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Abstract In this paper we show how graph structure can be used to significantly
reduce the computational bottleneck of the Breadth First Search algorithm (the foun-
dation of many graph traversal techniques) for social networks. In particular, we
address parallel implementations where the bottleneck is the number of messages
between processors emitted at the peak iteration. First, we derive an expression for
the expected degree distribution of vertices in the frontier of the algorithm which is
shown to be highly skewed. Subsequently, we derive an expression for the expected
message along an edge in a particular iteration. This skew suggests a weighted, iter-
ation based, partition would be advantageous. Empirical simulations show that such
partitions can reduce the message overhead in the order of 20% for graphs with
common social network structural properties. These results have implications for
graph processing in multiprocessor and distributed computing environments.

Keywords BFS · Graph structure · Social network properties

1 Introduction

Breadth First Search (BFS) is a fundamental graph algorithm which is applied con-
stantly to huge social network graphs in distributed and parallel systems consuming
large amounts of energy and resources. BFS is central to several more complicated
graph algorithms such as identifying connected components, testing for bipartiteness,
belief propagation, finding community structures in social networks and computing
the max flow-min cut for a graph [1]. As such it has drawn much attention from the
parallel processing community as a benchmark algorithm with several competing
variants focused on efficient implementation [1–14]. However, despite its impor-
tance known structural properties of social networks have not been leveraged to
improve the algorithms efficiency. The aim of this paper is to prove the concept that
a simple adjustment of the partitioning vector based on common graph structure can
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greatly improve the efficiency at the algorithms bottleneck. We also show (theoreti-
cally and empirically) that it is the graph properties that result in this improvement,
and absence of these properties can lead to little or no improvement. The graph the-
oretic analysis of the BFS frontier in this paper is novel and should be of interest to
researchers in the parallel and distributed graph traversal communities.

The setting here envisages that BFS is performed repeatedly on an unweighted,
undirected graph from random root vertices. In addition, we assume basic statistics
about the graph can be collected after each run or alternatively offline. It is assumed
the graph is traversed in parallel by several processors thus requiring a-priori a parti-
tion of the graph vertices across each processor. In this setting the basic computation
step of BFS is dominated by the communications costs (messages) between proces-
sors after each iteration (as noted in [6] amongst others). The messages emitted after
the peak iteration further dominate the communication costs amounting to ∼70% of
the total (Sect. 4), thus this is the bottleneck of the whole algorithm.

With the exception of a few papers (Sect. 2) most approaches ignore information
about the structure of the graph focusing instead on CPU-GPU architecture specifics.
We show that the incident degree distribution per iteration is highly skewed away
from a power law distribution. Thus the number of edges crossing a partition is a
biased estimate of the messages between partitions at the peak iteration. Further we
propose a new weighted graph construction which reflects the expected number of
messages per edge. Finally, we show empirically that using a weighted partitioning
algorithm that the subsequent reduction in messages emitted across partitions can be
reduced in some individual cases by ∼50%, for some graphs on average by ∼20%.

The paper is laid out as follows. Section2 discusses related work, Sect. 3 gives the
background behind the BFS algorithm, partitioning and develops the theory showing
that the degree distributions are highly skewed. Section4 presents empirical results
and finally in Sect. 5wemainly focus on futurework and discussing the consequences
of the findings.

2 Related Work

Implementing BFS in parallel is a well established approachwhich generally consists
of three stages: graph pre-ordering, graph partitioning and parallel architecture spe-
cific implementation. This research is most pertinent to graph partitioning however
there are several aspects of architecture specifics of interest.

Graph partitioning seeks to reduce the number of messages sent between parti-
tions during processing which can be achieved in several ways. The most obvious
mechanism is to use a 1-D partition; each vertex and associated edges are sent to an
individual processor [1, 4, 9, 15]. An excellent overview of 1-D graph partitioning
methods can be found in [13] with techniques designed specifically for scale-free
networks exist such as [16]. Although [16] considers partitioning for social network
graphs they do not do so in the context of BFS, indeed the two approaches are
complimentary as here we provide a weighted social network graph for partitioning.
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Shang and Kitsuregawa [4] consider partitioning edges across processors (as
opposed to vertices). The edges may be uniformly distributed by either the source
or the target vertex. They propose that when the degree of the target vertex exceeds
a pre-defined threshold the algorithm performs best by switching to a target vertex
partitioning, while Hong et al. [17] note that for low degree vertices partitioning
should be based on vertex but for large degree vertices the partitioning should be
based on edge. In contrast a 2-D partition [2, 8, 10, 11] distributes the edges of a
vertex across several processors. The 2-D approach is based on the observation that
an exploration from a set of vertices is equivalent to the product of the adjacency
matrix and a vector of the vertices touched. Thus they partition the adjacency matrix
into two dimensions (blocks along the rows and columns) and then collect the row
products in one set of messages and the unique column entries in another. Thus the
messages produced are between particular processors and not all to all as in the 1-D
case. It would appear from the literature that the 2D partitioning approach results in
more efficient BFS traversals but we do not consider this approach in this research
(see future work, Sect. 5).

