Chapter 2
Information Visualization

This chapter introduces information visualization as a canonical foundation of this
thesis. We will first try to differentiate information visualization from related areas.
The goal is to have a common understanding of the term information visualiza-
tion in context of this work. Thereafter we outline the interdisciplinary character
of information visualization. For this we start with the human and introduce vari-
ous models and research outcomes on visual perception. We will continue with our
human centered view on information visualization and describe classifications for
interaction with information visualization. Based on an appropriate classification for
our purposes, we will describe the interaction with application examples. Thus inter-
active visualizations leads to solving tasks, the next chapter will introduce visual
task classifications. We will find a common understanding on the way how tasks
are classified in literature in contrast to interactions. Therefore an abstraction of the
task classification will be performed. Based on this abstracted task classification,
we will describe the task and classify them in order to have a more concrete under-
standing of visualization tasks. This will be important for our conceptual model.
With this procedure we will have a view how human is involved in the visualization
process and which tasks can be solved. Further it will be necessary to investigate the
aspect of data in and for information visualization. We will continue with the same
procedure and introduce classifications of data. Further we will slightly change an
existing classification and introduce the data types based on this classification. The
chapter will conclude with a section about technique and methods for visualizing
information. This section will follow the same procedure and introduces first various
existing classifications. Here again we will see that the proposed classifications are
not appropriate for our purposes and will combine existing classifications to have a
baseline for introducing the visualization techniques. The visualization techniques
and methods will be introduced exemplary and do not claim to cover the state of the
art. The main goal of this chapter that was partially published in [1, 2] is to have
a common understanding about the terms, methods, and techniques of information
visualization. Therefore we chose the view from human side, the tasks, and the data
to describe information visualization. Figure 2.1 illustrates an abstract view on the
structure of this chapter.
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Fig. 2.1 Abstract view on
the structure of the chapter
information visualization

2.1 Terminological Distinction

The most common definition for information visualization in computational sys-
tems was brought by Card et al. [3]. They started with a more general definition
of visualization in computational systems and defined visualization as The use of
computer-supported, interactive, visual representations of data to amplify cogni-
tion [3, p. 6], whereas the cognition is further proposed as “acquisition or use
of knowledge” [3, p. 6]. With this definition they worked out that the main goal
of visualizations is to provide insights (discovery, decision making, and explana-
tion) and not only pictures. Visualizations may represent different types of data. In
case of visualizing physical data, Card et al. tends to the term scientific visualiza-
tion. [3, p. 6] Based on the type of data to be visualized they define information
visualization as:

The use of computer-supported, interactive, visual representations of abstract data to
amplify cognition. [3, p. 6]

The main difference in this definition is the term “abstract data”, which is related
to the fact that no obvious spatial mappings can be assigned to the data. Without
a spatial abstraction, one challenge is the problem of rendering the data into an
effective visual [3, p. 7]. To face the mapping problem of raw data to visual forms
Card et al. proposed a reference model for visualization [3, p. 17], using outcomes of
previous works on non-computational visualization of abstract data [4]. The proposed
reference model for visualization counts today as the most influential reference model
for information visualization. It provides a data transformation process from raw data
to views involving the human in the interaction processing. The reference model is an
excellent groundwork to understand, define and distinct information visualization.
Figure 2.2 illustrates the reference model with its transformation steps.

The series of transformations begins with raw data and ends after three trans-
formation steps with the human, who gains insights from the visual presentations.
Vice versa the human is enabled to operate and thereby manipulate and adjust the
transformation steps (user interaction on different level). The first step of transfor-
mation is data transformation, with the diverse raw data formats to relations or sets
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Fig. 2.2 Reference model for visualization (adapted from [3, p. 17] with kind permission of B.
Shneiderman)
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of relations (data table) that are structured and easier to visualize [3]. Card et al.
define these relations mathematically as a set of tuples (see Eq.2.1).

{< Value;,, Value,y, ... >, < Valuej,, Valuejy, ... >, } (2.1)

A Data Table combines relations with their describing metadata [3]. A data table is
represented by rows, which contains variables as set of values in the tables and cases
as set values for each variable. In context of data tables they introduce a categorization
of the data variables and their possible sequences. They propose that there are three
basic types of variables, nominal, ordinal, and quantitative. Nominal variables are
unordered sets (are only = or 7# to other values), ordinal variables are ordered
sets (obeys a < relation ), and quantitative variables are numeric ranges (can do
arithmetic on them) [3, pp. 17-23].

The next step in the transformation process of the reference model is the map-
ping of the data tables to Visual Structures. Here the work of Bertin [4] builds the
foundation of visual variables and structures to provide an effective mapping [3, pp.
23-31]. The reference model proposes that two main factors are important to provide
an effective mapping to visual structures. The mapping should preserve the data with
their type of variables and emphasize the important information to be perceived well
by the human. The visualization should enable the human to interpret faster, distinct
graphical entities, or make to fewer errors [3, p. 23]. In today’s evaluation methods
the two main factors for measuring the efficiency of visualizations are task com-
pletion time (faster interpretation) and task completion correctness (fewer errors).
The visual structures of the reference model are enhancements of Bertin’s work
on graphical semiology [3, 4]. While Bertin subdivided the visual variables into
retinal variables and layout, the reference model does not propose such a differ-
entiation [3, p. 26]. It enhances the model of Bertin and consists of spatial sub-
strates, marks, and graphical properties. Although the authors propose that some
visual encodings are more appropriate for uncontrolled processing (or preattentive)
(see Sect.2.2.1) in tasks like search or pattern detection and others for controlled
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processing (see Sect.2.2.2) [3, p. 25] the reference model itself does not propa-
gate this separation. It focuses more on a general transformation of data tables and
their sequential characteristics to visual structures. Visual structures may appear as
Spatial Substrates, Marks, Connection and Enclosures, Retinal Properties, and Tem-
poral Encodings, whereas the transformation encloses the entire spectrum of visual
structures.

The final step of the reference model completes the loop between human and
visualizations (visual forms) [3, p. 31]. It transforms static graphical presentation
by incorporating humans’ interaction to create different views of visual structures
and provide an interactive visual environment. Card et al. lists three main view
manipulations: (1) Location probes use location to reveal additional information
from data tables, (2) Viewpoint controls magnify or change the viewpoint, e.g. by
zooming or panning, and (3) Distortion provides a modification of the visual structure
by creating a context plus focus view [3, p. 31]. The view manipulation techniques
will be investigated in more detail in Sect.2.3.2. The introduced reference model
describes in a comprehensible way the transformation processes from raw data to
visual structures, the view manipulations, and human operations on different levels
back to the transformation steps. These steps focus on the how abstract data can be
visualized interactively with computational systems and provide a well-established
explanation of information visualization.

In recent years, the research field of Visual Analytics evolved from Information
Visualization and other areas to emphasize the knowledge generation aspect. Visual
Analytics were often used synonymous to information visualization, although both
terms gained established definitions. The early and most influential definition of
Visual Analytics was proposed by Thomas and Cook [5]:

Visual analytics is the science of analytical reasoning facilitated by interactive visual inter-
faces. [5, p. 4]

Their definition emphasizes the “overwhelming amounts of disparate, conflicting,
and dynamic information” [5, p. 2] in particular for security related analysis tasks.
One of the main focuses of Visual Analytics is to “detect the expected and discover
the unexpected” [5, p. 4] from massive and ambiguous data. They outlined that the
main areas of the interdisciplinary field of Visual Analytics are:

e Analytical reasoning techniques: for obtaining insights and support analytical tasks
such as decision making.

e Visual representations and interaction techniques: for enabling users to explore
and understand large amounts of data, and interact with them with their visual
perception abilities.

e Data representations and transformations: to convert all types of data, even con-
flicting and dynamic, to support visualization and analysis.

e Production, presentation and dissemination: to provide a reporting ability for a
broader audience and communicate the analysis results. [5, p. 4]
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Fig. 2.3 The visual analytics process (adapted from [11, p. 10])

The definition of Visual Analytics gained a series of revisions to precise the abstract
formulation [6—11]. Keim et al. commented that the definition of such an interdisci-
plinary field is not easy [11]. A more precise definition is:

Visual analytics combines automated analysis techniques with interactive visualizations for
an effective understanding, reasoning and decision making on the basis of very large and
complex datasets. [11, p. 7]

This definition stated more precisely the interdisciplinary nature of Visual Ana-
Iytics by introducing and outlining the combined use of analysis techniques and
interactive information visualizations. In addition, it emphasizes the challenge of
data amount, thus this confines Visual Analytics to “very large” data-sets. The main
characteristics of solving analytical tasks with interactive information visualizations
still remain. This definition of Visual Analytics is illustrated by a model for the
Visual Analytics process. Figure 2.3 illustrates the process that targets on providing
a tight coupling of visual and automatic analysis methods through human interaction
to enable human to gain insights and knowledge [11, p. 10].

The visual analytics process models the different stages represented by oval forms
and their transitions with arrows. The process starts with the data that may need to be
preprocessed and transformed to an adequate way (indicated with the transformation
arrow). After the transformation stage the “analyst” may choose to visualize the
data or to use automatic analysis methods [11]. Keim et al. does not use the term
“user” in their process. It may indicate that the Visual Analytic model is a dedicated
design for “analysts” with the necessary of previous knowledge about the processes
or tasks (analysis). If the automatic analysis is chosen, techniques from data mining
are applied to generate models from the underlying data. These models can further be
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evaluated, refined, or specified by interacting with data [11]. Visualizations are used
to interact with the models and manipulate and refine the parameters. Further the
selection of alternating models can be visualized to evaluate the findings out of the
generated model. If the analyst decide to visually explore the data first, the underlying
model has to be confirmed based on this hypothesis. The visual representations reveal
insights, which can further be refined by interactions on the visualizations [11]. The
entire Visual Analytics process tightly couples the visualization and automatic data
modeling (data analysis) methods. It provides an interactive process to make use
of both, the interactive visual representations and data modeling approaches for
acquiring knowledge and insights, which build the last stage of the process [11]. The
role of human and the possibilities to interact in the stages of the visual analytics
process remains as they are proposed in the reference model for visualization [3].
The main difference is the interactively combined techniques for visualizing and
analyzing data.

Kohlhammer et al. proposed a differentiation of visualizations in context of policy
modeling [12]. Their differentiation proposes a classification based on the role of
human and machine in the data processing pipeline. Thus Visual Analytics make use
of more automatic processing and modeling techniques than information visualiza-
tion, the model distinguishes visual analytics based on the role of the involvement
of automatic (computer-based) methods. Figure 2.4 illustrates the differentiation and
introduces further the field of Semantics Visualization, which will be described more
detailed in Chap. 3.

In this work we use the definition of information visualization as defined by Card
etal. [3]. Thus Visual Analytics makes use of information visualization for the visual
stages [11], we use the term information visualization for the visualization aspects
of visual analytics too. When describing Visual Analytics systems, our focus will be
the way how information is visualized and human are interacting with and perceiving
the visualizations. Amplifying cognition and acquiring knowledge [3, 11] with the
use of human’s visual perception is essential for this work, whereas the automated
data processing and data analytics methods are not in scope of this work.
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2.2 Visual Perception and Processing

Visualization is strongly related to the way how human perceive and process visual
information. Physiological and psychological studies showed that vision processing
consist of two main stages of attention, preattentive and attentive processing. Under-
standing these stages is essential for the identification of those visual attributes and
variables that should be considered for the visual representation of information. This
section introduces the terms preattentive and attentive visual processing and sum-
marizes some of the most common theories. It further builds the foundation for the
adaptation of the visual attributes. Physiological aspects of human image and vision
perception will not be discussed in this section. For further readings in physiological
aspects of vision perception the work of Hubel [13] is recommended.

