
Chapter 2
Measure on the Real Line

2.1 Introduction

There are many examples of functions that associate a nonnegative real number
or +∞ with a set. There is, for example, the number of members forming the set.
Given a finite probability experiment, probabilities are associated with outcomes.
Riemann integration associates with each finite interval in the real line, the length of
that interval. These are all examples of a “finitely additive measure.” Recall that an
algebra A of subsets of a set X is a collection that contains the set X together with
the complement in X of each of its members; it is also stable under the operation of
taking finite unions and, therefore, finite intersections. Also recall that a collection
of sets is pairwise disjoint if for any two sets A and B in the collection, A∩B =∅.

Definition 2.1.1. A finitely additive measure m is a function from an algebra A
of subsets of a set X into the extended nonnegative real line, R∪{+∞}, such that
m(∅) = 0 and for any finite collection {Ai : i = 1,2, . . . ,n} of pairwise disjoint sets
in A ,

m

(
n⋃

i=1

Ai

)
=

n

∑
i=1

m(Ai) .

Such a function m is countably additive if for any pairwise disjoint sequence
{Ai : i ∈ N} in A with union also in A ,

m

(
∞⋃

i=1

Ai

)
=

∞

∑
i=1

m(Ai) .

Remark 2.1.1. If the summation condition for countable additivity holds and
m(∅) = 0, then the summation condition for finite additivity also holds.
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26 2 Measure on the Real Line

Definition 2.1.2. Given a set A ⊆ R and r ∈ R, the translate of A by r, denoted by
A+ r, is the set {a+ r : a ∈ A}. A finitely additive measure m defined on an algebra
A of subsets of R is translation invariant if for each A ∈A and each r ∈R, A+ r
is in A and

m(A+ r) = m(A).

The translation invariant, finitely additive measure m that associates to each
subinterval of R the length of that interval is defined on the algebra consisting of
all finite unions of subintervals of R. Any such union can be written as a finite union
of pairwise disjoint intervals. The sum of the lengths of those intervals is the value,
independent of the decomposition, that is taken by m. We want to extend Riemann
integration. We need, therefore, to extend the function m to a larger class of sets. We
would like the extension to be countably additive and translation invariant. It turns
out that an extension with these properties cannot be defined for all subsets of R.
There is, however, an important translation invariant extension that is defined for all
subsets of R.

2.2 Lebesgue Outer Measure

For each interval I ⊆ R, we write l(I) for the length of I. For example, if I = (a,b),
then l(I) = b− a. If I is an infinitely long interval, then l(I) = +∞. Given a set
A ⊆ R, we let C (A) denote the family of all collections of open intervals such that
the intervals in the collection cover A. That is, I is a member of C (A) if and only
if I is a set of open intervals in R and the union of the intervals in I contains
the set A. By ∑I∈I l(I) we mean the unordered sum of the length of the intervals
in I . Recall that this is the supremum of the sums obtained by adding the length of
intervals in finite subsets of I . If I is an uncountable collection of intervals, then
by the Lindelöf theorem, a finite or countably infinite subfamily of I also covers
A and has a sum of lengths that is no greater than the sum for the whole family.
Therefore, in applying the following definition, we usually consider just finite and
countably infinite families of open intervals that cover A. Every enumeration of a
countably infinite family of intervals will produce the same sum of lengths, which
is the usual limit of partial sums.

Definition 2.2.1 (Lebesgue outer measure). For each subset A ⊆ R, the Lebesgue
outer measure, denoted by λ ∗(A), is obtained as follows:

λ ∗(A) = inf
I∈C (A )

(
∑

I∈I
l(I)

)
.

Lebesgue outer measure is defined on the power set of R, that is, the algebra
comprised of all subsets of R. We will show that Lebesgue outer measure is trans-
lation invariant and extends the notion of interval length. To obtain finite additivity,
however, we will need to restrict λ ∗ to a proper subfamily of the algebra of all
subsets of R.
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Proposition 2.2.1. For each A ⊆ R, λ ∗(A) ≥ 0, λ ∗(∅) = 0, λ ∗(R) = +∞, and if
A ⊆ B ⊆ R, then λ ∗(A)≤ λ ∗(B).

Proof. Since every open interval contains the empty set, λ ∗(∅) = 0. The rest is
clear from the definition.

Theorem 2.2.1. Lebesgue outer measure is translation invariant. That is, for any
A ⊆ R and each r ∈ R, λ ∗(A+ r) = λ ∗(A).

Proof. Exercise 2.4(A).

Definition 2.2.2. Given a closed and bounded interval [a,b] with a< b, let BP[a,b]
be the sequence of bisection partitions 〈Pn : n ∈ N〉 of [a,b]. That is, P1 is the pair{
[a,a+ b−a

2 ], [a+ b−a
2 ,b]

}
, and for each n∈N, Pn+1 is the set of closed intervals ob-

tained by cutting each interval in Pn in half, thus forming closed intervals of length
(b−a)/2n+1.

Proposition 2.2.2. Fix an interval [a,b] and a finite collection of open intervals I =
{(ak,bk) : k = 1, · · · ,k0} covering [a,b]. There is a j ∈ N such that every interval
in the bisection partition Pj ∈ BP[a,b] is contained in at least one of the open
intervals (ak,bk) from I .

Proof. Since a is contained in an open interval from I , there is a first m ∈ N such
that [a,a+ b−a

2m ] is contained in an open interval from I . For any n < m, let xn = a.
For each n > m, let xn be the largest right endpoint of the intervals in Pn such that
each of the intervals in Pn below xn is contained in an open interval from I . The
increasing sequence 〈xn〉 has a limit x0 in [a,b]. Since x0 is contained in an open
interval from I , that limit is b, and b = x j for some j ∈ N.

Theorem 2.2.2. The Lebesgue outer measure of an interval is its length.