Skewed graph structure is a central topic in many papers [1, 2, 5, 12, 17]. The
non-locality of neighbours in a graph, and the fact that some vertices can have degrees
several factors larger than the average, leads to load imbalances across processors
and randommemory access patterns. Yuan et al. [12] examines the expected distance
between two pairs of nodes being explored in a BFS and show that they can predict
the vertex locality. This is perhaps the closest work to this research. In contrast our
approach looks at the expected use of a vertex of a given degree in a particular
iteration, though the two approaches are similar in spirit. Alternative approaches
include implementing BFS from multiple sources [18]. However, to the best of our
knowledge this research is the first to use the non-uniform frontier distribution to
improve the parallel BFS algorithm.

3 Background

Given a graph G(V, E) and a source vertex s, where V , E refer to the vertex and
edge sets respectively the BFS algorithm returns a route from s to every reachable
vertex in G. The BFS algorithm begins with a set V0 = {s} and explores the graph
by identifying neighbours of s, denoted as the set V +

0 , where + denotes neighbour
expansion. At the next iteration all vertices connected to V +

0 minus those already
visited are V1 = V +

0 \ {V0}. We call the set of unique vertices in the τ th iteration,
Vτ , the frontier set. In general the frontier consists of

Vτ = V +
τ−1 \ {

τ−1⋃

i=0

Vi } (1)
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and the set of vertices alreadyvisited, {⋃τ−1
i=0 Vi }, are said to be touched. The algorithm

continues until Vτ = {∅} and all vertices have been explored.
The BFS algorithm may be implemented on P parallel processors by partitioning

V into P subsets V1, . . . ,VP , where Vi
⋂

V j = {∅} ∀i �= j , and
⋃

i Vi = V , such
that each vertex is assigned a processor which performs the neighbour expansion
of that vertex. This is the basic format of most parallel BFS (P-BFS) algorithm
implementations. At the end of each iteration the processor owning each element in
the next frontier must be notified that this vertex is now to be explored. We define
a message M τ

Vi →V j
(u, v) to be a notification from processor i to processor j that

vertex u has identified vertex v to be a member of the next frontier set. If u and
v reside in the same processor then there is no communication cost and thus the
communications cost for P-BFS is here defined as the sum of all messages that cross
a partition:

Cτ =
∑

u∈Vτ−1,v∈Vτ

M τ
Vi →V j

(u, v) ∀i �= j (2)

The aim of a partitioning algorithm is to partition a graph into equal sets, |Vi | ≈
|V j |, such that a specific objective is achieved such as the number of edges that cross
the partitions, the edge-cut, is minimized as:

argminC
V1,...,VP

=
∑

u∈Vi ,v∈V j ,∀i �= j

wu,v (3)

There are several methods for graph partitioning (a recent review of such methods
may be found in [13]) and the one adopted here is the popularMETIS [19]multi-level
k-way algorithm. Likemany partitioning algorithmsMETIS can operate onweighted
graphs; the weights themselves are the core of our technique as now discussed.

The development here initially follows that ofKurant et al. [20]who derive expres-
sions for the observed degree distribution of a graph sampled by BFS (i.e. a different
problem). The configuration model [21] is a construct which allows construction of
graphs with a desired degree distribution. N vertices are each assigned k stubs sam-
pled uniformly from a desired degree distribution, pk , i.e. k ∼ pk . The configuration
model then pairs these stubs at random thus constructing edges and thus a graph
with the desired degree distribution. The order in which these stubs are connected is
irrelevant as the pairing is random. Thuswemay assign to each stub an arbitrary time,
t ∈ [0, 1] and moving from t = 0 → 1 connect the stubs as their randomly assigned
time is passed. This converts a discrete graph generation process into a continuous
time process and is a useful framework to derive expressions for the bias inherent
in BFS sampling [20, 22]. Kurant et al. interweave the stub matching step with the
exploration phase of BFS. Thus the stubs are connected only when the frontier is
being explored and the unconnected stubs with the lowest time are chosen first. A
vertex enters the frontier when all of its stubs have been paired and this happens with
probability (1 − t)k therefore the expected fraction of vertices of degree k touched
before time t is [20]:
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fk(t) = pk(1 − (1 − t)k) (4)