2.2.1 Preattentive Processing

The process how human perceives visualizations were investigated in research for
several years [14]. A fundamental result was the discovery of a limited set of visual
properties, which is rapidly detected by the low-level visual system [ 14]. The so called
preattentive features are detected by human in less than 250 milliseconds, which sug-
gests that certain information can be processed in parallel [13-15]. A unique visual
property allows identifying an object preattentively. This unique visual property
might be length, width, size, curvature, number, terminators, intersection, closure,
hue, intensity, flicker, direction of motion, binocular luster, stereoscopic depth, 3D
depth cues, and lighting direction. All this variables are associated with the four
primitive variables luminance and brightness, color, shape and texture, [14] which
provide processing of visual information prior to selection [16]. This visual stimulus
is called ‘pop-out effect’, an uncontrolled movement of eyes to visual features. Ward
et al. name four tasks, which uses the pop-out effect in psychological experiments
for performing tasks [14]:

e Target detection: The task is to detect presence or absence of a target with unique
visual features within a field of distractors.

e Boundary detection: Users have to detect a texture boundary between two groups
of objects, where each group has common visual features.

e Region tracking: Users track one element as it moves in time and space.

e Counting and estimation: The task is to count or estimate the number of objects
with different visual attributes [14].

Treisman’s Feature Integration Theory [17] has become one of the most influ-
ential theories in the area of preattentive visual information processing. It gives
insights into the preattentive detection of boundary and targets in fields of distrac-
tors. To evidence the preattentive perception of visual features, she designed a set of
tests. Therefore a target with a unique visual attribute (farget detection) or a group
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of target elements with unique visual features (boundary detection) was placed in a
field of distractors. The subjects had to communicate as fast as possible, if the target
is absent or present, while the amount of distractors was increased. Treisman and
other researchers tested the accuracy and the time of the responses. They assumed,
if the visual information would be processed serially, the subjects would need more
time, when the amount of the distractors increases. And if the amount of the distrac-
tors plays no role for the measured time and accuracy, the visual task was processed
in parallel, according to that preattentively [17]. In a further test (accuracy model)
a screen with a target or a group of targets was shown to the subjects just for 200
to 250 msec. In this time frame the subjects had no time to focus attentively to a
certain object. So if they give the accurate answer to the presence or absence of the
visual targets, the task was solved preattentively. Treisman and others used this test
to identify a list of preattentive visual features [17—-19]. Further they detected that
some of the visual features are asymmetric, while others are symmetric. A circle with
a line (as a visual feature) in a sea of circles can be processed preattentively, while
a circle without a line in a sea with circle with lines is not preattentively processed
[15, 17, 19]. Figure2.5 illustrates the difference between symmetric and asymmetric
visual features.

Treisman and Souther explained the phenomenon of preattentive visual processing
using a model of low-level human vision made up of a feature map and a master map
of locations [18]. They proposed to use a manageable set of features, consisting of the
main visual attributes. The feature map therefore consisted of the visual variables,
color, size, orientation, luminance and contrast. Whereas each of the features had
their own map and for the color the four primaries red, green, blue and yellows [18]
and the three primaries red, yellow, blue [19]. The feature map was expanded [20],
in which the features luminance and contrast were replaced by stereo distance.

The master map of locations in their theoretical framework [19] is a medium in
which the attention operates. This map “specifies where in the display things are, but
not what they are” [19, p. 17]. With a unique visual feature or unique visual features
compared to the distractors, a localization of the target or boundary is enabled with
the master map of locations. The more an object differs from the distractors, the
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better it can be processed. A green square, for example, in a sea of red circles can
be better recognized preattentively than a red square. This phenomenon shows that
there exist differences between the preattentive processing of visual features. For that
reason Treisman expanded her model in later works [19, 21], not only proposing a
strict dichotomy of features being processed serial or parallel. These are more two
ends of a spectrum [19-21].

Treisman proposed in her theory two main stages of visual perception, the preat-
tentive and the focused attention stage. The preattentive stage is strongly related to
one unique visual feature that stimulates a ‘pop-out effect’. In this stage neither the
target is localized, nor is it identified. One main finding of the Feature Integration
Theory was that the localization of a target object is processed serially on the master
map of locations. She evidenced that the presence and absence of a target object
with unique visual features can be processed preattentively, but the identification
and localization of the object on the master map of locations requires focused atten-
tion [17]. She evidenced her theory with the illusionary conjunction, where subjects
identified not existing target objects in a sea of distractors with more than one unique
visual feature.

The strict bisection of serial and parallel low-level visual processing based on
the conjunction of visual attributes is not advocated by all researchers. Quinlan and
Humphrey for instance propose that the search time for visually detecting objects
depends on two other factors. Firstly on the number of items of information required
to identify the target and secondly on how easily a target can be distinguished from
the distractors, whereas unique visual features play no role on their ‘Similarity
Model’ [14, 22]. The model introduces the criteria rarget to non-target similar-
ity (T-N similarity) and non-target to non-target similarity (N-N similarity). Visual
search time is based on 7-N similarity, which defines the similarity between target
and distractors and N-N similarity, the similarity between the distractors. The pro-
posed model assumes that as 7-N similarity increases, the search time decreases.
Further as N-N similarity decreases, the search time increases and the search effi-
ciency decreases. T-N and N-N similarity are related and comprehend each other.
If T-N decreases and N-N similarity decreases too, a preattentive perception of the
target will not be registered. If both similarities increase, the effect of a preattentive
perception will get lower [14, 22]. The Similarity Theory preaches that the more an
object distinguishes from the distractors and the more the distractors are similar, the
better and faster it can be perceived, regardless of any unique visual attributes.

A more recent model of a two stage paradigm of preattentive and attentive visual
perception was proposed by Wolfe in his Guided Search model [23-26]. In his first
attempt his Guided Search model had a preattentive and an attentive stage, based on
Treisman’s Feature Integration Theory and explaining more the Similarity Theory.
He further proposed that the information from the first stage could be used to guide
the attention to the attentive stage [23]. An object with unique visual variables would
lead in the preattentive stage the focus of the subject to the visual object, this attention
is further present in the second attentive stage. The future versions of the Guided
Search model, including the recent version Guided Search 4.0 [26], proposed more
smooth transition between the two strictly bisected stages of attention. One main
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finding of Wolfe was that the preattentive visual activation is not only stimulus-driven
(bottom-up), like proposed in the Feature Integration Theory, but also user-driven
(top-down). The Guided Search model argues the differentiation with its feature
maps. Stimuli are assumed to be in parallel across the entire visual field. “At some
point, independent parallel representations are generated for a limited set of basic
visual features” [24, p. 204]. These sets of limited visual features are feature maps.
The feature maps or independent maps for each visual attribute, e.g. color, size and
orientation. Each of these maps may contain further maps, e.g. the color map may
contain a map for green, red etc. Wolfe listed in his second model a set of visual
features containing orientation, color, motion, size, stereoscopic depth, other depth
cues, binocular lusture, vernier offset, curvature, terminators and intersection. [24]
In case of localizing a target object, the feature maps are activated. And this activation
can be either bottom-up or top-down [24].

The bottom-up activation is stimulus driven and thereby not depended to the
subject’s knowledge or preferences in a visual task. This activation is based on the
differences between a target object and the neighboring distractors. The neighbor-
hood of the target can be boundedina 5 x 5 array around the identified object. Guided
Search assumes that the bottom-up activation is calculated separately for each feature
in the feature map. The bottom-up activation guides attention to a distinctive item in
a field of distractors, if the visual features of the object are unusual. In contrast to the
bottom-up activation, the top-down activation is user-driven and depends strongly to
the task, knowledge and preferences of the user. [26] For instance, if a red circle is
placed in a field of distractors of mixed color circles, the bottom-up activation will
not be registered. But if the user is instructed to search for a red circle within the
field of the heterogeneous distractors, the knowledge of the task will guide him to
the red circle. This user-driven activation can be registered in a similar time-frame
to the stimulus-driven activation [24].

Wolfe proposes that the strict dichotomy of parallel and serial visual processing
does not hold. [24, 26] The Guided Search model assumes that the information from
the first preattentive stage is forwarded to the second stage. The direct attention is
guided through the preattentive processing, whereas the region of the target object is
in the attentive processing further the region of interest. Wolfe evidences his model
with triple conjunction of color, size and form (orientation) [23, p. 430]. The fact
that three visual attributes are forwarded to the serial process leads to faster search
process and reaction time.

The active involvement of users and the consideration of their pre-knowledge,
preferences and tasks play an important role in the Guided Search model. If a user
has an imagination of the searched target object, the reacting time decreases. The
involvement of users’ pre-knowledge played more and more a key-role in further
works of computational modeling of visual attention in both stages. The challenge
for the implementation of a comprehensive computational model of visual attention
is the consideration of both activation types, [27] and consequently the involvement
of users’ pre-knowledge and visual tasks.
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2.2.2 Attentive Processing

Human are able to detect certain visual features in parallel and thereby preattentively.
The preattentive processing of information depends on visual features of targets and
distractors. The ‘pop-out effect’ in this stage guides the attention of human to certain
visual features, whereas this guidance is in most cases uncontrolled (see top-down
and bottom-up activation in Sect.2.2.1). The ‘pop-out effect’ does not include the
localization or the target detection.

The attentive processing of visual information (or postattentive vision [14],
directed attention [26]) begins, when we stop attending to the out-popped target
(assuming there exists one) and look at something else [14]. Although, the strict
dichotomy of parallel and serial processing is still disputed, Ware has proposed a
three stage model, subdividing the attentive processing of visual information into a
serial stage of Pattern Recognition and a further stage of Sequential Goal-Directed
Processing, beside a preattentive stage [28].

Ware’s model of perceptual processing is a simplification of several methods and
models. The first of his three staged model is the preattentive stage, based on the
proposed models of Treisman and Wolfe. Here information is processed in parallel
to extract low-level properties of the visual scene [28, p. 20]. Similar to the described
models, the parallel information processing cannot be consciously controlled by the
user, is rapid and extracts basic visual features. The visual features that are investi-
gated in this model are orientation, color, texture, and movement patterns. Based on
the original Feature Integration Theory the parallel activation is bottom-up. Instead
of using termini like stimulus-driven or feature-driven bottom-up activation, Ware
introduces a data-driven model of processing. At the second Pattern Recognition
stage of his model, rapid but active processes divide the visual field into regions and
simple patterns. In this serial stage, regions and localizations can be identified, e.g.
regions of similar or same colors. The flexibility of this stage can be influenced by
both, the bottom-up activation from the previous parallel stage and the top-down
activation. The top-down activation is driven by visual queries in this model. The
visual queries are analog to Treisman’s feature maps. Ware characterizes the sec-
ond pattern perception stage including slow serial processing, with more emphasis
on arbitrary aspects of symbols and the fluent combination of the bottom-up and
top-down feature processing [28, p. 22].

