 7 shows the graph generated for a sample
Core-Code.

2.4 Parameterizable SystemC/TLM2.0 Simulator

This tool receives the graphs from the last Section and generates a SystemC/
TLM2.0 representation of the manycore architecture. By using a library of Sys-
temC blocks, the graphs are rebuilt and grouped in high-level models of the PEs.
A Core wrapper handles TLM communication between partners, the transaction
object contains information about the dependencies and the target generates
results for the dependencies. Some advantages in the use of TLM are: PE model
is separated into communication and functionality; few functions make the model
easy to understand; sparsely connections for dependencies, because they are only
for external communications needed. Figure 8 shows the TLM models for the PEs
(with the graph inside) and the manycore organization. The simulations allow
to extract in more details informations regarding the communication patterns
among PEs, and also timing and resources needs inside the PEs.



22 J.Y. Mori et al.

Fig. 8. TLM models of the Manycore architecture: communication and spatial distri-
bution, and graph-based Core-Codes in each PE.

2.5 Processing Element Parameter Estimation

As explained previously, due to the design constraints and restrictions in area,
power consumption and speed, the PEs must be specialized for the application
domain we are exploring. Flexibility for changes after the chip design is important
to allow for new application’s implementation over the architecture. However,
specialization and flexibility are quite antagonic.

[9] states that one of the key concepts to achieve high efficiency in IP/CV
processing is the parallelism exploration. IP/CV applications have different lev-
els of parallelism. In Sect. 2.2 we explored the coarsest level, by dividing the
image into regions allocated to each PE. Regarding the PE’s microarchitecture,
solutions exploring the Instruction Level Parallelism (ILP) are among the most
efficient.

Fig. 9. Sample Transport Triggered Architecture processor.



A Design Methodology for the Next Generation Real-Time Vision Processors 23

From the literature we could identify that several different architectures have
been tested for IP/CV algorithms, each one with different efficiency, advantages
and disadvantages. Architectures such as VLIW (Very Large Instruction Width)
are strong candidates to be used in our system, considering that they offer a
throughput higher than the common RISC architectures, and are more flexible
in comparison with embedded GPUS [7]. Hardware accelerators, like the ones
generated by the LegUp framework [3] are also interesting and can be quite
fast, however there is a lack of flexibility. Once the accelerators are defined,

Fig. 10. From the graph to the TTA configuration: same application, different hard-
ware implementations.



24 J.Y. Mori et al.

new applications maybe would not benefit from these already implemented accel-
erators, resulting in bad efficiency.

ASIPs (Application Specific Instruction Set Processors) are considered as
well-balanced solutions for embedded systems. They offer some advantages from
GPPs (e.g. programmability) and from hardware accelerators (e.g. special com-
plex instructions). In [14] the authors suggest a methodology based on graphs to
help the design of processor architectures. [5] shows a method based on profiling
and microarchitecture’s templates to ASIP customization. The design of ASIPs
(and the design of processors in general) is a well-studied field, however, most of
the methodologies available relay too much on the designer’s knowledge about
both application and hardware features.

In our project, we proposed a simple and straightforward method to define
the PE’s microarchitecture given the application’s Core-Code. We selected the
use of Transport Triggered Architectures (TTAs) as the standard basis. TTAs
are a superset of the VLIW architectures, with some special characteristics [4].
Figure 9 shows the general idea of a TTA processor. It is composed by several
processing units (PUs) interconnected through one or more buses. The type
of PUs determine the amount of ILP possible to be explored (as in a VLIW
processor) and deep bypasses can be configured depending on the number of
buses used.

Figure 10 shows an automatic method to determine the best TTA configura-
tion. TCE is a framework for design space exploration of TTA processors [15].
It allows the designer to select all the configurations (mainly the number and
types of PUs, and the number of buses). It also generates RTL descriptions and
a LLVM based compiler for each configuration desired. Our method is based on
a mixed ALAP/ASAP (As Last As Possible/As Soon As Possible) analysis of
the Core-Code’s graphs. For each graph possibility we generate a set of possible
solutions in the TCE environment, comparing the results with the design con-
straints. This cycle is repeated until the design meets the design fits under the
design constraints.

3 Discussion and Conclusion

In this work we discussed the concepts and ideas behind the development of
the next generation vision processors. A methodology for the design of such
processors was explained and some parts were detailed.

