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Abstract The paper presents an analysis of the singularities of a novel type of

medical robot for minimally invasive surgery (MIS) using the language of the geo-

metric algebra. The analysis focuses on the parallel manipulator, which is the key

component of the robot. The proposed new parallel manipulator provides a remote

centre of motion located at the incision point of the patient’s body. The aim of the

paper is to derive the geometric condition for singularity in terms of geometric alge-

bra and thus to reveal the singular configurations in order to avoid them during the

surgical procedure. The obtained geometric condition for singularity leads further to

the derivation of the algebraic formulation of the singularity surface which is graph-

ically presented.
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1 Introduction

Surgical robots enhance the capability of surgeons and allow the development of new

operating procedures in the treatment of diseases. These techniques are less invasive

and more precise, which leads to better clinical outcome, reduced hospital stay and

decreased trauma for the patients. At the end of 20th century, the traditional open

surgery evolved to minimally invasive surgery and further to robotised minimally

invasive surgery. In the innovative minimally invasive surgery, long surgical instru-

ments are inserted into the human body through small incisions (less than 10 mm

in diameter) on the abdomen. The surgeon holds and manoeuvres the instruments

thus operating remotely through them. The next logical step of development of the

minimally invasive technique was to replace the surgeon’s hands with robot arms

guided by surgeons, who monitor remotely the internal movements of the instru-

ments through video images delivered by an endoscopic camera.
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From kinematics point of view, the small abdominal incision restricts the motion

of the instrument and acts as a pivoting point. Thus, only four degrees of freedom

are possible, three rotations around three intersecting axes in the pivoting point and a

translation along the longitudinal axis of the surgical tool. The term Remote Centre-

of-Motion (RCM) [23] is used to describe this specific movement. RCM is a point

where one or more rotations are centred and located outside the mechanism itself.

Robots for minimally invasive surgery utilize several types of mechanisms which

can enforce RCM. Zeus medical system applies an isocentre-based RCM mech-

anism [11], while da Vinci surgical system [5] and BlueDRAGON [18] use par-

allelograms for RMC mechanism. The spherical mechanism is preferably a RCM

mechanism in many proposed devices for minimally invasive surgery [15, 24]. Par-

allel manipulators with spherical linkages have also been proposed especially for

laparoscopic surgery [10, 13]. Some other parallel and hybrid manipulators have

been suggested for application in laparoscopy [17, 19]. Obviously, the general type

of parallel manipulators used in the robot-assisted minimally invasive surgery need

to provide programmable RCM [2]. The mechanical RCMs are considered to be more

suitable for the robot-assisted minimally invasive surgery due to the fewer degrees

of freedom, the simpler control system and safer manipulation.

The singular configurations in parallel manipulators should be avoided during

the robot motion since in such configurations the manipulator may have undesired

behaviour and compromised performance. This is especially important for medical

robots as such undesired behaviour could endanger both the outcome of the surgical

procedure and the safety of the patient. That is why the singularities in parallel med-

ical manipulators need to be well analysed and established and therefore should be

avoided during surgical manipulations. Many researchers have studied the singulari-

ties of parallel manipulators using different mathematical tools. Geometric methods

are applied by many researchers [6, 14, 25]. Some “non-traditional” methods, such

as Grassmann geometry [16], Grassmann-Cayley algebra [1, 9] and geometric alge-

bra [20, 22], have been used for singularity analysis of parallel manipulators.

This paper utilizes geometric algebra to geometrically characterize the singular-

ities of a novel hybrid robot, especially the parallel manipulator of the robot. The

proposed hybrid robot consists of a parallel manipulator and an additional transla-

tional joint attached to the moving platform. This robot, which was first proposed

in [21], possesses the ability of the spherical linkage to provide remote centre of

motion and overcomes some drawbacks of the parallel spherical manipulators, such

as a possible clogging and a bulky structure.