where pk is the probability a vertex has degree k (i.e. the degree distribution). The
fraction of nodes of any degree visited before time t is [20]:

f (t) = 1 −
∑

k

pk(1 − (1 − t)k) (5)

Kurant investigated the bias of BFS samples but here we are concerned with the
degree distribution of the frontier. In addition, we are only interested in particular
times; those that correspond to the iterations. It is assumed that the number of vertices
touched up to each iteration nτ = ∑τ

i=1 |Vi | is known.1 Herewe depart fromKurant’s
analysis [20]. Define times, tτ :

tτ = f −1(nτ /N ) (6)

where f −1 denotes the inverse of f (t) as (5) cannot be inverted explicitly. This
inverse consists of finding the minimum of a smooth function in one dimension and
may be solved easily using gradient descent or any similar search algorithm. The
frequency of degrees of type k in the τ th frontier, nτ

k , can be calculated iteratively
by removing those seen in the previous frontiers as:

nτ
k = pk(1 − (1 − tτ )k)∑

k pk(1 − (1 − tτ )k)
nτ −

τ−1∑

i=1

pi
kni (7)

where n0 = 0 and pτ
k is the frontier degree distribution defined as:

pτ
k = nτ

k∑
k nτ

k

(8)

The probability that a vertex of degree k is used in the frontier is then the number of
vertices of degree k in the frontier divided by the total number in the graph:

πτ
k = pτ

k nτ

pk N
(9)

Figure1 shows fk(t) for pk ∝ k−2.2 Up to iteration 3, 25% of the degrees touched
are of degree 1which rises to∼50%by iteration 5. That is, BFS is biased (proportion-
ately) towards higher degree vertices initially, moving towards lower degree vertices

1A good estimate of the number of vertices expected in each iteration of BFS can be obtained from
a single graph traversals.
2Here we use the YouTube friendship graph as an example: the power law exponent = −2 and tτ =
{0.0006, 0.02, 0.19, 0.53, 0.81, 0.93, 0.97, 0.99, 1}, the results are similar for the other graphs we
examined.
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Fig. 1 Proportion of vertices of degree k seen before iteration τ (α = −2)

at later iterations. Note that Fig. 1 shows the accumulated proportion as the algorithm
progresses, however, it is the difference in these proportions that are touched at each
iteration and this has a very different shape (Fig. 2).
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Fig. 2 Probability a vertex of degree k will be used in iteration τ (theoretical)
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Figure2 shows πτ
k for the YouTube friendship graph (Sect. 4). The distribution

of nodes used in iterations 2 and 3 is biased towards high degree nodes. In iteration
4 the bias centres on vertices of degree 10 with 40% being touched but only 15%
of degree 1 nodes are touched. In iteration 5 the bias switches, ∼40% of degree 1
vertices are touched but only ∼25% of degree 10 vertices are touched. There is a
similar switch between iteration 5 and 6. The interesting thing about this behaviour
is that the degree distribution of vertices used is highly skewed and during the main
iterations (4, 5, 6) those used in one iteration tend not to be used in the next and visa
versa (as illustrated with arrows in Fig. 2). Thus at a specific iteration we have a prior
probability over the vertices that will be used and a different prior over the vertices
they are connected to in the next frontier, and these distributions are different from the
initial power-law distribution, i.e.πτ

k �= πτ+1
k �∝ pk . The transition fromπτ

k → πτ+1
k

involves connecting vertices with degree distribution πτ
k to those with πτ+1

k . It would
be tempting to assume that the probability of a node of degree k connects to a node
of degree k ′ is just the product of πτ

k and πτ+1
k , however the two events are not

independent. Real-world graphs are generally assortative and as has been shown
graph generators that take into account the correlation structure in the joint degree
distribution pk,k ′ produce far better approximations to real-world graphs [21] and
have very different properties from those that assume independence [23]. Here we
assume that the joint degree distribution, pk,k ′ , [21] gives a good approximation of
the expected edges between the vertices in iteration τ and τ + 1, therefore we may
define the probability of transitioning from a vertex with degree k to an edge with
degree k ′ in iteration τ , pτ

k,k ′ as:

pτ
k,k ′ = πτ

k pk,k ′π ′τ+1
k (10)