The last stage of the three-stage model, the Sequential Goal-Directed Process-
ing, is the highest level of perception involving active attention. The use of exter-
nal visualizations let us “construct a sequence of visual queries that are answered
through visual search strategies” [28, p. 22]. At this stage only few objects are in
focus of attention, which are constructed by the subject from available patterns to
solve a given visual query task. One main aspect in this stage is the use of the
term construct that leads to the assumption that knowledge from the long-term
memory (pre-knowledge) is associated to the visual patterns and new knowledge
is constructed by human. In the context of knowledge construction it is necessary to
introduce two terms that are essential for gathering knowledge through visualization,
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namely recall and recognition. Ware proposes that recall “consists of the activation
of particular pathway” [29, p. 388] of associations stored in the long-term mem-
ory. Recall makes use of visual or verbal-propositional information to activate the
traces of the long-term memory. It is necessary to describe (verbal or visual) some
patterns and traces of our memory without the use of an indicator. Ware constitutes
that recognition is superior to recall, thus in recognition a visual memory trace is
reawakened [29, p. 388].

This phenomenon is one main reason, why visual system should consider in their
design the knowledge of users. With the use of recognition instead of recall the
efficiency of the problem-solving process in visualizations can be improved.

The aspect of post-attentional processing in terms of dynamic generation of visual
representation was investigated by Rensink in his Triadic Architecture [30]. He
argues based on the Coherence Theory [30, p. 19] that focused attention is needed to
see changes at the time they occur and only one object in a scene (screen) can be given
a coherent representation [30]. Moreover, the representation is limited in the amount
of displayed information. So it is necessary to shift the attention to the appropriate
objects at the right time. He discards the assumption that all visual processing pass
a single attention locus (attento-centric) and proposes a triadic architecture with
independent information processing systems. The first system, the low-level vision,
makes use of the preattentive features to shift the attention to the location of interest.
This level creates a high-detailed, volatile structure [30, p. 34]. In this system of early
processing the resultant structures (proto-objects) may be sophisticated, the spatial
coherence is limited and simply replaceable by new stimuli [31, p. 262].

The second system, the Object (attentional), investigates the spatial arrangement
(Layout) in the scene and activates a focused attention [31]. This provides a non-
volatile representation of the locations of various structures on limited-capacity atten-
tional system. This is used when attention is already directed. The third system,
the setting (nonattentional) facilitates the perception via gist (meaning) and layout.
Rensink proposed that “the most abstract aspect of a scene is its meaning” (gist)
[30, p. 36]. It is a result from the context of an object and is used to refer to the
properties of the long-term memory to recognize an image. The most important
aspect in this context is the unification of Layout in terms of spatial arrangement of
objects. Rensink proposes that one important aspect of the scene structure is Layout,
“without regards to visual properties or semantic identity” [30, p. 36]. Layout is
used to support the problem solving process as knowledge about the relationships
of coherent-objects is needed [29]. The associated collection of representations is
scene schema. Rensink proposes that gist and layout involve short-term or working
representations, whereas the scene schema is long-term structures [30].

2.3 Visual Interaction

Today’s information visualization systems do not just offer a static picture. Most of
the existing visualizations provide different interaction techniques that allow solving
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the given visualization task through graphical interaction. The provided interaction
method is one of the key-features of the visualization system and the issue of inter-
acting with visualization was already investigated by various researchers. Several
classifications, concepts and techniques were introduced to affirm the importance
of interaction in visualizations. This section gives an overview about some of the
classifications interactive visualizations. The section does not claim to be complete
and aims to give an overview of the idea of interaction in information visualization
systems.

2.3.1 Classifications of Visual Interactions

An abstract classification of interaction in visualizations was brought by Ware, who
proposes a classification of interlocking feedback loops of data manipulation, explo-
ration and navigation, and problem-solving [28]. At the lowest level, the data manip-
ulation loop, objects are selected and moved using the basic skill of eye-hand coor-
dination. In this loop the system and human reaction delay is an important factor for
efficient interaction with visualizations. Ware introduces several measurements crite-
ria and rules for measuring reaction time, e.g. reaction time (Hick-Hyman law [32]),
selection time (Fitts’ law [33]), and path tracing [34]. The selection and reaction time
in the lowest level of interaction is constraint to the users’ knowledge in interact-
ing with the systems. Over time, people become more skilled in operating low-level
interactions with visualizations. The informal learning of interaction with systems
is introduced by Ware with the simple expression, known as power law of practice.
This law describes the users’ learning curve as:

log(T,) = C — alog(n) 2.2)

where C = log(T}) is the first performance of the user with a system, 7}, is the time
required to perform the nth trail, and « is a constant that represent the learning curve.

At the intermediate loop of exploration and manipulation, the way through large
visual data space is found. In this interaction level the known similarities are “recog-
nized” to find the way through the data. The differentiation between knowledge types,
e.g. declarative, procedural, and topological knowledge [35] plays an essential role
to find the path to the targeted knowledge and build a cognitive spatial map [28].
The highest level of the model the problem-solving loop provides the ability to form
hypotheses. The augmented visualization process provides refinements and refor-
mulations until a possible solution is identified. The iterative character of this level
can further be enhanced by replacing and revising visualizations.

A classification of visual interaction methods is the Visual Information Seeking
Mantra proposed by Shneiderman [36]. His mantra is not explicitly declared as a
classification for interaction methods. It is far more a starting point for designing
advanced graphical user interfaces and the foundation of the Task by Data Type
Taxonomy of information visualization [36]. Shneiderman proposes in his mantra
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overview first, zoom and filter, then details on demand. The interactions on visual
environments are ordered sequentially and have an iterative character. This classifi-
cation is according to Ware’s model on the highest problem solving loop of visual
interactions. The mantra further correlates seven data types to seven tasks on the
highest level of abstraction.

Cockburn et al. enhanced the interaction aspects of the Visual Information Seeking
Mantra to survey and categorize visualizations [37]. They defined “overview plus
context” as Spatial Separation between focused information entities and contextual
information. The “zooming” interaction was reduced to the temporal separation of
entities, whereas “focus plus context” minimizes the seam within the contextual infor-
mation. Further proposed “cue-based” techniques selectively highlight information
within the information context [37].

Keim enhanced and refined the Visual Information Seeking Mantra too and intro-
duced the following interaction classification of information visualization [36, 38,
39]: 1. Data-to-Visualization Mapping, 2. Overview, 3. Zoom, 4. Filter, 5. Details
on Demand, 6. Relate, 7. History, 8. Extract, and 9. Linking & Brushing. In this
model the interaction techniques (Mapping, Projection, Filtering Link&Brush and
Zooming) [38, p. 81] were categorized to distortion techniques and data visualiza-
tion techniques. In this enhanced model distortion is categorized as an interaction
technique. Further the standard interaction technique is introduced to conclude the
whole spectrum of possible interaction techniques.

Hearst lists the following main techniques for interacting and navigating with
information visualization within abstract data space: brushing and linking, panning
and zooming, focus-plus-context, magic lenses and animation to retain the context
[40, p. 260]. Further the combination of interactions as for example overview plus
detail are proclaimed for solving tasks with interaction methods. The techniques are
seen as foundations for the design and implementation of visualization techniques. In
contrast to Keim’s classification, Hearst proclaims a more context-oriented interac-
tion. Zooming is mentioned in combination with panning, where the panning-action
enables to view the overview-context before zooming into the visual area of interest.
A similar procedure is proclaimed for all the interaction techniques, classified by
Hearst. In the classification of Ware the identified interaction techniques can be posi-
tioned vertical to the whole spectrum of the interaction-loops. The main target of the
interaction in this classification is problem-solving, whereas the context-orientation
is addicted to the exploration and manipulation loop as well as to the data manipula-
tion loop. Data entities, relations and attributes are visualized dynamically through
the visualization techniques that access the data directly.

Ward and Yang introduced in [41] a classification of interaction in visualiza-
tions that distinguishes between inferaction operators and interaction operands.
They proposed that there is a significant difference if an interaction is operated to
different objects or spaces. These objects or spaces are the operands of the inter-
action procedure. “To determine the result of an interactive operation, one needs
to know within what space the interaction is to take place” [41, p. 2]. In their first
attempt they classified three interaction operations and thereby interaction operators.
With navigation, selection and distortion a significant percentage of the interaction
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operations in visualization systems was identifies [41, p. 1]. The interaction operands
were classified in section of spaces upon which an interactive operator is applied.
Their proposed framework contained following spaces as operands: screen-space
(pixels), data value-space, data structure-space, attribute-space, object-space (3D
surfaces) and visualization structure-space.

The screen-space consists of actions directly on the screen with no impacts on
the data. This contains transformation on screen-level, such as panning, zooming,
rotation or pixel-level operation, e.g. transformation, sampling or replication. Inter-
actions on the data-value space involve the data values for view specification. On
this space panning and zooming or other interaction operations change the data val-
ues being displayed. An interaction operation on this space is similar to a database
query for specifying data values. Interaction and navigation operations on the data
structure-space involve view transformation along the structure of the data. Operation
on this space allows identifying regions of interest in the data structure, e.g. selection
of data in a cluster hierarchy [42]. Operations on the attribute-space are similar to
that on data value-space; they involve a view transformation based on the attributes
of the graphical objects. Whereas interactions on the object-space are defined as
direct manipulation of graphical object, primarily 3D-objects, which can be turned
transformed etc. Interaction operations on the visualization structure-space involve
the view transformation of the visualized structure. The data are not manipulated on
this level, but the user is able to rearrange the visual structure.

The classification of Ward and Yang is part of their unified framework for inter-
actions on visualizations. This framework further proposed the parameterization of
the operands [41, pp. 6-8] to define an extensive assortment of interaction opera-
tors. Ward et al. extended their framework in their recent work [14, pp. 315-354].
In this extended classification they enhanced the interaction operators by filtering,
reconfiguring, encoding, connection and abstraction/elaboration. Further the distor-
tion operation is not considered as a class of interaction operations. The interaction
operands and the parameterization remain in the new version of their framework and
classification.

This section gave an overview of some classifications of interaction methods in
visualization systems. We presented heterogeneous classifications that investigated
visual interaction in different levels of abstractions. The introduced classifications
were rarely published as interaction classifications; they are rather evolved from
design guidelines for visualizations or from classifications of visualizations. Never-
theless we could conclude that interactions in visual environments are investigated in
various abstraction levels. Interactions transform the view on the visualized data by
manipulating the data or the visual representation. The manipulation on both, data
and visualization can be further classified as the model of Ware showed.
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2.3.2 Visual Interaction Techniques

This section introduces the most common interaction techniques based on the clas-
sification of Hearst [40]. This classification describes the interaction techniques at
a lower level of abstraction similar to Keim’s classification. It further considers the
context of users’ interactions and is therefore adequate to explain the interaction
techniques in the context of this thesis, which will further describe semantics visual-
izations. We added the interaction techniques semantics zoom, dynamic queries and
direct manipulation to the model of Hearst for covering a wider range of possible
interaction techniques.