Proof. For any x ∈ R, λ ∗([x,x]) = λ ∗({x}) = 0. Now assume the interval is [a,b]
with a < b. For each ε > 0, [a,b] ⊂ (a− ε ,b+ ε), so λ ∗([a,b]) ≤ b− a+ 2ε , and
since ε is arbitrary, λ ∗([a,b]) ≤ l([a,b]). Note that this proof works for any finite
interval. To show the reverse inequality, we must show that whatever the finite or
countably infinite covering of [a,b] by open intervals, the sum of their lengths is
no less than b− a. Fix such a covering, and let {(ak,bk) : k = 1, · · · ,n0} be a finite
subcovering. We need only show that ∑n0

k=1 bk − ak ≥ b− a. By Proposition 2.2.2,
we may fix a bisection partition Pn of [a,b] so that each member of Pn, which is a
subinterval of [a,b] of length (b− a)/2n, is contained in at least one of the open
intervals (ak,bk). For each k ≤ n0, bk −ak is greater than the sum of the lengths of
the closed intervals from Pn that are contained in (ak,bk). Since b− a is the sum
of the lengths of the intervals in Pn and every one of those intervals is in at least
one of the intervals (ak,bk), it follows that ∑n0

k=1 bk −ak ≥ b−a.
We have already shown that for an arbitrary, not necessarily closed, finite int-

erval I of positive length, the Lebesgue outer measure of I is less than or equal
to the length of I. On the other hand, the length is less than or equal to the outer
measure since there are closed intervals Jn ⊂ I with l(Jn) ↑ l(I). That is, for each
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ε > 0, there is an n ∈ N so that l(I)− ε ≤ l(Jn) = λ ∗(Jn) ≤ λ ∗(I). It follows that
λ ∗(I) = l(I). Finally, an infinite interval contains arbitrarily large closed subinter-
vals, so the outer measure of an infinite interval is +∞.

Theorem 2.2.3. Lebesgue outer measure is finitely and countably subadditive. That
is, for any finite or infinite sequence 〈An〉 of subsets of R,

λ ∗
(⋃

n

An

)
≤ ∑

n
λ ∗(An).

Proof. If for some n we have λ ∗(An) = +∞, then the inequality is clear. If not, we
fix ε > 0 and for each n find a countable family of intervals covering An with the sum
of the length of those intervals less than λ ∗(An)+ε/2n. The union of these families
of intervals forms a countable interval covering of ∪An, and the sum of the lengths
is less than ∑n λ ∗(An)+ ε . Since ε is arbitrary, the result follows.

Corollary 2.2.1. A countable set has Lebesgue outer measure 0.

Corollary 2.2.2. Any interval of positive length is uncountable.

Example 2.2.1. The set of integers has Lebesgue outer measure 0, and the set of
rational numbers has Lebesgue outer measure 0.

Recall that a Gδ set is a set that is the countable intersection of open sets. An Fσ
set is a set that is the countable union of closed sets. A Gδσ set is a countable union
of Gδ sets. An Fσδ set is a countable intersection of Fσ sets, etc.

Proposition 2.2.3. Given A ⊆ R and ε > 0, there is an open set O with A ⊆ O and
λ ∗(O)≤ λ ∗(A)+ ε . Moreover, there is a Gδ set S ⊇ A with λ ∗(S) = λ ∗(A).

Proof. The first and second part are clear if λ ∗(A) = +∞. For example, let
O = S = R . Otherwise, take open intervals that cover A with total length at most
ε , and let O be the union. For the second part, let On be an open set given in the first
part that works when ε = 1/n. Now the desired set is S =

⋂
n On.

To obtain Lebesgue measure, we will restrict λ ∗ to a family of sets on which it
is finitely additive. The restriction will then, in fact, be countably additive. We will
call the reduced family of sets “the Lebesgue measurable sets”, and the restriction
of λ ∗ will be Lebesgue measure λ .

2.3 General Outer Measures

Lebesgue outer measure generalizes the length of finite open intervals. The length
of a finite interval is the change on the interval of the function F(x) = x. More
general outer measures are constructed using the changes of more general increasing
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functions. Such functions will have discontinuities at points where the limit from the
right and the limit from the left are not equal. Our more general outer measures will
be formed using increasing functions, called “integrators”, that are continuous from
the right.

Definition 2.3.1. An increasing real-valued function F is an integrator if for each
x in the domain of F , F(x) = lim

y→x+
F(y).

We are only interested in the changes of an integrator, so when we restrict work
to a finite interval in R on which the integrator is bounded below, we may add a
constant so that the integrator is nonnegative. The integral that results from general
integrators relates to what is called “the Riemann–Stieltjes integral” in the same
way that the Lebesgue integral relates to the Riemann integral. This generalization
is very important in probability theory. It will cost us essentially nothing to work
with results for which a more general integrator can be used. This generalization
of the approach to Lebesgue integration also simplifies later material on measure
differentiation. It will be clear which results hold only for Lebesgue outer measure
and the corresponding Lebesgue measure.

As noted, the construction of Lebesgue outer measure employs the change of the
integrator F(x) = x on open intervals. For a general integrator F , however, we use
the change F(b)−F(a) on intervals of the form (a,b]. In this way, the value of any
jump of F is associated with the interval on which it occurs. If we already have a
measure taking only finite values, then we may set F(x) equal to the measure of
(−∞,x]. If F is only defined on a finite interval [a,b], then we can extend F with the
value F(a) to points below a and F(b) to points above b. Then the change of F will
be 0 on any interval that does not intersect [a,b]. If an integrator is continuous, such
as the integrator F(x) = x for Lebesgue outer measure, then the same outer measure
is obtained using open intervals or intervals of the form (a,b] (Exercise 2.13). We
have shown in Corollary 1.7.1 that any collection of intervals of the form (a,b] has
a finite or countably infinite subcollection with the same union.

Definition 2.3.2. Let F be an integrator, that is, an increasing real-valued function,
continuous from the right at each point of R. For each subset A ⊆ R, let m∗(A) be
defined in a way similar to Lebesgue outer measure, but using finite intervals of the
form (a,b] and the change F(b)−F(a).

When we used length, we used compactness and open coverings to show that
the outer measure of an interval is its length. The analogous result for a general
integrator F is still true.

Proposition 2.3.1. Let F be an integrator on R. Then m∗(∅) = 0. If A ⊆ B ⊆ R,
then m∗(A)≤ m∗(B), and for any interval (a,b], m∗((a,b]) = F(b)−F(a)<+∞.