2 Robot Design and Kinematics

The considered minimally-invasive-surgery hybrid robot consists of a parallel manip-

ulator and an additional translational joint attached to the moving platform [21]. The

novel parallel manipulator, which is a key component of the considered hybrid robot,
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Fig. 1 A CAD model of the

robot for minimally invasive

surgery

has three limbs (legs) and 2SPU1RRR structure. A CAD model of the considered

hybrid robot is shown in Fig. 1.

Two limbs (A1B1 andA2B2) have an identical SPU (spherical-prismatic-universal)

joints structure and the third one (A3B3) is a RRR (R stands for revolute) spherical

linkage, i.e. the axes of all three revolute joints (R) of this limb intersect in a single

point (Fig. 2). An additional prismatic joint is attached to the moving platform, which

provides a translation along the longitudinal axis of the surgical instrument (end-

effector). The parallel manipulator provides RCM of the end-effector and the RCM

is at the incision point of the patient’s body. Thus, the parallel mechanism has three

degrees of freedom and the hybrid robot has four degrees of freedom in total.

Each limb has one driven joint, respectively. The prismatic joints of the SPU limbs

and the second (middle) revolute joint of the RRR limb are driven. In addition to

these three active joints for the parallel mechanism, an active prismatic joint allowing

translation of the end-effector along the line OB3 is added. The axis of the revolute

joint (at A3), attached to the base platform, is perpendicular to the plane of the base

platform (A1A2A3) and the axis of the revolute joint (at B3), attached to the moving

platform, is perpendicular to the plane of the moving platform (B1B2B3). The origins

of the reference (base) coordinate system OXYZ and the coordinate systems {1},

{2} and {3} coincide with the intersection point of the three axes of the revolute

joints of the spherical RRR limb. The Zi-axes (i = 1, 2, 3) are along the axes of the

three revolute joints, respectively. TheO4X4Y4Z4 coordinate system is attached to the

moving platform and Z4-axis is along the direction of translation of the last prismatic

joint.
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Fig. 2 Kinematic scheme of

the robot

2.1 Robot Kinematics

The kinematics of the robot is presented very briefly here, as a more detailed descrip-

tion is given in [21]. The kinematic modelling of the parallel mechanism is parame-

trized by the three angles of rotation (𝜃1, 𝜃2 and 𝜃3) about the three Zi (i = 1, 2, 3)

axes. Using the D-H (Denavit-Hartenberg) notations, the transformation of the coor-

dinate systems can be written as a product of the following rotation (R) and transla-

tion (T) matrices

Qi = R(𝛼i−1)T(ai−1)R(𝜃i)T(di). (1)

The D-H parameters are given in Table 1, where 𝛼1, 𝛼2, d4 are constant design

parameters and 𝜃1, 𝜃2, 𝜃3 are joint variables (𝛼i is angle between Zi and Zi+1 axes

measured about Xi, i = 1, 2, i.e., 𝛼1 and 𝛼2 are angles between joint axes of the RRR

spherical linkage and are determined by the design of the links of this linkage; d4 =
‖OO4‖).

Then, the transformation matrix for the considered robot manipulator can be writ-

ten as follows

Q = Q1Q2Q3Q4. (2)

For the forward position problem, the following constrained equations can be

written :

Li = ‖OAi −OBi‖, i = 1, 2, (3)
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Table 1 D-H parameters i 𝛼i−1 ai−1 di 𝜃i

1 −𝜋∕2 0 0 𝜃1

2 𝛼1 0 0 𝜃2

3 𝛼2 0 0 𝜃3

4 0 0 d4 0

where ‖...‖ denotes the Euclidean norm; OBi = Q ⋅ (O4Bi); O4Bi is a vector given

in the O4X4Y4Z4 coordinate system. The vectors OAi and O4Bi are determined by

the design of the manipulator.