Brushing and Linking

In multiple-visualization user interfaces, different visual representations of the same
data give a view on various perspectives to the data. To not lose the visual context,
“brushing and linking” provides a highlighting or selection of visual objects between
different views [40]. The highlighting may occur in various ways, e.g. by changing
the color or size of the brushed objects. The main target is to provide a visual
differentiation to the displayed objects and distractors. The work on preattentive
perception described in Sect.2.2.1 provides important visual features to perform
this interaction and provide visual features to distinguish brushed objects in linked
visualizations.

Panning and Zooming

Panning and zooming provides the change of the viewpoint to the visualized data [40].
Card et al. use the term “panning and zooming” in their listing of interaction tech-
niques as an equivalent to camera movement and zooms [3]. Panning and zooming
targets to refine the visual area of interest by moving the screen or the view on the
screen (pan) and zooming into the area of interest. Furnas and Bederson introduced an
analytical framework by space-scale diagrams for a direct visualization and analysis
of important scale relates issues. [43] They represented the panning and zooming
interaction as space-scale diagrams by trajectories [43].

Focus plus Context

Zooming leads to the problem of getting more details about the zoomed part and
losing the surrounding information. The higher the zoom-factor is, the more details
can be shown about particular items, but the overall structure and the information
context get lost with the increasing zoom-factor. To face this problem the interaction
metaphor focus plus context technique offers more details in the zoomed part but
keeps the context in a lower level of detail [3, p. 307].

One of the earliest techniques for focus plus context is the fisheye view [44, 45].
The model of “Degree of Interest” [46] was the pioneering foundation for the work
on the fisheye views. In contrast to zoom, which is a transformation on the view level,
the focus plus context interaction is categorized as transformation on data-level [3].
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Beside the distortion techniques (fisheye views), Card et al. list filtering, selective
aggregation, micro-macro readings and highlighting as selective information reduc-
tion methods for keeping the contextual area [3].

Semantic Zooming

Traditional zooming techniques operate on the visual level of a graphical data rep-
resentation and manipulate the view. According to Ware’s model [28] the zooming
interaction occurs on the problem solving loop, e.g. by changing the size of a zoomed
object. In contrast to the ordinary zoom, semantic zoom uncovers detailed informa-
tion to encompass the context and meaning of a zoomed target [47]. Semantic zoom
is for example recently used in ontology visualization for reducing the complexity
of large ontologies [48].

Animation

Interactions in information visualization manipulates the visual representation of the
underlying data on different levels [28], e.g. by data transformations, visual map-
pings, and view transformations. In these types of interactions users acts directly
with visualizations and change the view. In contrast to the manipulating interaction
techniques, animation does not provide the user with manipulation functionalities.
The animation is more an implication of the users’ interaction [49]. The literature
in visual perception suggests the use of animation for the improvement of inter-
action and understanding [50, 51]. Attracting attention, perceiving in peripheral
vision and comprehending the visual changes are the most argued reasons for the
implementation of animation as consequences of interactions [50-52]. Further the
continuous changes of visual parameters in visualization can be easily followed and
understood [52].

Overview plus Detail

Keeping the information context, while gathering detailed information about a spe-
cific area of interest, is the main goal of overview plus detail. It displays the informa-
tion with different levels of details in two or more linked visualizations. Card et al.
differentiate between time- and space-multiplexed overview plus detail [3]. Time-
multiplexed overview plus detail is conceptually similar to panning and zooming or
just zooming, thus the interaction is processed serially. Here the main attribute of
overview plus detail can be named as the fact, that the time-dependent serial inter-
action steps provide two main views, an overview of the information and a detailed
view of the area or objects of interest. In contrast to that, space-multiplexed overview
plus detail conveys both information detail-levels at the same time, in two separated
areas of the display (views). This is most common way, how overview plus detail
is used in visualization systems [3]. In contrast to panning and zooming, semantic
zoom or focus plus context, the detailed and overview information are visualized at
the same time in mostly separated display or display areas (space-multiplexed).
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Dynamic Queries

The access of information in a human-understandable way is one main goal of infor-
mation visualization. Today’s information databases contain huge amount of data.
The visualization of the whole data-set on a single visualization is often overcharg-
ing the human perception and information acquisition abilities. Dynamic queries
can help to access the required information interactively, which can satisfy users’
heterogeneous needs of information acquisition [53, 54]. Dynamic queries provide
a well-known and successful approach for exploring [55] and visually seeking vast
amount of data [53]. Visual interactive query formulations and refinements enable
the reduction of the visualized information to a comprehensible and relevant scale
[55].

Direct Manipulation

All the introduced visual interaction methods manipulate the visualization, either on a
data-transformation level or on the level of visual transformation. Direct manipulation
provides a direct interaction with the user interface or visualization without the
need of commands. It bridges the gap between human and machine with a more
intuitive graphical metaphor of interaction and avoids the barrier to translate ideas
into commands [56]. Golbeck introduces the idea of direct manipulation with the
example of deleting items through the trash [57]. The physical selection of an item
and putting it into the trash is more intuitive an obvious interaction as a command-
line expression for the same action Shneiderman defined various criteria such as
visibility of objects and actions of interest; rapid, reversible, incremental actions;
and replacement of command-language syntax for direct manipulation [56, 58]. In
information visualization, where the data are represented with graphical metaphors
or representatives, direct manipulation is essential for a natural interaction. Each
interaction, which substitutes a command line expression, can be defined as direct
manipulation.

2.4 Visualization Tasks

Interaction with visualizations enables the dialog between user and the visual repre-
sentation of the underlying data. The interactive manipulation of the data, the visual
structure or the visual representations provides the ability to solve various tasks and
uncover insights. The term “task” in the context of information visualization is often
used ambiguously. Often, interactions and tasks are not distinguished for visualiza-
tion design, whereas the knowledge about the task to be solved with the visualization
is of great importance for its design and thereby for the adaptation. This section starts
with the introduction of taxonomies and classifications of tasks in visualization sys-
tems. The classifications will enlighten the heterogeneous view on visualization tasks
and enable getting an overview of the differences. The classifications will enable to
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Table 2.1 Task classification by Shneiderman [36, p. 337]

Task Description

Overview Gain an overview of the entire collection

Zoom Zoom in on items of interest

Details-on-demand Select an item or group and get details when
needed

Relate View relationships among items

History Keep a history of actions to support undo,
replay, and progressive refinement

Extract Allow extraction of sub-collections and of the
query parameters

investigate high-level tasks in more detail. These high-level tasks will be introduced
in the second part of this section and conclude the section.

2.4.1 Classifications of Visual Tasks

One classification of tasks in visualization is the already mentioned Task by Data
Type Taxonomy of Shneiderman (see Sect.2.3) [36]. With the assumption that users
are viewing collections of data with multiple attributes, he proposes that a basic
search task is the selection of items that satisfies the search intents. This classification
enhances Shneiderman’s Visual Information Seeking Mantra with the tasks relate,
history, and extract. Table2.1 illustrates the seven tasks.

The overall tasks in this classification can be abstracted to the high-level tasks
exploration and search and leads to finding (relevant) information.

Buja et al. proposed in their early work [59] a classification concept that investi-
gates the interaction with visualizations (view manipulation) and the tasks that are
supported by these interactions. They supposed that the purpose of the view manipu-
lations is to support the search for structures in data [59]. For this search they identified
three fundamental tasks for data exploration, namely finding gestalt, posing queries,
and making comparisons. Finding certain patterns of interest, e.g. clusters, discrete-
ness or discontinuities, are classified in the task finding gestalt. Posing queries is
the next step after gestalt features of interest were found and further information are
desired to get an comprehensible view on the chosen parts of the data. For the task
making comparisons they distinguish between two types of comparisons. First the
comparison of variables or projections and second the comparison of subsets of data.
The comparison of variables enables the “view from different sides” [45, 59], which
illustrates the data from different perspectives, whereas the data subset comparison
provide a “view of different slices” and thereby of different subset of data [59].

Further they proposed that the identified tasks are optimally related to three manip-
ulation views. For gestalt finding they identified the focusing individual views. Here
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Table 2.2 Task classification by Buja et al. [59, p. 80]
Task Manipulation view Interaction

Finding gestalt Focusing individual views Choice of projection, aspect
ratio, zoom, pan, order, scale,
scale-aspect ratio, animation,
and 3-D rotation

Posing queries Linking multiple views Brushing as
conditioning/sectioning,
database query

Making comparisons Arranging many views Arranging scatter plot matrix
and conditional plot

focusing provide any operation of that manipulates the subset of data or view. The
choice of projection, for viewing or the choice of aspect, ratio, and zoom are examples
of focusing. For posing queries they identified linking multiple views. The linking
contains view manipulation as brushing or query issuing by highlighting. Making
comparisons is related to arranging many views. They propose that the arrangement
of large numbers of related plots for simultaneous comparison is a powerful informal
technique [59].

With this tasks and manipulation views they further propose a set of low-level
interaction techniques that are related to each high level task. Table 2.2 provides an
overview of the proposed task, manipulation views and interactions that are related
to each other.

Another approach, which correlates low-level interactions with visualization
tasks, was proposed by Chuah and Roth [60]. They summarized their “basic visual-
ization interactions” as a set of low-level-interactions with the attributes input, output,
and operation and abstracted them to three basic visualization tasks [60, p. 31]. Atthe
lowest level they propose “Data Operations”, which contains interactions affecting
the elements within visualizations, e.g. add, delete or derive attributes. The higher
level considers “Set Operations”, which refers to operations on sets, which may have
group characteristics. The highest level investigates “Graphical Operations”, which
are divided into encode-data, set-graphical-value, and manipulate-objects. While the
classes encode-data and set-graphical-value change graphical attributes or the map-
ping between graphical objects and data, the class manipulate objects operates on
graphical objects as a unit of manipulation [60, p. 33-36]. The investigated tasks in
this classification focus on comparison and finding patterns as graphs or in data. The
high-level task of this classification can be abstracted as “analysis”. The aspect of
analysis was investigated in various works. One early example is the classification
of Wehrend and Lewis [61]. They proposed a taxonomy with ten analytical tasks:
location, identity, distinguish, categorize, cluster, distribution, rank, compare within
entities, associate, and correlate. Zhou and Feiner [62] proposed an approach by con-
sidering not only the interaction and manipulation abilities of visualizations. They
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Table 2.3 Visual task classification by Keller and Keller (adapted from [14, p. 380])

Task Description

Identify Recognition of objects based on the presented
characteristics

Locate Identification of the position of an object

Distinguish Determination the difference of objects

Categorize Classification of objects into distinct types

Cluster Grouping of objects based on similarities

Rank Ordering objects by intended relevance

Compare Examination of similarities and differences of
objects

Associate Drawing relationships between two or more
objects

Correlate Finding causal or reciprocal relationships
between objects

investigated the human perception and the intended task of the visual presentation
method in their classification to provide a more user centered task-classification.

Based on various existing classifications, they characterized visual tasks along two
dimensions. In the dimension Visual Accomplishments the focus lies on the intention
of the visual presentation [62, p. 394]. They assumed that a presentation intends
either to convey the presenter’s message or to help user solving a perceptual task.
Based on this assumption, visual tasks are distinguished at the highest level between
tasks that inform users by elaborating or summarizing and those, which enables
users to perform a visual exploration or computation. Their second dimension Visual
Implications considers research outcomes of the human visual perception. Based
on these outcomes they summarize three types of visual perception and cognition
principles: (1) the visual organization principle investigates how people organize
and perceive a visual presentation, (2) the visual signaling principle investigates
the manner how people interpret visual cues and infer meanings and (3) the visual
transformation principle explains how people perceive visual cues and switch their
attention. This incorporates the outcomes of the preattentive visual perception too
(see Sect. 2.2.1). Zhou and Feiner use these principles to infer visual tasks and assign
them to the first dimension of Visual Accomplishments.