Proof. Every interval (a,b] contains the empty set, and for every ε > 0 there is such
an interval for which F(b)−F(a) < ε (Problem 2.14). Therefore, m∗(∅) = 0. It is
clear that a more general outer measure is still an increasing function; that is, the big-
ger the set, the bigger the outer measure. It is also clear that m∗((a,b])≤ F(b)−F(a)
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since (a,b] covers itself. To show the reverse inequality for F , we fix ε > 0. Fix a
countable covering of (a,b] by intervals of the form (cn,dn]. Since F is contin-
uous from the right, we may replace each interval (cn,dn] with an open interval
(cn,en) where en > dn, but F(en)−F(cn) ≤ F(dn)−F(cn)+ ε/2n+1. Fix δ with
0 < δ < b− a and F(a+ δ ) < F(a)+ ε/2. The intervals (cn,en) form an open in-
terval covering of [a+ δ ,b], and so we may assume it is a finite covering of that
interval. By Proposition 2.2.2, we may fix a bisection partition Pn of [a+ δ ,b] so
that each member of Pn, which is a subinterval of [a+δ ,b] of length (b−a−δ )/2n,
is contained in at least one of the open intervals (ck,ek). For each of the intervals
(ck,ek), F(ek)−F(ck) is greater than or equal to the sum of the changes of F on
the closed intervals of Pn contained in (ck,ek). Moreover, F(b)−F(a+δ ) is equal
to the sum of the changes of F on the intervals of Pn. Since each interval of Pn is
contained in at least one of the intervals (ck,ek), it follows that

∞

∑
k=1

[F(dk)−F(ck)]+
ε
2

≥
n

∑
k=1

F(ek)−F(ck)≥ F(b)−F(a+δ )≥ F(b)−F(a)− ε
2

.

Since ε is arbitrary, the result follows.

Remark 2.3.1. It is no longer necessarily true for a more general integrator F that
points have 0 outer measure. If F jumps at a point x, then the outer measure of {x}
is the size of the jump.

Example 2.3.1. If we defined m∗ using open intervals, then it would no longer be
always true that the outer measure of an open interval would equal the change of the
integrator at the endpoints of the interval. For example, if F(x) = 0 for x < 1 and
F(x) = 1 for x ≥ 1, then the change of F for (0,1) is 1, but the outer measure using
countable coverings by small open intervals would be 0.

Remark 2.3.2. In what follows, results and proofs that hold for general integrators
will be stated using m∗ and m for the corresponding outer measure and measure. We
will use λ ∗ and λ when the result is special for the Lebesgue case. Since most results
use only the common properties of outer measures, in only a few instances, such as
Proposition 2.3.1 above, is there a difference in wording of proofs for the Lebesgue
and the general case. For the next result, already established for the Lebesgue case,
one can also use the fact that there is an integrator F(x) = x for the Lebesgue case.

Theorem 2.3.1. Outer measure is finitely and countably subadditive. That is, for
any sequence 〈An : n ∈ N〉 of subsets of R, where some sets may be empty,

m∗
(⋃

n∈N
An

)
≤ ∑

n∈N
m∗(An).

Proof. If for some n, m∗(An) = +∞, then the inequality is clear. If not, fix ε > 0,
and for each n ∈ N find a countable family Fn of appropriate intervals covering An
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such that the sum of the changes of the integrator F is less than m∗(An) + ε/2n.
The union ∪n∈NFn is a countable interval covering of ∪n∈NAn such that the sum
of the changes of F is less than ∑n∈N m∗(An) + ε . Since ε is arbitrary, the result
follows.

2.4 Measure from Outer Measure

As we shall see, Lebesgue outer measure is not even finitely additive on the family of
all subsets of R. There is, however, a finite additivity condition that yields not just
finite additivity, but also countable additivity on an appropriate family of subsets
of R. It is a condition, due to Carathéodory, that is applicable to all outer measures.

Definition 2.4.1 (Carathéodory). A set E ⊆ R is called measurable if for all sub-
sets A ⊆ R,

m∗(A) = m∗(A∩E)+m∗(A∩ Ẽ).

We denote the family of measurable sets by M . If the outer measure extends length,
we may say “Lebesgue measurable.”

The idea is that a set E is in M if and only if E splits any set in an additive
fashion. Since outer measure is subadditive, we always have

m∗(A)≤ m∗(A∩E)+m∗(A∩ Ẽ).

We also have the reverse inequality if m∗(A) = +∞. Therefore, to show E is mea-
surable, we need only show that for any set A ⊆ R with m∗(A)<+∞,

m∗(A)≥ m∗(A∩E)+m∗(A∩ Ẽ).

Proposition 2.4.1. Any set of outer measure 0 is measurable.

Proof. If m∗(E) = 0, then for any A ⊆ R ,

m∗(A)≥ m∗(A∩ Ẽ) = m∗(A∩ Ẽ)+m∗(A∩E),

since m∗(A∩E)≤ m∗(E) = 0.

Lemma 2.4.1. The family M of measurable sets is an algebra of sets.

Proof. By symmetry, a set E is in M if and only if the complement Ẽ = �E is in M .
Moreover, R and ∅ are clearly measurable. We need to show that M is stable under
the operation of taking finite unions. For this we need only consider two measurable
sets E1 and E2. Fix A ⊆R . We will use the fact that since E1 and E2 are measurable,

m∗(A) = m∗(A∩E1)+m∗(A∩ Ẽ1),

m∗(A∩ Ẽ1) = m∗(A∩ Ẽ1 ∩E2)+m∗(A∩ Ẽ1 ∩ Ẽ2).
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We will also use the following consequence of subadditivity:

m∗(A∩ [E1 ∪E2])≤ m∗(A∩E1)+m∗(A∩E2 ∩ Ẽ1).

Now,

m∗(A) ≤ m∗(A∩ [E1 ∪E2])+m∗(A∩�[E1 ∪E2])

= m∗(A∩ [E1 ∪E2])+m∗(A∩ [Ẽ1 ∩ Ẽ2])

≤ m∗(A∩E1)+m∗(A∩E2 ∩ Ẽ1)+m∗(A∩ [Ẽ1 ∩ Ẽ2])

= m∗(A∩E1)+m∗(A∩ Ẽ1) = m∗(A).

Therefore, E1 ∪E2 ∈M .

Lemma 2.4.2. For any finite, pairwise disjoint sequence of measurable sets Ei,
1 ≤ i ≤ n, and any A ⊆ R,

m∗(A∩ [∪n
1Ei]) =

n

∑
1

m∗(A∩Ei).

Proof. The proof is by induction. The equality is clear for n = 1. Assuming it holds
for n−1, that is,

n−1

∑
i=1

m∗(A∩Ei) = m∗(A∩ [∪n−1
1 Ei]) = m∗(A∩ [∪n

1Ei]∩ Ẽn),

we also have
m∗(A∩En) = m∗(A∩ [∪n

1Ei]∩En).