The two leg lengths (L1 and L2) and the angle 𝜃2 are the given parameters for the

forward problem of the parallel mechanism. Expanding Eq. 3, we get the following

two equations for the unknown variables 𝜃1 and 𝜃3

pi1c1c3 + pi2c1s3 + pi3s1c3 + pi4s1s3 + pi5c1 + pi6s1 + pi7c3 + pi8s3 + pi9 = 0, (4)

where ci = cos 𝜃i, si = sin 𝜃i (i = 1, 2); pi1, pi2,… , pi9 (i = 1, 2) are coefficients which

are determined by the design and input parameters.

Applying tangent-half formulas in Eq. 4 and eliminating one of the two unknowns,

an eight-order polynomial in one unknown is obtained [21].

3 Singularity Analysis of a General Parallel Robot
with Limited Mobility Using Geometric Algebra

The geometric algebra approach for singularity analysis of parallel manipulators

with limited mobility has been developed and presented by the author in two pre-

vious papers [20, 22]. A brief recollection of the approach is given here. Firstly, a

very concise introduction to the geometric algebra is presented in this section, since

extensive treatments can be found in [3, 4, 7].

3.1 Concise basics of the geometric algebra

Clifford algebra was created in the 19th century. In the second half of the 20th cen-

tury this algebra has been rediscovered and further developed into a unified language

named geometric algebra by Hestenes [7], Lasenby and Doran [3], Dorst, Fontijne

and Mann [4], and some other authors. In geometric algebra, a single basic kind of

multiplication called geometric product between two vectors is defined. The geomet-

ric product of two vectors a and b can be decomposed into symmetric and antisym-

metric parts [7]. i.e.
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ab = a ⋅ b + a ∧ b, (5)

where a ⋅ b is the inner product and a ∧ b is the outer product of the two vectors.

The inner product a ⋅ b is a scalar-valued (grade 0). The result of the other product

a ∧ b is an entity called bivector (grade 2). Higher-grade elements can be constructed

by introducing more vectors. The outer product of k vectors a1, a2,… , ak generates

a new entity a1 ∧ a2 ∧ ... ∧ ak called a k blade. The integer k is named grade. The

geometric algebra Gn contains nonzero blades of maximum grade n which are called

pseudoscalars ofGn. The unit pseudoscalar ofG3 of 3-D Euclidean metric space with

the standard orthonormal basis {e1, e2, e3} could be written as

I3 = e1 ∧ e2 ∧ e3 = e1e2e3. (6)

The inverse of the unit pseudoscalar of G3 is

I−13 = e3 ∧ e2 ∧ e1 = −e1 ∧ e2 ∧ e3. (7)

The idea for a unit pseudoscalar and its inverse can be extended for an

n-dimensional Euclidean metric space. The inverse of the unit pseudoscalar is used

for obtaining the dual of a blade, which will be applied in the next sections.

An addition between elements of different grades results in an entity called a mul-
tivector. Inner and outer products are dual to one another and the following identities

could be written [8]

(a ⋅M)In = a ∧ (MIn), (8)

(a ∧M)In = a ⋅ (MIn), (9)

where a is a vector; M is multivector and In is the unit pseudoscalar of n-dimensional

space.

3.2 Geometric Algebra Approach to Singularity of Parallel
Manipulators with Limited Mobility

We need to represent screws and joint screws in terms of the geometric algebra.

Any oriented line l is uniquely determined by giving its direction u and its moment,

thus, in the geometric algebra of 3-D vector space with the basis e1, e2, e3 it can be

written as [7]

𝐥 = 𝐮 + 𝐫 ∧ 𝐮, (10)

where r = rxe1 + rye2 + rze3 is the position vector of a point on the line; u = uxe1 +
uye2 + uze3 is a vector along the line.