A more user-centered approach for classifying task was proposed by Keller and
Keller [63]. Their classification considers the goals and intentions of the users and
suggest based on these certain visual representations [14, p. 164 and p. 380]. They
classify the user-intended tasks in nine task categories (see Table2.3). The main
characteristic of their classification is that only analytical aspects play a role for users
interacting with visualizations. Previous general tasks like exploration or search does
not play any role.
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Table 2.4 Visual task categorization by Yi et al. (adapted from [64, p. 1226])

Category Description

Select Mark something as interesting to enable the
following of the object

Explore Show something else e.g., different subsets of
data

Reconfigure Provide a different view or arrangement of the
underlying data

Encode Provide a different fundamental view by
selecting another visualization technique

Abstract/elaborate Provide a different level of detail on the data
e.g., by details-on-demand techniques (see
Sect.2.3.2)

Filter Provide a view with certain (predefined) criteria

Connect Provide a visual connection (e.g. by brushing)

between the same objects on different views

A comprehensive classification of users tasks based on user intentions and the
interaction role in information visualization was provided by Yi et al. in [64]. Their
classification attempts to abstract the most used interaction possibilities with users’
intentions to provide categories of interaction. They classify the user tasks based on
the role of interaction in information visualization in seven categories (see Table2.4).

Although the identified categories are abstract views on the interaction roles,
the level of abstraction differs enormously. The category select for example, can be
defined as simple and low-level interaction. Here a user marks an object of interest to
be able to follow this object in changed views [64]. In contrast to select the category
explore provide a real abstraction of interaction to a user task. Here the user is able to
view on various subset of data to see different characteristics and perform a various
number of low-level task e.g., comparing subsets or identifying relevant objects.

Pike et al. extends the proposed approach of Yi et al. [64] by differentiating
between low-level and high-level interactions intending to meet high- and low-level
user tasks and goals and propose a mutual feedback between user goals and tasks
and the affordance of interactive visualizations [65]. They define seven categories
of high-level tasks, which can be achieved by a number of low-level tasks and inter-
actions respectively. Further they relate the representation and interaction intents of
interactive visualizations, similar to the proposed classification of Zhou and Feiner
[62] to low-level representation and interaction techniques. The proposed approach
relates the classifications of user goals and tasks with the abilities and goals of
interactive visualization in a “mutual feedback” [65]. The relationship of the pro-
posed techniques and the user’s goals and tasks is the “analytical discourse”, which
investigates the low-level interaction and user goals to form a feedback between
them [65, p. 265].
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The classification of Pike et al. considers the interaction value and user’s goal
and tasks from both perspectives, information visualization and Visual Analytics
and gives a good overview of the high-level tasks intended by users and provided
by interactive visualizations. Nevertheless, the differentiation of high- and low-level
tasks is not clearly defined. A “compare” task could be a part and therefore a low-
level task of “assess” or “analyze”, while important tasks like “decision making”
[66, 67] are not considered at all.

Fluit et al. proposed in [68] a very simple classification of visualization tasks
in the special domain of ontology visualizations in the categories Analysis, Query,
and Navigation. Therefore they define the Analysis task for getting a global view
on data, the Query task for finding a narrow set of items, and the Navigation task
for graphically navigating through the data [68]. In their revised work [69] the last
category Navigation was replaced by Exploration. They propose that Analysis can
be performed within a single domain with various perspectives, in various sets of
data, and by monitoring the changes of data over time. The category Query is divided
into the processes of query formulation, initiation of actions, and review of results.
The task category Exploration is defined as finding information that are loosely of
interest for the users [69]. Here a further subdivision is not proposed.

2.4.2 High-Level Visual Tasks

The previous section could work out that visual tasks are defined and classified
in various levels of granularity. The described approaches are mostly using similar
tasks or interactions to describe the problem solving process in visual interfaces. This
section targets on the identification of high-level visual tasks as foundation for the
visualization design and the adaptation process. We define, in this work, high-level
tasks as tasks that are a summarization of visual tasks and provide a higher level of
abstraction.

The described classifications consider in various ways the aspect of search.
Shneiderman’s Visual Information Seeking Mantra proposes a top-down infor-
mation seeking approach [36]. Buja et al. propose searching information as the
main task, which can be solved by manipulating the view [59]. Zhouh and Feiner
investigate the way from information to user [62]. They elaborated the enabling
and informing users. Informing users by elaboration and summarization, premises
the information searching task. They further propose that search is a sub-task
of exploration in their enabling category [62]. Fluit et al. propose in their sim-
plified task classification search as one of the three high-level tasks and call it
query [68, 69]. As the most of the presented classifications consider search as an
important and fundamental task in visualizations, search is considered in this thesis
as one of the high-level visual tasks. Beside search the high-level visual task explore
plays an essential role. The task classifications show that exploring information plays
a key-role for each classification. Shneiderman’s model proposes a top-down seek-
ing model with the characteristics of exploration [36]. From overview to detailed
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information can be assigned as an exploration task [36]. Zhou and Feiner explicitly
name the task explore is a higher-level task of search and verify [62]. Yi et al. have
their own categorization for explore, although their classification is not considering
the high-level tasks [64]. The classification of Pike et al. [65] assigns the task explore
as the high-level task on the user-goal and tasks level. In particular the classification
of Keller and Keller [63] proposes a different view on solving visual task. They pro-
pose that the main visual interactions are solving more analytical task (see Table 2.3.
Their task classification can be abstracted to analyze. Zhouh and Feiner differentiate
in their model different aspects of analyze. In particular, the task category enable
and verify leads to the higher level task analyze, whereas some aspects of inform
and summarize are addressing the analysis task [62]. Pike et al. identified the task
analyze already as a high-level task in their model [65]. Further they assigned the task
“compare” as a high-level task too, whereas other works (e.g., [63]) assigns compare
as a sub-task of the analytical visual problem solving process. As the analytical tasks
plays an important role in all presented classification, analyze should be assigned as
a high-level visual task.

On balance, the classification of Fluit et al. seems to be a well elaborated high-
level task definition, whereas the definition of each task cannot be intermeatable
with other definitions. In this work we investigate search, explore and analyze as
high-level tasks. Further we assign the identified tasks as sub-tasks of the identified
three high-level tasks. This is to ensure that the major tasks are categorized to the
high-level tasks. This classification and task definition will be applied in this work. In
Fig.2.6 the classification and the assignment of the lower-level tasks are illustrated
as applied in this work.
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Fig. 2.6 High-level tasks with their sub-tasks
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2.5 Data Foundations

A fundamental component in information visualization is data. As the reference
model for visualization [3] and the visual analytics process [11] already illustrated
(see Sect.2.1), the process of visualizing information starts with the underlying data.
It is essential to process the data in order find the adequate way for visualization.
Therefore different aspects of data play arole in visualization. This section introduces
some of the most common aspects of the data that should be considered in visualiza-
tions. First a number of common classifications on data will be introduced. Afterward
different types of data will be described based on an established classification.

2.5.1 Classifications of Data

The starting point of the visual transformation is the data, thus the classification of
data is essential for visualizations [3, 11, 70, 71]. In this section various classifica-
tions of data will be presented. Some of these classifications were already mentioned
in context of interaction and tasks. Further, most of the visualization techniques are
described based on the data classes and the way of their categorization [14]. Alto-
gether the classifications of data can be abstracted to three main ways of categorizing
data: by data values (level of measurement), by the transformation steps of data, and
the data dimensions.

Card and Mackinlay introduced [71] and enhanced [3] a classification based on
the value of data. This considers the level if measurement of data values and their
ability to order. As already introduced (Sect.2.1) they propose that data values can
be:

e nominal: without any value that can be ordered
e ordinal: possess a value that can be ordered by relations between the values
e quantitative: numerical values and provide thereby a natural order [3, 71].

Ward et al. define the ability of numerical order of data value as “ordinal” [14].
They define that ordinal data values can be binary (e.g. 0 and 1), discrete, or con-
tinuous [14, p. 46]. Both, discrete and continuous data types may have numerical
values. Further they introduce the mathematical concept of scale [14]. They define
the data type scale as values with ordering relation with distance metric, with which
the distances between the values can be computed, and with the existence of absolute
zero for the definition of a fixed lowest value [14, pp. 46—47].

Chi introduced a taxonomy for visualizations [72] by using their Data State Ref-
erence Model [73]. Although, the taxonomy was proposed for classifying visual-
izations, the aspect that the data transformation and data types are the baseline, is
interesting for data classification. The Data State Reference Model [72, 73] pro-
poses three types for data transformation, four data stages and four types of opera-
tions within the model [72, pp. 1-2]. The model starts with the value (raw data) and
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Table 2.5 Data type classification by Shneiderman [36]
Data type by Shneiderman

1-dimensional Linear data types

2-dimensional Planar or map data

3-dimensional Real world objects

Temporal 1-dimensional data with start and finish time

Multi-dimensional Data in relational and statistical data-bases
with n attributes

Tree Data with a link to (one) parent

Networks Data items linked to an arbitrary number of

other items

generates some form of analytical abstraction (data transformation). The analytical
abstraction contains information about the data (meta-data). In the transformation
operations visualization transformation and visual mapping transformation, appro-
priate visualizations are chosen (visualization abstraction) and the visual picture is
generated [72]. The main aspect of data categorization is the differentiation between
the raw data (value) and the meta-data (analytical abstraction), that contain structured
information about the raw data [72, 73].

Another way of classifying data is by their dimensionality [3, 14, 36, 74]. This
classification that was already introduced in context of classifying tasks and inter-
actions (Sects. 2.3 and 2.4), is the most common way to differentiate data and their
mapping to visualizations, tasks, and interactions [36, 74, 75]. This classification
was proposed by Shneiderman in context of tasks to be solved with visualizations
and his Visual Information Seeking Mantra [36]. The classification subdivides data
based on their dimension in seven categories (illustrated in Table 2.5). The purpose of
the classification was not to cover all types of data. Shneiderman proposed that there

may exist further data types, e.g. 2 -, 4-dimensions or multitrees. His categorization

“reflects an abstraction of reality” [36, p. 339] and various visualizations may use
combinations of them [36].

Keim et al. proposed based on Shneiderman’s classification a “data type” clas-
sification [74], which defines the number of data variables as the dimensionality of
data [74, p. 4]. In their classification One-dimensional data have one dense dimen-
sion, but they count temporal data in this category. They propose that each point of
time may have further variables assigned (and can be multi-dimensional). Further
they consolidated Shneiderman’s 3- and multi-dimensional data into the category
“Multi-dimensional data” and the categories Tree & Networks into the category
of “Hierarchies & Graphs”. Further they put two new categories into their classifi-
cation “Text & Hypertext” and “Algorithms & Software” [74]. Table 2.6 illustrates
their classification.
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Table 2.6 Data type classification by Keim et al. [74]
Data types by Keim et al.