Therefore, equality holds for n since En is measurable and

n

∑
1

m∗(A∩Ei) = m∗(A∩ [∪n
1Ei]∩ Ẽn)+m∗(A∩ [∪n

1Ei]∩En)

= m∗(A∩ [∪n
1Ei]).

Recall that an algebra of sets is called a σ -algebra if it is stable with respect to
the operation of taking countable unions.

Definition 2.4.2. A nonnegative function μ defined on a σ -algebra A is a measure
on A if μ (∅) = 0 and μ is countably additive; that is, given a countable, pairwise
disjoint sequence 〈An : n ∈ N〉 of sets in A , where some sets may be empty,

μ

(⋃
n∈N

An

)
= ∑

n∈N
μ(An).

The pair (A ,μ) is called a measure space.
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Theorem 2.4.1. The family M is a σ -algebra containing all sets of outer measure
0, and the restriction of m∗ to M is a measure on M .

Proof. We have already noted that M contains all sets of outer measure 0. Let Bi,
i ∈ N , be a countable family of sets in M , and let E be the union. We must show
that E ∈M . Since M is an algebra, it follows from Proposition 1.3.1 that we may
replace each set Bi with a subset Ei ∈ M so that the Ei’s are pairwise disjoint but
have the same union E. For each finite n, let Fn =

⋃n
i=1 Ei. Then, because M is an

algebra and F̃n ⊇ Ẽ, for each A ⊆ Rwe have

m∗(A) = m∗(A∩Fn)+m∗(A∩ F̃n)

=
n

∑
i=1

m∗(A∩Ei)+m∗(A∩ F̃n)

≥
n

∑
i=1

m∗(A∩Ei)+m∗(A∩ Ẽ).

Since this is true for all n ∈ N, we have by subadditivity

m∗(A) ≥
∞

∑
i=1

m∗(A∩Ei)+m∗(A∩ Ẽ) (2.4.1)

≥ m∗(A∩E)+m∗(A∩ Ẽ).

Therefore, E ∈M . It now follows from Inequality (2.4.1) applied to any pairwise
disjoint sequence 〈Ei : i ∈ N〉 in M and the set A = E = ∪∞

i=1Ei that the restriction
of m∗ to M is countably additive.

Definition 2.4.3. Lebesgue measure λ is λ ∗ restricted to the σ -algebra M of sets
measurable with respect to λ ∗. For a general outer measure m∗, including Lebesgue
outer measure, we let m denote the measure obtained by restricting m∗ to the corre-
sponding collection of measurable sets.

Recall that the intersection of all σ -algebras in R containing a family of sets S
is again a σ -algebra; it is the smallest σ -algebra in R containing the family S .

Definition 2.4.4. The family of Borel sets in R is the smallest σ -algebra containing
the open subsets of R.

We have seen that every open subset of R is a finite or countably infinite union of
pairwise disjoint open intervals. To show, therefore, that a σ -algebra on R, such as
M , contains the Borel sets, it is enough to show that it contains every open interval.
Indeed, this need only be shown for certain open intervals.

Lemma 2.4.3. The interval I = (a,+∞) is measurable.

Proof. Fix A ⊆ R with m∗(A) < +∞. Let A1 = A \ I = {x ∈ A : x ≤ a} and A2 =
A∩ I = {x ∈ A : x > a}. We must show that m∗(A) ≥ m∗(A1)+m∗(A2). Fix ε > 0.



34 2 Measure on the Real Line

For the Lebesgue case, find a countable family of open intervals In that cover A with
total length less than λ ∗(A) + ε . Let I′n = In \ I and I′′n = In ∩ I. For each n, I′n is
either empty or it is an interval, and I′′n is either empty or an interval. Moreover, the
nonempty intervals I′n cover A1, so by subadditivity their total length, which is the
same as their total outer measure, is greater than or equal to λ ∗(A1). Similarly,
the nonempty intervals I′′n cover A2, so their total length, which is the same as their
total outer measure, is greater than or equal to λ ∗(A2). Note that for each n, the
length of In is the length of I′n added to the length of I′′n . Therefore,

λ ∗(A1)+λ ∗(A2) ≤ λ ∗(∪nI′n)+λ ∗(∪nI′′n )
≤ ∑ λ ∗(I′n)+∑ λ ∗(I′′n ) = ∑ l(In)≤ λ ∗(A)+ ε ,

and since ε is arbitrary, the result is established for the Lebesgue case.
For more general outer measures, we modify the above proof using the fact that

if an interval (α,β ] is cut by an interval (a,+∞), that is, if α < a < β , then (α,β ]
will be cut into two intervals of the same kind: (α,a] and (a,β ]. In this case, the
sum of the changes on the two intervals of an integrator F will be the total change
on (α,β ].

Proposition 2.4.2. The family of measurable sets M contains the Borel sets. In par-
ticular, M contains every open set and every closed set.

Proof. We have shown that every open interval of the form (a,+∞) is in M .
Therefore, intervals of the form (−∞,a] are in M . Since (−∞,a) =

⋃
n∈N(−∞,

a− 1
n ] ∈ M , and for each a,b ∈ R , (a,b) = (−∞,b)∩ (a,+∞), every open inter-

val is in M . Thus every open set is in M . Since M is a σ -algebra containing the
open sets, M contains the smallest σ -algebra containing the open sets, namely, the
Borel sets.

Remark 2.4.1. The collection M of measurable sets changes with changes in the
integrator, but M always contains the Borel sets. The collection of sets of measure 0
will, in general, be different. For example, suppose an integrator F is constant on the
interval I = (0,1). Then every subset of I will be measurable and have m-measure 0.
As shown in Problem 2.32, however, there are non-Lebesgue measurable subsets
of I.

Proposition 2.4.3. If E and F are measurable sets such that F ⊆ E and F has finite
measure, then m(E \F) = m(E)−m(F).

Proof. This follows from the fact that m(E \F)+m(F) = m(E).

Definition 2.4.5. We will use the notation En ↗ E to indicate a sequence of sets
such that En ⊆ En+1 for all n and ∪nEn = E. Similarly, En ↘ E indicates a sequence
of sets such that En ⊇ En+1 for all n and ∩nEn = E.