Singularity Analysis of a Novel Minimally-Invasive-Surgery Hybrid Robot . . . 21

Thus, in the geometric algebra of the 3-D vector space G3, a line is expressed

as a multivector composed from a vector part plus a bivector. An extension of the

equation of the line (Eq. (10)), i.e. adding the moment corresponding to the pitch,

leads to the equation of a general screw:

𝐬 = 𝐮 + 𝐫 ∧ 𝐮 + h𝐮I3 ≡ v1e1 + v2e2 + v3e3 + b1e2 ∧ e3 + b2e3 ∧ e1 + b3e1 ∧ e2,
(11)

where vi(i = 1, 2, 3) and bi(i = 1, 2, 3) are scalar coefficients; I3 = e1e2e3 is the unit

pseudoscalar of G3; h is the pitch of the screw.

The joint screw of a rotational joint is a line (screw with a zero pitch) and it is

given by Eq. (10), while the joint screw of a prismatic joint can be written as follows

𝐬 = 𝐰I3 ≡ w1e2 ∧ e3 + w2e3 ∧ e1 + w3e1 ∧ e2, (12)

where w = w1e1 + w2e2 + w3e3 is a unit vector along the translation direction of the

prismatic joint.

In Eq. (11), the screw is expressed as a multivector in G3. It could also be

expressed as a vector in the geometric algebra G6. In the geometric algebra of 6-

D vector space with the basis e1, e2, e3, e4, e5, e6 , a screw can be written as a vector

(grade 1), i.e.,

𝐒 = v1e1 + v2e2 + v3e3 + b1e4 + b2e5 + b3e6, (13)

where the coefficients are the same as in Eq. (11).

In this paper, the screws written in G3 and G6 are distinguished by the following

notations: a lower case letter (s, l) denotes a screw written as a multivector in G3
of 3-D space; an upper case letter (S, L) denotes a screw written as a vector in G6
of 6-D space; letters with a tilde mark (s̃, ̃S) denote the elliptic polars of the screws

(s and S), given in G3 and G6 , respectively.

The relationship between twists of freedom and the wrenches of constraint, as

well as the duality in geometric algebra, are employed for the development of the

geometric algebra approach to singularity analysis of parallel manipulators with lim-

ited mobility. The twists of non-freedom (wrenches of non-constraint) and wrenches

of constraint (twists of freedom) are elliptic polars; twists of freedom (wrenches of

constraint) and twists of non-freedom (wrenches of non-constraint) are orthogonal

complements which together span a six space [12]. In terms of the geometric alge-

bra, the operation of transformation of a screw (Eq. (11)) into an elliptic polar screw

can be written as

𝐬 = I3⟨𝐬⟩1 + I−13 ⟨𝐬⟩2 ≡ b1e1 + b2e2 + b3e3 + v1e2 ∧ e3 + v2e3 ∧ e1 + v3e1 ∧ e2,
(14)

where ⟨𝐬⟩k denotes the k-vector part of s; I−13 is the inverse of the unit pseudoscalar

I3 for the geometric algebra G3.
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In case of a parallel manipulator with fewer than six degrees of freedom, some

legs may not possess full mobility. A leg with full mobility and a leg with less than

six dof could be treated in a similar way. In that case, we suppose that the remaining

degrees of freedom are represented by dummy joints (or driven but locked joints) and

the associated with them dummy screws. Taking the outer product of five screws of

the jth leg, written in G6, gives the following 5-blade

j𝐀k =j S1 ∧j S2 ∧ ... ∧j Sk−1 ∧j Sk+1 ∧ ... ∧j S6, (15)

where the subscript k denotes the active joint of the jth leg.

The 5-blade from Eq. (15) involves five screws (out of six with the exception of

the
j𝐒k screw). The kth joint is active. In a non-degenerate space, the dual of a blade

represents the orthogonal complement of the subspace represented by the blade. The

dual of the above 5-blade
j𝐀k is given by the following formula

j𝐃k =j AkI−16 , (16)

where I6 = e1e2e3e4e5e6 is the unit pseudoscalar of the G6 and I−16 is its inverse.