One-dimensional Data with one dense dimension, e.g. temporal
data
Two dimensional Data with two dense dimensions, e.g.

X-Y-plots or geographical data

Multi-dimensional Data with more than three dimension, also
called multivariate data (We assume that
three-dimensional data are investigated here
too), e.g. relational databases

Text & Hypertext Data with unknown dimensions and number. In
particular the interlinked (hyperlinked) data
(text, multimedia content in the World Wide
Web)

Hierarchies & Graphs Data with relationships to other information
entities. The relation can ordered, arbitrary or
hierarchical, e.g. e-mail relationships of
persons, hyperlink relations on web

Algorithm & Software Written representation (program code) of
complex algorithms

The introduced classification investigated different aspects of data from different
viewpoints. The ability to order data values plays an important role for classifying
datain [3, 71]. The stages and transformation of data, in particular the differentiation
between data and metadata, plays arole in [72, 73]. The main differentiation aspects
for Shneiderman [36] and Keim et al. [74] were the dimensions of the data variables,
which further may have an order too.

2.5.2 Data Types

The introduced classifications showed that the way how data types are distinguished
is tightly coupled to visualization design. We assume that all data variables and values
can be distinguished based on their level of measurement according to [36]. Let us
assume for example that we have data-set with two variables, time and books. Let
us further assume that there is no more information about the variable book, so that
we are not able to categorize (order) it. We can now categorize this set of data as
two-dimensional (or one-dimensional according to [74]) data with one quantitative
(or ordinal according to [14]) and one nominal variable. Based on this information
a fitting visualization could be chosen or designed. According to our example all
variables can be categorized according to [36], therefore we introduce the data types
based on their dimensionality according to Shneiderman [36] and Keim et al. [74].
It is important to have a common understanding of dimension in context of this
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Table 2.7 Data types in context of this work (adapted from [36, 72, 74]
Data types in context of this work

One-dimensional Data with only one variable, e.g. list of words
or temporal data without any associated
variables

Two-dimensional Data with two exactly two variables, e.g.
X-Y-plots of time and books

Multi-dimensional Data with more than two variables, e.g.

relational databases

Hierarchies & Graphs Data with relationships to data. The relation
can be ordered, arbitrary or hierarchical

Metadata Structured data with associations (links,
identifiers) to other unstructured data, e.g.
markup descriptions of textual webpages

work. Further some data types are not of interest, e.g. “Algorithms & Software”, and
other can be included to another data type. The aspect of metadata is of interest in
context of this work, therefore we enhance the categorization with metadata. The data
types will be described according to a slightly different categorization as illustrated
in Table?2.7.

One-Dimensional Data

The variable of these data can be ordinal, nominal or quantitative. The way how
the values of the variable are ordered (sequential manner as proposed in [36]) is an
important factor for the visualization. One example for one dimensional data can be
a data-set of countries with the variable “country name”. As defined by Shneiderman
[36], this variable or data value is nominal and does not own a “natural” order. It
may be obvious from our experience with such data, that the nominal variable in
this case is ordered alphabetically to provide an appropriate order for searching the
relevant information in a more efficient way. This data-set can be visualized as list
using the alphabetical order. One-dimensional data can be represented as a table with
one column (variable) and a set of rows.

Two-Dimensional Data

Two-dimensional data have exactly two variables that are associated with each other.
The values can be represented in a data table as two columns. The two variables
may be ordinal, nominal or quantitative. An example could be a data-set consisting
of countries with the variables “country name” and “population”. As the nominal
variable “country name” may be ordered alphabetically, the variable “population”
owns a natural quantitative order. Two-dimensional data can be visually represented
by X-Y-plots, whereas many chart visualizations are designed to illustrate these kinds
of data. In the mentioned example a pie-chart may be an adequate way of illustration;
based on the fact that one dimension has a quantitative order and the other nominal.
Another example for two-dimensional data may be a data-set of “events” with the
variables “quantity” and “time”. The variable quantity represents the amount of
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events associated with time as a second variable. The main difference between the
data-sets is their order.

Multi-dimensional

Data-sets with three and more variables are investigated in this thesis as multi-
dimensional data. Shneiderman differentiates in his classification between three and
multi-dimensional data [36], while Keim et al. do not classify three-dimensional data
at all [74]. The reason is quite simple, thus visualizing the third dimension on a two-
dimensional screen is easy. The third dimension or variable can be presented by an
adequate visual variable, e.g. color or size. The choice of the visual variable depends
on the ability to order the data variable [3, 76]. If the data variable or dimension is for
example quantitative, the size of the icons may be the right visual variable to illus-
trate this issue, in case of a nominal variable the differentiation may be performed by
color. Data-sets with more than three dimensions are called in the literature multi-
dimensional or multivariate data. There are many data-sets that consist of more than
three variables [74]. With each variable or dimension the complexity of visualizing
the data increases. Each of these variables may be nominal, quantitative or ordinal.
Their visualization can overwhelm and confuse even experts, if hundreds of dimen-
sions are visualized at the same time. Shneiderman proposes the use of buttons, if the
cardinality is small, further he introduces a slider to control two-dimensional scatter-
grams [36, 77]. Different visualization approaches focus on multi-dimensional data,
the interaction with the visualizations and the control of their dimensions [78-81].

Hierarchies & Graphs

Data entities in data-sets may have different relations to each other and provide
thereby a hierarchical or network structure. Keim et al. differentiates between arbi-
trary, ordered and hierarchical relationships of data entities [74, p. 4]. The rela-
tionships of the entities may have different structures. Shneiderman lists as exam-
ples, acyclic, lattices, rooted, unrooted, directed, and undirected as examples [36,
p. 339], but proposes to investigate them all as network data. Keim et al. include
the hierarchical structure as the same data type and do not differentiate anymore
between hierarchies and networks [74]. Example of these relations may be the inter-
linking of web-pages, the correspondence of emails or relations in relational data
bases. [36, 74] There are various visualization techniques that face in particular the
problem of large graphs and huge amount of entities [§2—88].

Metadata

Metadata can be simply defined as data or information about data. Chi introduced
in his Data State Reference Model a transformation step that produces some form
of analytical abstraction from the underlying data [72]. The analytical abstraction is
one way to generate a data model that provides information about the underlying data.
Thus metadata depends in general on the underlying data; their dimensionality can
depend to the dimensions of the data too. It is further possible that metadata have less
or more dimensions as the raw data. It depends what the purpose of the metadata is.
In general, metadata is represented in a structured form using an annotation (markup)
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language. The developments in World Wide Web and mobile devices fostered the
use and application of metadata in the recent past. There exist a number of common
languages for describing metadata, e.g. the Extensible Markup Language (XML) or
the Hypertext Markup Language (HTML).

2.6 Methods and Techniques in Information Visualization

There exist many classifications of visualization techniques that use various crite-
ria for categorizing visualizations and provide different views [89]. This chapter
already introduced some of the most common classifications. These are using data,
interactions, tasks, or the stages of data processing for classifying the visual rep-
resentation. The following part of this section will focus on a classification of the
visual representations and convey correlations to the introduced classifications.

2.6.1 Classifications of Visualization Techniques

The most common classifications or taxonomies for information visualization use
one or more of the introduced criterion, namely data, interactions, tasks, or the
stages of data processing for classifying the visual representations. Although, most
of the visualization aspects were introduced, the step from data to a visual mapping
[3] is also essential to understand information visualization as foundation of this
work. This section will outline the aspect of visualization techniques from introduced
classifications and will further enhance with those classification that use other as the
introduced criterion.

Card and Mackinlay classified visualizations based on data value types [71]. Their
classification uses the ability to order data values (see Sect.2.5.1) as criterion for
categorizing visualizations. With the use of graphical properties [4] and the mapping
to these properties they classified visualizations based on data value types (ordered,
nominal, and quantitative) into scientific visualization, GIS, multi-dimensional plots,
multi-dimensional tables, information landscapes and spaces, node and link, trees,
and fext transformation.[71] In their revised work [3], as they defined information
visualization, they do not classify scientific visualization as a class or category of
information visualization [3]. This definition was applied and is today valid too, that
the scientific visualization builds an own class of visualizations [5, 14, 90].

Data as criterion for classifying information visualization played an important
role and are still today an important factor for classifications. The most common
classification beside the classification based on data value order is the type by data
taxonomy [36, p. 337] (see Sects.2.4.1 and 2.5.1). This classification investigates
both, the data types as described in Table 2.5 and correlates them to the visualiza-
tion tasks introduced in Table2.1 [36, 76]. The correlation of tasks and data types
leads according to Shneiderman to solve visualization problems. He proposes to
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Table 2.8 Visualization techniques (adapted from [74]
Visualization techniques according to Keim [74]

Standard 2D/3D display X-Y and X-Y-Z plots for standard visualization,
e.g. barcharts, linecharts, or piecharts
Geometrically-transformed display Techniques with exploratory statistics to find

interesting transformation and patterns in
multi-dimensional data-sets

Iconic display Techniques that map attributes of data values
from multi-dimensional data-sets to the
features of icons, which may appear as little
faces, needle icons, star icons, color icons etc.

Dense pixel display Techniques that divide the screen into multiple
subwindows based on the amount of the
dimensions in the data-sets. Each data value of
the dimensions is mapped to one pixel of the
screen

Stacked display Tailored techniques to present data partitioned
in hierarchical manner. Therefore a coordinate
system is embedded to another one and this
may have further embedded coordinate
systems. Each of the coordinates visualizes two
attributes and provides with their stacked
character the visualization of
multi-dimensional data-set

arrange the data types in this taxonomy on the left side, which describes the task-
domain. The information objects are correlating to users intentions for solving the
tasks. [36] With this matrix a taxonomy is proposed that focuses on data types but
investigates the problem-solving process (visual information seeking mantra) by the
categorized tasks. [36, 76] The correlations of tasks (interactions) to data and this kind
of mapping were enhanced by Keim et al. [74]. They used a slightly different data
type classification (see Table2.6), the interaction techniques (see Sect.2.3.2) and
provided a correlation to visualization techniques. They defined five visualization
techniques that correspond to the display mode. They proposed that the visualization
classes are “basic visualization principles” [74, p. 5] and can be combined to provide
efficient visualizations. Table 2.8 illustrates the visualization classes identified by
Keim et al. [74].

The classification of Keim et al. focuses on the visualization of multi-dimensional
data. The identified data types include graphs and hierarchies, graph-layout algo-
rithms are not mentioned at all. This type of data is correlated to geometrically-
transformed data, which may contain graph-layouts, but this type of visualization is
not mentioned [74].
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Table 2.9 Visualization techniques of Keim in contrast with each other

Visualization techniques according to Keim [38, 74, 75]

[38, 75] [74] Description

Graph-based - Structured visualization of
graphs and networks, e.g. basic
graphs

Hierarchical - Subdividing the k-dimensional

space and presenting the
subspaces as hierarchies, e.g.

treemap

Pixel-oriented Dense pixel display Techniques that map data
values to the features of screen
pixels

Icon-based Iconic display Techniques that map attributes

of data values to the features of
icons

Geometric Geometrically-transformed Techniques with exploratory
statistics to find interesting
transformation and patterns in
multi-dimensional data-sets

- Standard 2D/3D display X-Y and X-Y-Z plots for
standard visualization, e.g.
barcharts, linecharts, or
piecharts

Hybrid - Arbitrary combinations of the
introduced techniques

Previous works of Keim [38, 75, 91] proposed a similar classification of visualiza-
tions, whereas a dedicated class for Graph-Layout was identified. This classification
used more the interaction techniques rather than the data dimensions for identifying
the categories of visualization techniques [38, p. T6-6]. Further this classification
proposes more the combination of the different visualization classes and classes for
3D-, Dynamic- and Hierarchical techniques. Table2.9 illustrates this classification
and compares it to the visualization techniques in Table2.6. The descriptions of
the visualization techniques are used based on the work in [38, 75, 91] and may
slightly be different. Just in case of the standard visualizations 2D and 3D Displays
no description were given, so this is according to [74].