Proposition 2.4.4. Let 〈En : n ∈ N〉 be a sequence of measurable sets. If En ↗ E,
then m(E) = limm(En). If En ↘ E, and for some k, m(Ek) is finite, then m(E) =
limm(En).
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Proof. Fix a sequence E1 ⊆E2 ⊆ ·· · with union E, and set E0 =∅. Form the disjoint
sequence Fk = Ek \Ek−1 in M with union E. Now, for each n, the set En is the
disjoint union

⋃n
k=1 Fk. Moreover, E =

⋃∞
k=1 Fk, and so m(E) = ∑∞

k=1 m(Fk). The
last equality means m(E) = limn ∑n

k=1 m(Fk) = limn m(En).
Now assume that En ↘ E and for some k, which we may assume is 1,

m(E1)<+∞. Let Hn = E1 \En and H = E1 \E. Then Hn ↗ H, so

m(Hn) = m(E1)−m(En)↗ m(E1)−m(E) = m(H),

whence m(En)− m(E1) ↘ m(E)− m(E1). Since m(E1) < +∞, it follows that
m(En)↘ m(E).

Example 2.4.2. An example showing that the finiteness condition cannot be dropped
is given by Lebesgue measure and the sequence [n,+∞)↘∅.

2.5 Approximation of Measurable Sets

Results for measurable sets are often obtained using results for a smaller class of
approximating sets. In this section we have examples of such approximations.

Lemma 2.5.1. If E ∈M and m(E) < +∞, then for any ε > 0, there is an open set
O ⊇ E with m(O\E)< ε .

Proof. If E =∅, set O=∅. Otherwise, for Lebesgue measure λ =m, we take a cov-
ering of E by a countable number of open intervals so that the sum of their lengths
is less than λ (E)+ ε . The open set O is the union of the intervals. By subadditivity,
λ (E)≤ λ (O)< λ (E)+ ε . Since O = (O\E)∪E, λ (O\E) = λ (O)−λ (E)< ε .

For a general integrator F , we can take a covering by intervals of the form (an,bn]
such that the sum of the changes in F is smaller than m(E)+ ε/2. Since F is con-
tinuous from the right, we may replace each interval (an,bn] with an open inter-
val (an,cn) where cn > bn, but F(cn)−F(an) ≤ F(bn)−F(an)+ ε/2n+1. Now by
Proposition 2.3.1,

m((an,cn))≤ m((an,cn]) = F(cn)−F(an)≤ F(bn)−F(an)+ ε/2n+1.

Let O = ∪∞
n=1(an,cn). Then O ⊇ E, and by subadditivity,

m(O)≤
∞

∑
n=1

m((an,cn))≤
∞

∑
n=1

(
F(bn)−F(an)+

ε
2n+1

)
< m(E)+ ε ,

whence m(O\E) = m(O)−m(E)< ε .

Theorem 2.5.1. Fix E ⊆ R . Then the following are equivalent:

1) E ∈M .
2) ∀ε > 0, ∃ an open set O ⊇ E with m∗(O\E)< ε .
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3) ∀ε > 0, ∃ a closed set F ⊆ E with m∗(E \F)< ε .
4) ∃ a Gδ set G with E ⊆ G such that m∗(G\E) = 0.
5) ∃ an Fσ set S with S ⊆ E such that m∗(E \S) = 0.
6) ∃ a Gδ set G and a set A of outer measure 0 such that E = G\A = G∩ Ã.
7) ∃ an Fσ set S and a set A of outer measure 0 such that E = S∪A.

Proof. (0 ⇒ 1) Assume E is measurable. Let I1 = [−1,1] and E1 = E ∩ I1. For each
integer n > 1, let In = [−n,−n+ 1)∪ (n− 1,n] and En = E ∩ In. Given ε > 0 and
n ∈ N, there is by Lemma 2.5.1 an open set On ⊇ En such that

m(On \En)< ε/2n.

Now, O := ∪nOn contains E, and since

O\E = O∩ Ẽ = ∪n(On ∩ Ẽ) = ∪n(On \E)⊆ ∪n(On \En),

m∗(O\E)< ε by subadditivity.
(1 ⇒ 3) By taking the intersection over a countable sequence of open sets On

given by Condition 1 with εn = 1/n, we find a Gδ set G ⊇ E with m∗(G\E) = 0.
(3 ⇒ 5) Given a Gδ set G ⊇ E with m∗(G \E) = 0, we set A = G \E. Then

E = G\A = G∩ Ã.
(5 ⇒ 0) Any set E ⊆ R for which there is a Gδ set G ⊇ E such that A := G \E

has outer measure 0 is measurable since E = G∩ Ã.
We have shown that measurability, Condition 1, Condition 3, and Condition 5

are equivalent. It follows that the following are equivalent statements with respect
to an arbitrary set E ⊆ R:

i) E is measurable.
ii) R\E is measurable.

iii) ∀ε > 0, ∃ an open O ⊇ R\E, whence R\O ⊆ E, such that

m∗(O\ (R\E)) = m∗(O∩E) = m∗ (E \ (R\O))< ε .

iv) ∀ε > 0, ∃ a closed F ⊆ E with m∗(E \F)< ε .
v) ∃ an Fσ set S ⊆ E such that m∗(E \S) = 0.

vi) ∃ an Fσ set S and a set A of measure 0 such that E = S∪A.

Thus, measurability, Condition 2, Condition 4, and Condition 6 are equivalent.

Corollary 2.5.1. A set E ⊆R is measurable if and only if E is a Borel set, in fact an
Fσ set, to which a set of outer measure 0 has been adjoined.

We will see that very nice properties hold for sets of finite measure from which
appropriate sets of small measure have been removed. The following is an example
of such a result.

Corollary 2.5.2. Given a measurable set A ⊆ R with m(A)<+∞, and given ε > 0,
there is a compact set K ⊆ A with m(A\K)< ε .
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Proof. Since A is measurable, there is a closed subset F of A with m(A\F)< ε/2.
Since the sequence

F ∩ [−n,n]↗ F ,

and m(F)<+∞, there is an n0 such that m(F \ [−n0,n0])< ε/2. The desired com-
pact set is F ∩ [−n0,n0].

Proposition 2.5.1. If A /∈ M , then there is a Gδ set S containing A such that
m∗(S ∩ A) + m∗(S ∩ Ã) �= m(S). Therefore, there is no collection larger than M
on which the restriction of m∗ is even finitely additive.

Proof. Exercise 2.24.