Suppose that the parallel manipulator has n legs and m (m = 6 − q) degrees of

freedom. We assume that the remaining q degrees of freedom are represented by

dummy joints (or driven but locked joints) and the associated with them dummy

screws. Thus, in non-singular configuration the driven joints and the geometry (or

the dummy joints) of the manipulator sustain a general wrench applied to the mov-

ing platform. Therefore, the singular configuration can occur when all dual
j𝐃k or

reciprocal
j𝐑k (

j𝐑k =j 𝐃̃k) screws, representing active and dummy joints, are linearly

dependent. Using the language of the geometric algebra, the condition of singularity

for the parallel manipulator with less than six degrees of freedom (but with dummy

joints) can be expressed as

Da1 ∧ ... ∧ Dak ∧ Dd1 ∧ ... ∧ Ddr = 0, (17)

where k + r = 6; k is the number of the active joints and r is the number of the

dummy joints; Dai is a dual vector (grade 1-blade) associated to the ith active joint

and Ddi is a dual vector (grade 1-blade) associated to the ith dummy joint.

Equation (17) involves dummy screws, and therefore, they need to be eliminated.

Applying some identities of the geometric algebra [8] and manipulating certain

blades from Eq. (17) the dummy screws could be eliminated. Thus, the new equa-

tion resulting from Eq. (17) after elimination of the dummy screws will contain only

passive joint screws, which was shown in [20, 22]. This process of elimination is

explained in more details in the next section.

The effectiveness and advantages of the proposed approach for singularity analy-

sis are summarized next. The approach allows manipulating the components of the

equation for singularity in a basis-free manner and thus, establishing and interpret-

ing the singular configurations. This property of the approach could be considered
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an advantage over the screw Jacobian approach, for example. This advantage is

especially useful for parallel manipulators with limited mobility, which is shown

in the next section. Although the proposed method utilizes the idea of dummy joints

in case of parallel manipulators with limited mobility, there is no need to use a par-

ticular dummy joint since the dummy screws are represented only by the space of

non-freedom. In addition, the approach can establish the singularities for parallel

manipulators with both full and limited mobility as well as distinguish different types

of singularities such as constraint ones. A further benefit which arises from the estab-

lished geometrical condition for singularity is that the algebraic formulation can be

obtained from the geometrical condition. This algebraic equation is equivalent to the

determinant of the 6 × 6 screw Jacobian of the manipulator.

4 Singularity Analysis of the Minimally-Invasive-Surgery
Parallel Manipulator

In this section, the singularity analysis of the novel robot for minimally invasive

surgery is presented. Here, the parallel manipulator, which is the essential part of

the robot, is the main subject of the analysis.

4.1 Geometric Condition for Singularity

The two SPU legs (leg 1 and leg 2) of the parallel manipulator have full mobility and

therefore, have only dual vectors D1 and D2, respectively, associated with the active

joints. The third (RRR) leg has one dual vector (D3) associated with the active joint

(middle R joint) and three dual vectors (D4, D5 and D6) associated with the three

dummy joints. The dual vectors for the two SPU legs can be written as follows

Dj ≡
j 𝐃k = (jS1 ∧j S2 ∧j S3 ∧j S5 ∧j S6)I−16 , (j = 1, 2), (18)

where the fourth P (prismatic) joint is active and is not included in the formula.

These dual vectors D1 and D2 are lines (zero pitch screws) and their elliptic polars

R1 (R1 = ̃𝐃1) and R2 (R2 = ̃𝐃2) are lines along the SPU legs, respectively.

The dual vectors (one vector associated with the middle R joint and three vectors

associated with the dummy joints) for the third RRR leg are as follows

D3 ≡
3 𝐃a = (3S1 ∧3 S3 ∧3 Sd1 ∧

3 Sd2 ∧
3 Sd3 )I

−1
6 , (19)

D4 ≡
3 𝐃d1 = (3S1 ∧3 S2 ∧3 S3 ∧3 Sd2 ∧

3 Sd3 )I
−1
6 , (20)

D5 ≡
3 𝐃d2 = (3S1 ∧3 S2 ∧3 S3 ∧3 Sd1 ∧

3 Sd3 )I
−1
6 , (21)



24 T.K. Tanev

D6 ≡
3 𝐃d3 = (3S1 ∧3 S2 ∧3 S3 ∧3 Sd1 ∧

3 Sd2 )I
−1
6 , (22)

where
3Si, (i = 1, 2, 3) are joint screws of the R-joints (

3S1 is a joint screw of the

R-joint attached to the base platform, while
3S3 is a joint screw of the R-joint attached

to the moving platform) and
3Sdi , (i = 1, 2, 3) are screws of the dummy joints.