The probability of using a particular edge, {u, v}, in iteration τ is equal to the prob-
ability of passing from u → v, or from v → u but not both, u ↔ v, as this would
imply u and v have already been touched in iteration τ , therefore:

wτ
k,k ′ = pτ

k,k ′ + pτ
k ′,k − pτ

k,k ′ pτ
k ′,k (11)

where wτ
k,k ′ can be used to weight each edge in G where the weights represents

the expected message along that edge in iteration τ . The total number of expected
messages given a particular partition is then:

E[Cτ ] =
∑

u∈Vτ ,v∈Vτ+1

wτ
ku ,kv

IVi →V j (u, v) (12)

whereIVi →V j (u, v) is an indicator variable s.t. u → v crosses a partition. To imple-
ment this approach requires estimates of; pk , pk,k ′ , nτ . Given these aweighted version
of G, W (V, E), may be constructed, and partitioned using a weighted partitioning
algorithm (here we use the popular METIS algorithm).
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4 Results

The simulations presented below consist of randomly choosing a source node, per-
forming a BFS using the competing algorithms (described below), and recording the
number of messages generated. Code and examples may be found on the project
webpage.3 The simulations are based on 500 randomly chosen root vertices. There
are four competing algorithms which represent different levels of knowledge:

1. The original graph with no weighting is used as a baseline,
2. Using the results from 1. We calculate the actual messages counts and use these

to give an empirical weighted matrix, Wemp. Note that in essence we are using
the answer to derive the partition which is unrealistic. The aim here is to give an
upper bound on the algorithms performance,

3. Using the pτ
k,k ′ from all 500 iterations we combine and smooth these estimates

to produce a single weighted graph called, Wsmooth . The aim here is to give an
estimate of performance without the approximation error inherent in Eq.9, and

4. Using Eqs. (9,11,12) we form a single weighted graph, Wavg .

The joint degree distribution, pk,k ′ , can present problems of storage and estimation
especially when the maximum degree is high. However, as the graphs studied have
a power law distribution, the number of vertices with a high degree falls rapidly. In
this paper we calculate pk,k ′ where nodes with k ≥ 300 are counted in a single bin.
Therefore, pk,k ′ is formed of a, 300 × 300 grid. We choose the number of partitions
to be 100 as this reflects the order of processors in a GPU (the number of proces-
sors varies greatly depending on the machine; the NVIDIA GeForce GTX280, for
example, has 30 [9] while the NVidia Kepler architecture has 4,096 GPU’s [10]).

The datasets used in this study are taken from the Konect graph repository.4

We are specifically interested in social network graphs and so the RMAT graphs
used in studies such as [1, 7] are not included though we do include a synthetically
generated ER graph with a single large component. We also did not consider graphs
with N > 2M for computational reasons. These graphs are listed in Table1.

Figure3 shows the empirical distribution of πτ
k (based on a sample of 500 random

root nodes) for the YouTube Graph versus the theoretical (Fig. 2). As can be seen for
low degrees the approximation is excellent but deviates at higher degrees, especially
during iteration 4. This occurs because high degree nodes in real networks cluster
together in the network core (breaking the uniform assumption in the configuration
model). That said, most nodes in power-law network are of low degree where the
approximation is excellent and as will be seen the results are not effected adversely.

Figure4 shows the average number of messages per iteration using the 4 algo-
rithms above applied to the YouTube graph. As can be seen the three weighted graph
versions perform better than the unweighted graph. The average number of mes-
sages (over all iterations) transmitted using Wavg is the lowest at 681K while those
for the unweighted graph are 790K. The results differ on closer inspection however.

3https://sites.google.com/site/structuralgraphproperties/home.
4http://konect.uni-koblenz.de.

https://sites.google.com/site/structuralgraphproperties/home
http://konect.uni-koblenz.de
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Figure5 shows the histogram of the iteration at which the peak iteration occurred in
each BFS run. For most source vertices the iteration at which the number of vertices
in the frontier reaches a peak is 5 or 6.