2.6 LimSup and LimInf of a Sequence of Sets

Recall that for a sequence 〈xn : n ∈ N〉 in R, limsupxn := infn∈N(supk≥n xk) =∧
n∈N

(∨
k≥n xk

)
, and liminfxn := supn∈N(infk≥n xk) =

∨
n∈N

(∧
k≥n xk

)
. Here are

analogous operations on sets.

Definition 2.6.1. Let 〈An : n ∈ N〉 be an infinite sequence of subsets of a set X .

limsupAn :=
⋂

n∈N

(⋃
k≥n

Ak

)

liminfAn :=
⋃

n∈N

(⋂
k≥n

Ak

)
.

Theorem 2.6.1. Let 〈An : n ∈ N〉 be an infinite sequence of subsets of a set X. Then
limsupAn is the set of points in an infinite number of the sets An, while liminfAn is
the set of points in all but a finite number of the sets An.

Proof. Exercise 2.25.

Theorem 2.6.2 (Borel-Cantelli Lemma). Let 〈En : n ∈ N〉 be an infinite sequence
of measurable subsets of R such that ∑∞

n=1 m(En)<+∞. Then limsupEn is a set of
measure 0. That is, outside of a set of measure 0, all points are in at most a finite
number of the sets En.

Proof. Let Sk =∪∞
n=kEn. Since m(S1) = m(∪∞

n=1En)≤ ∑∞
n=1 m(En)<+∞ and Sk ↘

limsupEn,

m(limsupEn) = lim
k→∞

m(Sk)≤ lim
k→∞

∞

∑
n=k

m(En) = 0.
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2.7 The Existence of a Non-measurable Set

In this section and the next, we work just with Lebesgue outer measure and
Lebesgue measure. Using the Axiom of Choice (see the Appendix), we will show
that there are subsets of [0,1] that are not Lebesgue measurable. Robert Solovay
[47] showed in 1970 that there exist models of set theory in which the Axiom of
Choice does not hold and every subset of the real line is Lebesgue measurable. We
will say “measurable” when we mean Lebesgue measurable.

For the construction of a non-measurable set, we work with [0,1) and addition
modulo 1. That is, for x, y ∈ [0,1) we set x+′ y = x+ y if x+ y < 1, and we set
x+′ y = x+ y−1 if x+ y ≥ 1. By associating 0 with 1, one can think of [0,1) with
addition modulo 1 as the circle of circumference 1 centered at the origin in the plane.
The operation +′ corresponds to rotation or addition of angles. It is easy, therefore,
to see that the operation +′ is commutative and associative.

Lemma 2.7.1. Given y ∈ [0,1) and E ⊆ [0,1), λ ∗(E+′ y) = λ ∗(E). If E is Lebesgue
measurable, then so is E +′ y.

Proof. Set E1 = E ∩ [0, 1− y) and E2 = E ∩ [1− y,1). If E is measurable, so is
E +′ y = (E1 + y)∪ (E2 + y−1). If E is any subset of [0,1), then since [0, 1− y) is
measurable and Lebesgue outer measure is translation invariant,

λ ∗ (E) = λ ∗ (E1)+λ ∗ (E2) = λ ∗(E1 + y)+λ ∗(E2 + y−1)

≥ λ ∗ ((E1 + y)∪ (E2 + y−1)) = λ ∗(E +′ y)
≥ λ ∗(

(
E +′ y

)
+′ (1− y)) = λ ∗(E).

The last equality follows since if x ∈ E and x+ y < 1, then (x+′ y)+′ (1− y) = x,
and the same is true if x+ y ≥ 1.

We now define an equivalence relation ∼ in [0,1) by setting x ∼ y if x and y differ
by a rational number. By the Axiom of Choice, there is a set P ⊆ [0,1) containing
exactly one element from each equivalence class. Let 〈ri : i ∈ N∪{0}〉 be an enu-
meration of the rational numbers in [0,1) with r0 = 0. Let Pi = P+′ ri, so P0 = P. If
i �= j, then Pi ∩Pj =∅. To see this, assume x ∈ Pi ∩Pj. Then for elements pi and p j

in P, we have
x = pi +

′ ri = p j +
′ r j.

It follows that
∣∣pi − p j

∣∣ is a rational number, i.e., pi ∼ p j. Since P contains only one
element from each equivalence class, pi = p j and so ri = r j. That is, Pi = Pj. On the
other hand, for each x ∈ [0,1), x is in some equivalence class, so for some p ∈ P and
some ri, x = p+′ ri. Therefore, the collection {Pi} is a countable, pairwise disjoint
collection of sets with union [0,1).

Proposition 2.7.1. The set P is not Lebesgue measurable.
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Proof. Assume that P is measurable. Then λ (P) is defined, and by Lemma 2.7.1,
λ (P) = λ (Pi) for all i, whence λ ([0,1)) =∑λ (Pi) =∑λ (P). Since the sum is finite,
λ (P) = 0. But then λ ([0,1)) = 0. Since this is not true, we conclude that P is not
measurable.

We have actually shown that the following is true.

Proposition 2.7.2. If μ is a σ -additive, translation invariant measure defined on a
σ -algebra containing P, then μ([0,1)) is either 0 or +∞.

2.8 Cantor Set

The Cantor set C, also called the Cantor ternary set, is the closed subset of [0,1]
obtained by removing the following open set:(

1
3 ,

2
3

)∪ [(
1
9 ,

2
9

)∪ (
7
9 ,

8
9

)]∪ [(
1

27 ,
2
27

)∪ (
7

27 ,
8
27

)∪ (
19
27 ,

20
27

)∪ (
25
27 ,

26
27

)] · · ·
That is, remove the open middle third from [0,1], and at each successive step, rem-
ove the open middle third of each of the remaining closed intervals. It consists of
all numbers in [0,1] that have a ternary expansion (i.e., an expansion base 3) that
does not use the digit 1. If there are two ternary expansions of a point in C, one of
them satisfies this property. The set C is the intersection of closed subsets of [0,1]
such that no finite subcollection of these closed sets has an empty intersection. Since
[0,1] is compact, the intersection C of all of the closed subsets is nonempty.