The condition for singularity (Eq. (17)) becomes

D1 ∧ D2 ∧ D3 ∧ D4 ∧ D5 ∧ D6 = 0. (23)

The process of the elimination of the dummy vectors is explained below, where

some identities (Eqs. (8) and (9)) of the geometric algebra are used. Let us consider

the blade composed by the two dual vectors D3 and D4

D3 ∧ D4 = −D4 ∧ D3 = −D4 ∧ [(3S1 ∧3 S3 ∧3 Sd1 ∧
3 Sd2 ∧

3 Sd3 )I
−1
6 ]

= −[D4 ⋅ (3S1 ∧3 S3 ∧3 Sd1 ∧
3 Sd2 ∧

3 Sd3 )]I
−1
6

= −(D4 ⋅
3 Sd1 )(

3S1 ∧3 S3 ∧3 Sd2 ∧
3 Sd3 )I

−1
6

= −c1(3S1 ∧3 S3 ∧3 Sd2 ∧
3 Sd3 )I

−1
6

(24)

where c1 = D4 ⋅
3 Sd1 ≡

3 𝐃d1 ⋅
3 Sd1 ≠ 0 is a scalar, while referring to Eq. (20) it can

be seen that the following inner products are zero: D4 ⋅
3 Si = 0, (i = 1, 2, 3) and

D4 ⋅
3 Sdi = 0, (i = 2, 3).

Similarly, the above elimination procedure can be applied for the remaining outer

products involving dummy vectors and the final result can be written as the following

4-blade

D3 ∧ D4 ∧ D5 ∧ D6 = −c1c2c3(3S1 ∧3 S3)I−16 , (25)

where c1 =3 𝐃d1 ⋅
3 Sd1 , c2 =

3 𝐃d2 ⋅
3 Sd2 , c3 =

3 𝐃d3 ⋅
3 Sd3 ; ci(i = 1, 2, 3) are scalars.

Thus, the condition for the singularity (Eq. (23)) becomes

D1 ∧ D2 ∧ (3S1 ∧3 S3)I−16 = 0. (26)

Keeping in mind Eq. (18), it could be seen that only passive joint screws are

involved in the components of Eq. (26) and besides that all of the passive joint screws.

Applying the identities of the geometric algebra, Eq. (26) further becomes

D1 ∧ [D2 ⋅ (3S1 ∧3 S3)]I−16 = D1 ∧ (VI−16 ) = (D1 ⋅ V)I−16 = 0. (27)

The inner product between a vector and a bivector (Eq. (27)) produces the vec-

tor V = D2 ⋅ (3S1 ∧3 S3). Therefore, V is perpendicular to D2 in 6-D space and V
belongs to the bivector space

3S1 ∧3 S3. Since the screws
3S1 and

3S3 are lines pass-

ing through the origin of the coordinate system, i.e., the secondary parts of these

screws are zero, therefore the vector V represents a line passing through the origin,

too (Fig. 3). Thus, the line V lies in the plane defined by the lines
3S1 and

3S3.
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The fact that the vectorsV andD2 are mutually perpendicular in 6-D space implies

that the elliptic polar R2 (line) of the screw D2 (R2 = ̃𝐃2) and the line V should

intersect at a common point, i.e., the screws V and R2 are reciprocal (Fig. 3). From