The project presented in this work is currently under development. Many
issues are still not solved, but the results achieved until now are promising. The
design methodology is already able to generate a rough model of the many-
core vision processor. Optimizations must be done in all subprojects and the
development of the Analog part (Acquisition and Readout) is not under devel-
opment yet.

Acknowledgment. The authors would like to acknowledge CAPES Founda-
tion/Brazilian Ministry of Education (Science without Borders Program, Grant Process
Nr. 9054-13-8) and the support received from the University of Brasilia.



A Design Methodology for the Next Generation Real-Time Vision Processors 25

References

1. Opencv: Open source computer vision. Technical report. www.opencv.org
2. El Gamal, A., Fowler, B.A., Yang, D. X.: Pixel-level processing: why, what, and

how? In: Proceedings of the SPIE, Sensors, Cameras, and Applications for Digital
Photography, vol. 3650 (1999)

3. Canis, A., Choi, J., Aldham, M., Zhang, V., Kammoona, A., Czajkowski, T.,
Brown, S.D., Anderson, J.H.: LegUp: an open-source high-level synthesis tool for
FPGA-based processor/accelerator systems. ACM Trans. Embed. Comput. Syst.
(TECS) 13(2), 24 (2013)

4. Corporaal, H.: Microprocessor architectures: from VLIW to TTA (1997)
5. Eusse, J., Williams, C., Leupers, R.: Coex: a novel profiling-based algo-

rithm/architecture co-exploration for ASIP design. In: 2013 8th Interna-
tional Workshop on Reconfigurable and Communication-Centric Systems-on-Chip
(ReCoSoC), pp. 1–8, July 2013

6. Fossum, E.R., Kemeny, S.: Camera on a chip. In: The World and I, pp. 178–185
(1996)

7. Hoozemans, J., Wong, S., Al-Ars, Z.: Using VLIW softcore processors for image
processing applications. In: Proceedings of the 15th International Conference on
Systems, Architectures, Modeling and Simulation (SAMOS) (2015)

8. Openvx 1.01 specification. Technical report (2015). https://www.khronos.org/
openvx/

9. Kehtarnavaz, N., Gamadia, M.: Real-time image and video processing: from
research to reality. Synth. Lect. Image Video Multimedia Process. 2(1), 1–108
(2006)

10. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: 2004 International Symposium on Code Generation and
Optimization, CGO 2004, pp. 75–86. IEEE (2004)

11. Mori, J., Huebner, M.: A high-level analysis of a multi-core vision processor using
systemC and TLM2.0. In: 2014 International Conference on ReConFigurable Com-
puting and FPGAs (ReConFig), pp. 1–6, December 2014

12. Mori, J.Y., Llanos, C., Huebner, M.: A framework to the design and programming
of many-core focal-plane vision processors. In: 2015 International Conference on
Embedded and Ubiquitous Computing (2015)

13. Sepulveda, M., Diguet, J.-P., Strum, M., Gogniat, G.: NoC-based protection for
SoC time-driven attacks. IEEE Embed. Syst. Lett. 7(1), 7–10 (2015)

14. Trajkovic, J., Gajski, D.D.: Custom processor core construction from C code. In:
2008 Symposium on Application Specific Processors, SASP 2008, pp. 1–6. IEEE
(2008)

15. Viitanen, T., Kultala, H., Jaaskelainen, P., Takala, J.: Heuristics for greedy trans-
port triggered architecture interconnect exploration. In: 2014 International Confer-
ence on Compilers, Architecture and Synthesis for Embedded Systems (CASES),
pp. 1–7, October 2014

16. Zarandy, Á.: Focal-Plane Sensor-Processor Chips. Springer, New York (2011)

www.opencv.org
https://www.khronos.org/openvx/
https://www.khronos.org/openvx/


http://www.springer.com/978-3-319-30480-9


	A Design Methodology for the Next Generation Real-Time Vision Processors
	1 Introduction
	2 Design Methodology
	2.1 High-Level Analysis of Communication Patterns
	2.2 Analysis of the Application Domain
	2.3 Static Analysis of Aplication's Core-Codes
	2.4 Parameterizable SystemC/TLM2.0 Simulator
	2.5 Processing Element Parameter Estimation

	3 Discussion and Conclusion
	References