The set C is, in fact, uncountable. To see this, assume 〈cn : n ∈ N〉 is a sequence
of points in C. Let F1 be the closed interval remaining after removing ( 1

3 ,
2
3 ) from

[0,1] that does not contain c1. At stage n− 1, we have a closed interval that does
not contain the points c1, c2, · · · , cn−1. We remove the middle third, and let Fn be
the one of the two remaining closed intervals that does not contain cn. For each
n ∈ N, ∩n

i=1Fi �= ∅. Therefore, the set ∩∞
i=1Fi is a nonempty subset of C, and it

contains no point of the enumeration. This shows that we cannot exhaust C with
an enumeration; that is, C is uncountable. Working Exercise 2.33, one shows that
the Lebesgue measure of the removed open set is 1, so λ (C) = 0. Note that C is an
example of an uncountable set of measure 0.

One can form a generalized Cantor set with positive measure by scaling each
of the removed intervals by α where 0 < α < 1 and removing the scaled intervals
from the centers of the intervals left in the previous stage of the construction. The
removed set is an open set O of measure α , and the complement F has measure
1−α . A generalized Cantor set with positive measure is also called a fat Cantor set.

For the Cantor set and any generalized Cantor set, the removed open set O is
dense in [0,1]; that is, its closure is [0,1]. To see this, note that for any x ∈C, there is
a point y1 removed at the first stage so that |x− y1| ≤ 1/2. Similarly, at the nth stage,
there is a point yn removed at that stage such that |x− yn| ≤ 1/2n. The extreme
case would be realized if we removed first the singleton set {1/2}, then the set
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{1/4,3/4}, etc. It would still be true that this removed set (no longer open) would
be dense in [0,1]. Note that if we take the union of the generalized Cantor sets for
each α = 1/n, we get an Fσ set with total measure 1.

Along with the Cantor set, there is a continuous increasing function g called the
Cantor-Lebesgue function mapping [0,1] onto [0,1] taking all of its increase on
the Cantor set, that is, on a set of measure 0. The function g is identically equal to
1/2 on the removed middle third; it is identically equal to 1/4 and 3/4, respectively,
on the next two removed open intervals, etc. The value at points of the Cantor set is
the limit of values on the removed open intervals.

2.9 Problems

Problem 2.1. Let B be the collection of all subsets A⊆R such that either A or R\A
is finite or countably infinite. For each A ∈B, let μ(A) = 0 if A is finite or countably
infinite, and let μ(A) = 1 otherwise. Show that B is a σ -algebra and μ is a measure
on B; that is, μ is a nonnegative, countably additive function on B with μ( /0) = 0.

Problem 2.2. Recall that a measure on a set E is a mapping μ from a σ -algebra A
of subsets of E into [0,+∞] such that μ( /0) = 0 and μ is countably additive, whence
μ is also finitely additive. Show that such a general measure is subadditive. That
is, the measure of the union of a countable number of not necessarily disjoint sets in
A is less than or equal to the sum of the measures of the sets forming the union.

Problem 2.3. Let ν be a finitely additive measure on a σ -algebra A of sets in a
set X .

a) Suppose that for any sequence 〈En〉 of sets in A , if En ↗ E, then ν(E) =
limn ν(En). Show that in fact ν is countably additive.

b) Suppose that for any sequence 〈En〉 of sets in A , if En ↘∅, then limn ν(En) = 0.
Show that in fact ν is countably additive.

Problem 2.4 (A). Prove Proposition 2.2.1.

Problem 2.5 (A). Recall that the set A consisting of the rationals between 0 and 1 is
countable, and so it has Lebesgue outer measure 0. Show that any finite collection
of open intervals covering A has total length ≥ 1.

Problem 2.6. Fix nonempty sets A and B ⊆ R such that

d(A,B) := inf{|x− y| : x ∈ A,y ∈ B}= a > 0.

Show that Lebesgue outer measure λ ∗(A∪B) = λ ∗(A)+λ ∗(B). Hint: Show that for
any ε > 0, there is a countable covering of A∪B by open intervals Ik, each having
length strictly less than a, such that ∑∞

k=1 �(Ik)≤ λ ∗(A∪B)+ ε .
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Problem 2.7. Let E ⊆ R have finite Lebesgue outer measure. Show that E is
Lebesgue measurable if and only if for any open, bounded interval (a,b) we have
b−a = λ ∗((a,b)∩E)+λ ∗((a,b)\E).

Problem 2.8. Suppose A ⊆ R is a Lebesgue measurable set with λ (A) > 0. Show
that for any δ with 0 < δ < 1, there is a bounded interval Iδ = [a,b], with a < b,
such that λ (A∩ Iδ )≥ δ ·λ (Iδ ). That is, A occupies a large part of Iδ .

Problem 2.9. Suppose that A ⊆ [0,1] is a Lebesgue measurable set with λ (A) = 1.
Show that A is dense in [0,1]; that is, the closure A = [0,1].

Problem 2.10. For this problem, let M be the Lebesgue measurable sets in [0,1],
and let ν be a nonnegative, real-valued function on M such that for disjoint sets A
and B in M , ν(A∪B) = ν(A)+ ν(B). Also assume that for any ε > 0 there is a
δ > 0 so that if A ∈M and its Lebesgue measure λ (A)< δ , then ν(A)< ε . Prove
that ν is a measure. Hint: If 〈Ai〉 is a sequence of pairwise disjoint sets in M with
union A, what can you say about A\∪n

i=1Ai?

Problem 2.11. Let M be the collection of Lebesgue measurable sets in R, and
let λ be Lebesgue measure on R. Let f be a real-valued function defined on R.
Let A be the collection of subsets of R with inverse image in M . That is,
A :=

{
S ⊆ R : f−1 [S] ∈M

}
. Show that A is a σ -algebra of sets in R. Then for

each S ∈ A , let μ(S) := λ
(

f−1 [S]
)
. Show that μ is a measure on A ; that is, μ is

countably additive with μ(∅) = 0.

Problem 2.12. Let f be an increasing function on [0,1]; that is, for x < y,
f (x)≤ f (y). The jump of f at a point x is limy→x+ f (y)− limy→x− f (y), with the
obvious modification at endpoints of [0,1]. Show that if the jump of f is 0 at every
point of [0,1], then f is continuous on [0,1].

Problem 2.13. Show that if an integrator is continuous, such as the integrator
F(x) = x for Lebesgue outer measure, then the same outer measure is obtained using
open intervals and intervals of the form (a,b].

Problem 2.14. Let F be an integrator on R. Show that for any ε > 0, there is an
interval (a,b] such that F(b)−F(a)< ε .