Eq. (27) it can be concluded that the manipulator is in singular configuration when

the inner product of vectorsD1 andV is zero (D1 ⋅ V = 0). This means that the elliptic

polar R1 (line) of the screw D1 (R1 = ̃𝐃1) and the line V should intersect, i.e., the

screws V and R1 are reciprocal (Fig. 3). Thus, the geometric condition for singularity

could be stated as: the considered parallel manipulator is in singular configuration

if the vector (line) V intersects both lines (R1 and R2) which are along the SPU

legs, respectively. This condition could be restated as: the parallel manipulator is in

singular configuration if the intersection points of the two lines along the SPU legs

with the plane, defined by the axes of the first and the third revolute joints, and the

pivoting point (the intersection point of axes of the three R-joints) lie in a single line

(Fig. 4). The uncontrollable motion in this singular configuration is a pure rotation

about the line V (Figs. 3 and 4). The intersection at infinity is included, too. For

example, in a special case (a special geometry of the robot) the tree lines R1, R2 and

V could be parallel and in this case they intersect at infinity.

Fig. 3 A singular

configuration of the robot
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Fig. 4 A singular

configuration of the robot

and the plane defined by two

joint axes
3S1 and

3S3

4.2 Singularity Surface

Algebraic formulation of the singular condition can be obtained from Eq. (26), i.e.,

B = [D1 ∧ D2 ∧ (3S1 ∧3 S3)I−16 ]I6 = 0, (28)

where B is a scalar-valued (grade 0) function of design and input parameters and it

is parametrized by the three angles of rotation (𝜃1, 𝜃2 and 𝜃3).

The singularity surface obtained from B (Eq. (28)) and the workspace of the

manipulator are shown in Fig. 5 in terms of the three joint angles 𝜃1, 𝜃2 and 𝜃3.

The singularity surface and workspace are obtained for the following design

parameters:

OA1 = (−0.20, 0.52, 0.56)T ; OA2 = (0.20, 0.52, 0.56)T ; OA3 = (0, 0.52, 0)T ; O4B1 =
(−0.1075, 0.05, 0)T ; O4B2 = (0.1075, 0.05, 0)T ; O4B3 = (0, 0, 0)T ; 𝛼1 = 55o

; 𝛼2 =
43o

; d4 = 0.52 m. Also, the following constraints on the motion are imposed in

the workspace derivation: Lmin = 0.30 m; Lmax = 0.58 m (minimum and maximum

lengths of the SPU limbs); minimum angle between each SPU limb and the plane

of the base platform = 30o
. A section of the singularity surface and workspace are

shown in Fig. 6 for the angle 𝜃3 = 0. The singularity point given in this figure cor-

responds to the robot configuration from Figs. 3 and 4. A more detailed analysis of

the workspace of this robot is presented in [21].
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Fig. 5 The singularity

surface and workspace

boundary of the robot

Workspace

Singularity surface

Fig. 6 The singularity curve

and workspace boundary of

the robot for 𝜃3 = 0

Singularity point

Workspace

Singularity curve
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5 Conclusions

The geometric algebra approach proves its ability of providing a good geometri-

cal insight into the singularities of parallel manipulators with limited mobility as in

the case of the proposed novel parallel manipulator for minimally invasive surgery.

Using this approach, the geometrical condition for singular configuration of the pro-

posed robot is obtained in a basis-free form. The obtained geometric condition for

singularities allows to derive the algebraic formulation and to present the singular-

ity surface in terms of three angles. The results, obtained in this paper, are essen-

tial for the robot path planning, where the singular configurations for the proposed

novel type of minimally-invasive-surgery parallel robot should be avoided. This is

especially important for the medical parallel manipulators from the point of view

of the successful surgical outcome and the patient’s safety. It could be concluded

from the presented graphical results that adding a new degree of freedom (the fifth

one), namely a redundant rotation around the surgical instrument (end-effector), will

result in a more dexterous hybrid manipulator which will be able to easily avoid the

singular configurations. This additional rotation would be a redundant one and could

be realized by a modification either of the robot or the surgical instrument.
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