Figure6 shows the distribution of messages for a particular root node and as can
be seen here the peak occurs at iteration 4 and the number of messages in the peak far
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Fig. 6 Example showing number of messages per iteration for YouTube graph (root u=157, 298)
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Fig. 7 Distribution of reduction for YouTube dataset (the distribution using those with peak ≥ 6
is shown using the dotted line, 500 samples)

exceeds those in the other iterations. Next we turn our attention to how the algorithm
performs relative to the baseline. Figure7 shows the percentage improvement in
messages over the baseline algorithm. The savings are in the order of 15% for
this graph which is quite significant. In this particular case the three algorithms
perform reasonably similarly but note that Wavg leads to the lowest improvement in
messages at the peak but interestingly the highest improvement in the overall number
of messages (Fig. 4).

Figure8 shows the improvements observed with the Epinions graph. Here there
is a distinct bi-modal distribution, with one distribution centred around 4% and
another centred∼35%. For this graph about half the iterations peak at τ = 3 and the
remainder at τ = 4. If we look at the improvement for those that peak at τ = 3 alone
then a clearer picture emerges. For these vertices the improvement is very small (the
4%mode in the distribution). One possibility is that vertices which reach the peak at
τ = 3 lie in the core of the graph and have less hops to the periphery; thus the BFS
algorithm has less time to achieve the random mixing assumed in Eq. 11 (Kurant
similarly notes that the starting vertex can significantly effect their estimates [20]).

Next we examine a graph with no structure, an Erdos Renyi (ER) graph, where the
joint degree distribution is uniform and the degree distribution is concentrated around
the mean. As there is no structure in the graph we expect the algorithm to fail and this
is exactly what is seen in Fig. 9.5 The % (dis)improvement is a distinctive Gaussian
distribution centred on zero. Moving onto a collection of graphs, Table1 summarizes

5Alternatively one could insert a concentrated degree distribution for pk in (4) and see that
π tau

k = pk .
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Fig. 10 Degree distribution
for Google hyperlink graph
(loglog scale)
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our results. These results are quite mixed; for some graphs the reduction in messages
can be very significant and in the order of ∼15% while for others it can be quite
low. For the epinions and YouTube graphs the improvement is 12.80 and 14.59% on
average which is not far from the upper bound of 16.90 and 16.57%. For the Catster,
Wikipedia, and DBLP graph the results are reasonable and in the region of 5% (3.8,
4.8 and 6.7%). The Google graph does not show any improvement as the degree
distribution for this graph is not power law (Fig. 10). While the distinctive power
law tail exists the distribution for low degree nodes is more uniformly distributed
breaking the underlying assumption required for the algorithm to work.

For the Epinions graph the result for the non-core vertices increases to 17.20%
but for the YouTube graph it actually decreases to 12.37%. For the DBLP graph,
there is no difference. For Wikipedia the difference is quite significant with non-
core vertices reporting a reduction in messages up from 4.80 to 13.96%. The main
conclusion here is that the position of a vertex in the graph certainly has an effect on
the performance but it is unclear what the effect will actually be.

5 Conclusion

Social networks with power law characteristics are an important and common class
of real-world graphs. This paper has clearly demonstrated the principle that their
structure can be leveraged to improve the efficiency of BFS; in some cases signifi-
cantly by up to 20%. The computational overhead is minimal; the quantities required
for the algorithm to work {pk, pk,k ′ , nτ } can be easily estimated from an initial burn
in period (several BFS runs). Future work will look at extending this approach to
weighted, directed graphs, we also note that as vertices and edges are added to a
real-world graph its degree distribution does not change rapidly and so there is scope



Predictive Partitioning for Efficient BFS Traversal in Social Networks 25

for application in dynamic and streaming graph analysis. The skew present in πτ
k is

such that (the standard) unweighted edge partition is not optimal for any iteration.
This is why in Fig. 4 we see that the total number of messages (not just at the peak)
can also be significantly reduced.

As the techniques mentioned in the Related work (Sect. 2) are not graph struc-
ture dependent, it would be interesting to examine if the highly skewed BFS frontier
statistics can be usefully incorporated. Future work will investigate a GPU imple-
mentation, collecting a taxonomy of graphs for which the technique gives signifi-
cant improvement and integration with 2-D approaches for improved performance.
Finally, further work is required to determine why the algorithm works better for
some start vertices, if those vertices can be identified in advance, and in a computa-
tionally efficient manner. It is also possible that Eq. 4 could be made conditional on
known information about the root vertex.
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