Problem 2.15. Consider the integrator F on R given by F(x) = 0 for x < 0, and
F(x) = x2 for x ≥ 0. Let m∗ be the outer measure generated by the integrator F .

a) Given M ∈ N, suppose 〈In〉 is a sequence of intervals contained in [0,M]. Show
that if l(In)→ 0, then m∗(In)→ 0.

b) Construct a sequence of intervals 〈Jn〉 contained in R such that l(Jn) → 0, but
m∗(Jn)→ ∞.

c) Construct a sequence of intervals 〈Kn〉 contained in R such that l(Kn)→ 0, but
m∗(Kn) = 1 for all n.

Problem 2.16. Show that an outer measure is translation invariant if and only if the
integrator is F(x) = cx+d for some constants c ≥ 0, and d.
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Problem 2.17. Prove or disprove: All subsets of R having 0 Lebesgue measure also
have 0 measure with respect to the measure generated by any continuous, increasing
integrator.

Problem 2.18. Let F : (0,+∞) �→ R be given by setting F(x) = 0 for x < 1, and
F(x) = n for n ∈N and n ≤ x < n+1. Let m∗ be the outer measure generated by the
integrator F .

a) For each set A ⊆ (0,+∞), what is the value of m∗(A)?
b) Prove that every subset of (0,∞) is measurable with respect to m∗.
c) Give an example of a Lebesgue measurable set E ⊆ (0,+∞) such that m(E) = ∞,

but the Lebesgue measure λ (E) = 0.
d) Give an example of a Lebesgue measurable set F ⊆ (0,+∞) such that λ (F) = ∞,

but m(F) = 0.

Problem 2.19. Give an example or disprove the following statement: There exists
an integrator F : R �→ R such that for some set A of strictly positive Lebesgue mea-
sure, the outer measure m∗ generated by F has value m∗({x}) > 0 for each point
x ∈ A.

Problem 2.20. Suppose A is a measurable subset of R such that m(A∩ (a,b)) ≤
1
2 (b−a) for any a,b ∈ R, where a < b. Show that m(A) = 0.

Problem 2.21. a) The Heaviside step function is H = χ[0,∞). That is, H(x) = 0 for
x < 0 and H(x) = 1 for x ≥ 1. Show that the resulting outer measure is in fact
a measure on the σ -algebra consisting of all subsets of R. It is called a Dirac
measure or unit mass at 0, and denoted by δ0. Show that for each set E ⊆R, we
have δ0(E) = 1 if 0 ∈ E and δ0(E) = 0 if 0 �∈ E. A similar unit mass δa can exist
at any point a ∈ R.

b) Define an integrator F such that the corresponding measure on R is Lebesgue
measure to which is added a unit mass at 0, at 1, and at 2.

Problem 2.22 (A). Prove the following result, which is valid for Lebesgue mea-
sure, and show that it is not valid for general measures: If E ∈ M , then ∀r ∈ R ,
E + r ∈M .

Problem 2.23. Let 〈μn〉 be a sequence of finite measures on a σ -algebra A of sub-
sets of R; that is, μn(R)<∞ for all n∈N. Let 〈an〉 be a sequence of positive numbers
such that ∑∞

n=1 anμn(R)< ∞. Let μ(A) = ∑∞
n=1 anμn(A) for each A ∈A . Show that

μ is a finite measure on A .

Problem 2.24 (A). Prove Proposition 2.5.1.

Problem 2.25. Prove Theorem 2.6.1.

Problem 2.26. Let μ be a measure defined on the Borel subsets of J := [−1,1] such
that μ (J) = 17. Assume that any Borel set of Lebesgue measure 0 in J is a set of
μ-measure 0. Show that for any ε > 0 there is a δ > 0 such that if E is a Borel set in
J and λ (E)< δ , then μ(E)< ε . Hint: Suppose there is a sequence of Borel sets En

contained in J with λ (En)< 2−n and yet μ (En)≥ ε for each n. Let E = limsupn En.
What is λ (E)? What is μ(E)?
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Problem 2.27. Let f be a real-valued, continuous function defined on R. Show that
for each Borel set E ⊆ R, f−1 [E] is a Borel set.

Problem 2.28. Let m∗ be the outer measure on R generated by an integrator F .

a) Show that for any E ⊆ R, there is a Borel set B with E ⊆ B and m(B) = m∗(E).
b) Let 〈En〉 be a sequence of sets in R and E a subset of R such that En ↗ E. Show

that limn m∗(En) = m∗(E). Hint: For each n, let Bn ⊇ En be the Borel set given
by Part a. Let Cn =

⋂∞
k=n Bk.

Problem 2.29. Let m be a measure on R generated by an integrator F . Let 〈An〉
be a sequence of measurable subsets of R. Show that m(liminfAn)≤ liminfm(An).
Assume that m is a finite measure, and show that m(limsupAn)≥ limsupm(An).

Problem 2.30. Let m be a measure on R generated by an integrator F . Let K be
a compact set such that m(K) < +∞. For each x ∈ K, let B1(x) be the interval
(x−1,x+1), and define f : K �→R by setting f (x) = m(B1(x)). Show that for some
x0 ∈ K, f (x0) = α := infx∈K f (x). Hint: Show that there is a convergent sequence
〈xn〉 in K such that f (xn)↘ α , and use Problem 2.29.

Problem 2.31 (A). Show that if E is a Lebesgue measurable subset of the non-
measurable set P constructed in Section 2.7, then λ (E) = 0.

Problem 2.32 (A). Show that if A is any set with Lebesgue outer measure
λ ∗(A)> 0, then there is a non-measurable set E ⊆ A.

Problem 2.33. Show that the Cantor set has Lebesgue measure 0.

Problem 2.34 (A). Use a generalized Cantor set of positive Lebesgue measure to
show there is an open subset of [0,1] having a boundary (i.e., the closure of the
set from which the open set has been removed) such that the boundary has positive
measure.

Problem 2.35. A nonempty set S is perfect if it is closed and each element of S is
an accumulation point of S. Prove that the Cantor set is perfect and has no interior
points.

Problem 2.36. How is the Cantor set changed if closed middle third intervals are
removed at each step?

Problem 2.37. Show the Cantor-Lebesgue function g is continuous on [0,1] and has
derivative g′ equal to 0 outside of a set of Lebesgue measure 0 in [0,1]. Hint: How
much does g increase on the part of the Cantor set C between two successive open
intervals that have been removed at the kth step of the removal process?
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