A high-level taxonomy to categorize visualization (both: scientific and informa-
tion visualization) was proposed by Tory and Moller [90]. They investigated the visual
space as whole and included factors like user models to get ideas about the “object of
study”. The involvement of a user model that affect the understanding of what data
represent was novel in contrast to the work that was previously focused just on data,
interactions and tasks [90]. The classification of visualization provides a high-level
classification on data level. The authors differentiate between “discrete” and “con-

ELINNTS

tinuous” character of “design models”, “the conceptualization of a system that the
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designer has in mind” [90, p. 3] based on Norman’s definition [92]. The differentia-
tion leads to the choice of various display attributes, e.g. color or transparency [90]. In
the next step of their classification they introduce low-level taxonomies based on the
dependent and independent variables (data values) in visualizations. The continuous
model visualization correlates the type of the dependent variables to the number of
the independent variables. Dependent variables can occur as scalar (color gradients,
isolines), vector (glyphs, particle traces), and tensor (ellipsoid-shaped glyphs) [90,
p. 5]. The discrete model visualization first differentiates between data structure and
data value. Value is defined by the dimension of the underlying data. Tory and Moller
differentiate between 2D, 3D, and nD [90]. The structure may occur as node-link,
hierarchies, and space-filling mosaics [90].

However, other criteria have been proposed to classify visualizations: e.g. by
space, by changes of the data over time or their transformation steps, by number of
visual attributes, by tasks and interactions, by the several aspects of data, or by human
factors [37, 67, 71, 72, 89]. Further some special criteria were investigated for the
classification of visualizations. Grimstead et al. for example investigated visualiza-
tions in context of collaboration [93]. Some visual classifications appeared in context
of the application domain. Gelernter for example investigated visualizations in con-
text of digital libraries and proposed a categorization in hierarchical lists, concept
maps, tree maps, and self-organizing maps [94]. The main criterion for classifica-
tion still remained the data based classification. Ward et al. presented a taxonomy of
visualizations based on the data structure and subdivide each class again by the data
types (data value) or visual attributes [14]. This more recent example amplifies the
assumption that the visual transformation of the data type, structure and value is an
adequate way to categorize visualization types. The classification of Ward et al. is
illustrated in an abstract way in Table2.10.

Table 2.10 Visualization classification by Ward et al. (adapted from [14])

Spatial data Geospatial data | Multivariate data | Trees, networks | Text and

and graphs documents
One-dimensional | Visualization of | Point-based Hierarchical Single document
data point data technique structures visualizations
Two-dimensional | Visualization of | Line-based Arbitrary graphs | Document
data line data techniques and networks collection

visualizations
Three- Visualization of | Region-based Extended text
dimensional area data technique visualizations
data
Dynamic data Combination of
techniques

Combining
technique
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Point-based
Line-based
Area-based
Hierarchical
Arbitrary
Single-winwow
Multi-winwow

|
|

Fig. 2.7 Visualization classification used in this work (adapted and combined from [14, 74, 75]

2.6.2 Visualization Techniques

The classifications of the visualization techniques could outline that many criteria can
be used for categorizing visualization. The main criteria still remain the data structure
and data value [14, 38]. This section will give an overview about the visualization
techniques that are classified above. For introducing the visualizations, a combination
of the most relevant classifications will be used. The baseline of the classification
used in this work, is the visual categorization by Keim et al. [38, 74, 75, 91]. Thus
the different classifications use various terms for similar classes of visualization
(see Table 2.9), the introduced techniques will be introduced by recently used terms
in the research literature. Further some categories are either obvious (e.g. hybrid),
not of interest in context of this work, or not anymore in context of information
visualization. These classes will not be considered. Based on these factors a slightly
different classification will be introduced that considers the research goals of our
thesis. Figure 2.7 illustrates the visualization classification as a combined result of
the works of Keim et al. and Ward et al. The introduced visualization techniques
serve as examples and do not claim to present the state-of-the-art in information
visualization.

Geometric Visualizations

Geometric visualization techniques [38] (Geometric Projection Techniques [91],
Geometrically transformed Techniques [74]) transform data values of one- to multi-
dimensional data into graphically transformed object. Every transformation that goes
beyond the mapping of data values to pixel or a transformation to graph-layout can be
count as geometric visualization technique. Keim et al. propose that this transforma-
tion aims at finding interesting patterns, in particular in multi-dimensional data-sets
[74, p. 5]. In context of this thesis simple transformation in one and two dimensional
data-sets are counted as geometric visualization techniques. Thus the “standard 2D
/3D” visualization techniques are investigated as part of this visualization technique.
The geometric transformation can be performed in various ways. In two dimensional
data, e.g. the transformation is a mapping to geometric objects. In multi-dimensional
data-sets the use of exploratory statistics, e.g. Principal Concept Analysis (PCA) [95]
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or Factor analysis and multidimensional scaling, enables such geometric projections
[74]. The outcome of the transformation is geometric objects that may appear as dif-
ferent object types. After the review of recent and traditional visualization techniques
that use a geometric transformation, the classification of Ward et al. for multivariate
data [14, p. 237] is partially applied to outline the main “geometric objects”. There-
fore we classify the geometric visualization techniques into their output geometry
that commonly appears as “points”, “lines”, and “areas”.

Point-Based Visualizations

The geometric transformation to point-based techniques includes the visual projec-
tion of data values to graphical representations as points, marks or other “aesthetic
entities” [14, p. 237]. According to given attributes the visual representations of each
record are placed on the screen to derive a visual representation of the whole data
set. Depending on the selected attributes and the chosen layout method, point-based
techniques are suitable to compare certain data characteristics, identify outliers or
irregularities in the data, recognize relationships among data entities, and identify
unexpected or previously unknown clusters and patterns. Usually each data record
is projected from its n-dimensional space to a k-dimensional space (usually two- or
three-dimensional) and the visual representation of the record is represented at the
k-dimensional point on the screen.

One of the most common and established approaches for point-based visual-
izations are the use of Cartesian coordinates for positioning points [96]. The most
common way perform such a positioning are scatterplot (two- or three-dimensional
scatterplots [97]). Each axis of the coordinate system represents one dimension of the
underlying data. The type of each dimension can either be ordinal or nominal. With
the use of linear interpolation or other interpolation and projection methods [98] the
data values are mapped to the dimensions of the plot. The representations of each
data record are drawn at the location in the coordinate system that corresponds to the
attribute values for the dimension in the record. So, different records can be compared
according to the chosen dimensions. Another important feature of scatterplots is that
the amount of the visualized dimensions is not limited to the number of axes of the
coordinate system. Current approaches [97-99] make use of visual properties of the
depicted marks to include further dimensions into the representation. One common
method for including further dimensions in a scatterplot is mapping of data values
to visual variables, e.g. color, size or shape.

The projection of points to Cartesian coordinates is just one way for the geo-
metric transformation of data values as points on the screen. Further examples for
point-projections are Barycentric mappings that consider coordinates as weighted
sums of the anchor positions [100] or projections to circles, constructing multiple
dimensions by a flattening process [101]. A recent example of Dinkla et al. visu-
alizes network data with strong structural characteristics as point-based matrices
(Compressed Adjacency Matrices) [102]. These matrices allow an easy detection of
sub networks with specific structures and motifs [14, 102].



52 2 Information Visualization

Line-Based Visualizations

Line-based visualizations project data values as lines on the screen. Therefore the
vertical axis represents traditionally the value of a data variable and the horizontal
axis the order. In many cases this order is a temporal (quantitative) variable that
visualizes a continuous value. Line-based visualizations are the most common way
to graphically represent the continuous value, e.g. in stock markets and financial
sectors. Due to the high distribution and the high familiarity, these visualization
techniques are effective for users to analyze and explore data. Each line represents
one data value in correlation to two dimensions. With this characteristic the basic form
of line-based visualizations are univariate. In contrast to point-based visualization
techniques, line-based techniques provide also visual patterns for slopes, curvature,
crossing, and further line patterns [14].

The most common way of line-based visualizations is line-graph. Similar to the
traditional scatterplots, line-graphs visualizes data values on the axes of Cartesian
coordinates. The line-graph is originally a univariate data visualization that can be
easily extended for visualizing multivariate data [14]. According to Ward et al. there
are four main strategies for providing visualizations of multivariate data with line-
graphs: (a) superimposition (b) stacking, (c) ordered superimposition, and (d) ordered
stacked [14, p. 246]. The idea behind each of these strategies is to represent each
dimension with an own line in the same coordinate system using one of the four
strategies:

e Superimposing: Superimposing multiple lines in one coordinate system allows
directly comparing different dimensions and records in a single visualization.
Crossings and shared trends can be easily recognized with this strategy. However
if the dimensionality increases this approach becomes unclear.

e Stacking: Stacking lines on top of each other avoid crossings of lines. The idea is
to start with the first line and use it as base line for the following. The quantitative
value of each record is reflected by the distance of the line at a specific point to
the line beneath it. So it is difficult to recognize the actual value for each record
but this strategy is well suited to explore aggregated values of multiple records.

e Ordered superimposition: The ordering or sorting of records based on a specific
dimension is another strategy for visualizing multivariate data in a line-graph. The
ordering of the records has direct impact to the expressiveness of the visualization.
Adequate orderings alleviate the recognition of patterns and relations among the
data set.

e Ordered stacking: Analogue to the superimposition strategy, the ordering can also
be applied to stacked line-graphs. The ordering of records according to a certain
dimension may reveal interesting patterns and is a direct factor for the expressive-
ness of the visualization technique [14, p. 264]

Another well-known and established method of the geometric transformation to
line-based visualizations is “parallel coordinates”. This projection technique was
introduced by Inselberg for studying high-dimensional geometry [103] and found
its way through many applications and enhancements to multi-dimensional data. In
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contrast to line-graphs, parallel coordinates do not make use of orthogonal axes.
They order the axes, which may represent the data dimensions parallel to each other.
Spaced vertical and horizontal lines represent the ordering or value of the data.
Traditionally each datarecord is plotted as a polyline across the parallel arranged axes.
The polyline crosses each axis at the position proportional to its value to represent
the characteristics of the data record. Parallel coordinates can be used to identify
clusters in the data by means of similar curve shapes of the visualized records and
to identify correlations and outliers [14, 104, 105]. Furthermore parallel coordinates
allow two basic ordering methods that can be controlled by the user in most of existing
implementations: (1) order of axes and (2) ordering of values [14]. The order of axis
determines which dimensions are arranged next to each other and the ordering of
values the position of values according to each axis. Analogue to line charts the
ordering of axes as well as the ordering of the values in each dimension influences
the expressiveness of the visualization. If an unfavorable ordering is chosen relevant
patterns in the underlying data may remain hidden from the user.

Since the development of parallel coordinates many approaches extended the
idea to provide more efficient visual pattern recognition. Fua and Ward introduced a
hierarchical approach for visualizing aggregated information of large data-sets [ 106].
Miller and Wegemann introduced the concept of line densities to replace the raw data
with a density plot that reveals clusters in multivariate data [107]. Yang proposed
an interactive hierarchical dimension ordering, spacing and filtering approach that
is based on dimension hierarchies derived from similarities among dimensions and
introduced an approach for visualizing association rules in parallel coordinates [ 108].
Peng et al. presented an approach for reducing visual clutter by using dimension
reordering strategies [109]. Novotny and Hauser proposed an approach for visual-
izing context at several levels of abstraction in parallel coordinates for representing
outliers and trends [110] [14, p. 248]. Yuan et al. enhanced the line-based approach
of parallel coordinates with point based techniques of scatterplots to enhance the
usability in large multi-dimensional data [104]. Zhou et al. proposed a splatting
approach to reduce clutter in parallel coordinates and reveal patterns [105]. Pilhofer
et al. presented ordering and optimization algorithms based on Bertin’s classification
[4] to reveal cluster with visual variables [111].

Line-graphs and parallel coordinates were example of line-based visualization,
using orthogonal or parallel axes to visualize data values and dimensions, their cor-
relations and visual patterns. The idea of visualizing lines across axes or parallel to
axes was applied on different further approaches. Ward et al. outline in particular the
radial axes techniques that project a given range of values to a circular scale [14].
They propose that each record is plotted as a line offset from the circular base for
representing the data set. This technique is especially useful for analyzing periodic
or cyclic data.

Area-Based Visualizations

Area-based (region-based, space-based, space-filling) visualization techniques make
use of filled polygons or spaces on the screen to project data values and dimen-
sions on the screen [14]. Usually instantiations of area-based techniques incorporate
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different properties of the given data into the visual design of the polygons to con-
vey additional values and data characteristics to offer the possibility of comparing
different features of data. For instance the size, the shape or the color of the visual
representation of a data record can be utilized for visually representing additional
dimensions of the data set. Due to the ability of the human perception which enables
an effective differentiation of the length or the size of presented polygons, area-based
visualizations are successfully applied for representing and analyzing information
encoded in the data [14].

The most common representative of area-based visualization technique is the bar
chart that was successfully integrated in many different applications for comparing
and analyzing data. Similar to scatterplots or line-graphs, bar charts are based on a
Cartesian coordinates that include commonly two or three dimensions. Usually the
vertical axis represents the range of the values, whereas the horizontal axis represents
an ordering of the given records [14]. Each data record is represented as a bar and
the length visualizes the data value. According to Ward et al. there are two different
strategies to present each data record in a bar chart, stacked or clustered [14]. In a
stacked bar chart the values of each dimension and record are stacked together in an
aggregated bar. In a clustered bar chart the value of each record for each dimension
is represented in a bar and positioned next to each other [14]. Other approaches of
bar chart visualizations utilize a three dimensional coordinate system to separate the
different dimensions into a new coordinate.

The geometric transformation of data in area-based visualization techniques do
not need to be arranged to certain axes. Thus the polygons and spaces provide various
visual variables for projection, the polygons themselves may contain information rep-
resented by appropriate visual variables. For instance the data in tables that already
owns relationships are predestinated to be visualized as polygons [14]. Multivariate
data are often stored in tables (see also Sect.2.1) where each row represents a data
record containing the values for each of the dimensions represented by the columns
of the table. Tabular displays like heatmaps [112, 113] or table lens visualizations
[114] directly exploit this tabular structure to visualize data. Heatmaps utilize a color
gradient to map each value of the given table to a specific color and fill the corre-
sponding cell of the table with the derived color [14]. For instance such an approach
visualizes higher values with a more intensive color for visually separating these val-
ues. The approach of visualizing multivariate data with heatmaps is especially useful
for the task of identifying outliers in the data by means of strongly deviating colors.

The Table Lens approach introduced by Rao and Card [114] represents each
data record in a row of the table and encodes the values for each dimension and
record respectively with a visual representation. For instance a numerical data entry
is represented as a horizontal bar and the length represents the value. Usually imple-
mentations of Table Lens include different ordering functions that allow users to
order the data records in the table with respect to a selected dimension. Another
commonly integrated feature of table lens is the ability to expand specific rows by
selection and to inspect the data records in its textual form. Table Lens visualizations
are especially useful for inspecting a large amount of data and to get an overview of
its characteristic as well as analyzing the data distribution of specific dimensions.
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Beside tabular and multidimensional data, various data projections were devel-
oped with area-based visualizations. Shneiderman proposed a visualization
approach that transforms hierarchical data structures in nested rectangular areas
by splitting the screen into vertical and horizontal rectangles [115]. This Treemap
visualization is a classic representative of area-based visualization techniques that is
not constrained to any data structure. It is obvious that hierarchies can be conveyed
with this visualization in an effective way, but further enhancements of the Treemap
proofed its applicability for various data [116—122]. Brunetti for instance applied the
Treemap visualization for semantic data [122]. Cox applied a circular Treemap to
visualize the customer price index of New York [118] and used color of the spaces
to visualize the temporal changes.

The introduced techniques for area-based visualizations should be considered as
examples that may illustrate the effectiveness of these visualization techniques. There
exist many further approaches that make use of the transformation of data values
to polygons and their visual variables. Further examples could be the Docuburst
introduced by Collins et al., an approach for a radial space-filling tree visualization to
explore textual documents [123], Zhou et al. introduces an approach that make use of a
splatting framework to reduce the clutters and transforms lines to spaces [105], and we
have proposed a superimposed stacked-graph using polygons for visualizing trends
and the occurrence of related documents for detecting latent trends over time [124].
Shin et al. proposed a hierarchical tree visualization for mobile devices by integrating
focus plus context [125]. Their Tablorer system integrates space-filling and indented
lists to visualize hierarchies.

Many applications and methods used combination of the above introduced tech-
niques. A famous example is the Table Lens proposed by Rao and Card [114]. Table
Lens make use of all three mapping methods based on the value type of the data, e.g.
quantitative variables are presented by bars [114]. This approach was applied and
enhanced by further applications (e.g. [126, 127]).

Graph Visualizations

Many data sets provide a kind of relationship between data entities. These relation-
ships may be stored in tables, as metadata in structured documents, or appear as a
result of data processing. The result of the data entity relationships can be called
graphs. A graph consists of data entities that represents as a set of nodes and their
connections to each other, called edges or links [74]. Diestel describes a graph as a
pair G = (V, E) of sets, where E C [VZ], VN E = 0 and the elements of V are
vertices or nodes and the elements of E are edges or links [128, p. 2]. The result-
ing relationships may occur in different ways and can consequently be visualized in
various ways. Keim et al. proposes for visualizing graphs ordered, hierarchical, and
arbitrary network relation visualizations [74, p. 4]. von Landesberger differentiates
graph visualization techniques between node-link, matrix, and combined techniques
[129]. This thesis differentiates between those relationships that describe a parent to
child relation (hierarchical) and relations that have not any hierarchical correlations
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Fig. 2.8 A taxonomy for visualizing hierarchies with graph-layouts (adapted from [130, p. 579]
and based on [84, p. 4])

(arbitrary). For differentiating the graph-layouts Herman et al. proposed a survey of
different graph-layout algorithms and their application scenarios [84].

Hierarchical Graph-Visualizations

Hierarchical visualizations (or Tree visualizations [14]) aim at interactively visual-
ize the data relationships that can be described as parent to child relation. Graph-
visualizations are predestinated for visualizing these kinds of relations. Although
the previously introduced Treemaps and further space-filling visual techniques are
used to interactively present the hierarchical structure, one main way of visualizing
hierarchical relations still remains the use graphs and their node-link diagrams in
different ways. We elaborated the literature on graph-visualization and worked out
a taxonomy of graph-layouts for visualizing hierarchies [130, 131]. Figure 2.8 illus-
trates an adapted version of our taxonomy. Although the list of graph-layouts for
visualizing hierarchies is much longer, the illustration gives an overview of the how
graph-layout could be used to present hierarchies.

One prominent way of using node-link diagrams for visualizing graph-based hier-
archies are dendrograms [132]. Dendrograms are binary three structures that are
characterized by the fact that all nodes of a hierarchy level are in the same line. This
attribute improves the visual arrangement of the hierarchical structure. The simple
graph-structure of dendrograms allows complex information presentation, whereas
huge numbers of entities may overcharge users. Chen et al. investigated this aspect
and proposed an overview plus context approach for dendrograms that separates a
dynamically-linked overview and detail-view dendrogram to allow more complex
information visualization [132].

D’ Ambros and Lanza proposed an approach of visualizing hierarchies of discrete
“time figures” [133]. Their approach investigated the problem of bug-finding and
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-reporting in software systems and visualized it in a hierarchical graph-diagram.
Therefore they used a heatmap similar approach for coloring time periods in rectan-
gles, which are then visualized in a hierarchical node-link diagram. Holten and van
Wijk introduced a visualization approach for comparing different hierarchies [134].
They proposed a visual clutter reduction method (Hierarchical Edge Bundles) that
provides an easy interaction with the complex hierarchical structures. Dinkla et
al. proposed a Visual Analytic system that supports comparisons of hierarchies by
including node-link diagrams for the hierarchy representation of the weights of the
related instances [135]. With a further linked-visualization they provided a detailed
view on hierarchy structure, weights and metadata with a user-customizable analy-
sis algorithm for ordering the weights as heatmap rectangles and find interesting
nodes [135].

Arbitrary Graph-Visualizations

Hierarchical graph-visualizations are one specific type of graph-visualizations. They
premise that at least a parent-child dependency exists. Even, if these hierarchies are
just one subgroup of graph-visualizations, the placement algorithms could achieve
high complexity as we described in the previous pages. Compared to hierarchi-
cal graph-visualizations, the placement of nodes in arbitrary graph layouts that ful-
fill certain optimization constraints is more complex brandes03. Arbitrary graph-
visualizations illustrate information that does not contain a known class or struc-
ture [14]. There exist many ways to visualize graph structures, e.g. as node-link
diagrams or matrices [136]. Ward et al. subdivides the use of node-link diagrams
for graph-visualization into planar and force-directed graph drawing [14]. Force-
directed [137, 138] graph drawing makes use of mass-spring-simulations, the so
called “spring-embedders”, and model the optimality criteria as an energy func-
tion [137]. Each pair of nodes is connected with two forces, one caused by the spring
between them and the other a repulsion that keep nodes from getting too close to each
other [14, p. 278]. Planar graph drawing makes the assumption that the underlying
graph is planar and contains for instance no crossing edges. The research work on
graph-drawing contains various methods for drawing graphs and visualizing infor-
mation and their relationships as visual patterns. Each of the classes proposed by
Ward et al. may rise in various ways and provide slightly different views on data and
information. We worked out a kind of taxonomy for arbitrary graph-visualization
[130]. Figure 2.9 illustrates an adapted version of our taxonomy. Similar to the hier-
archical approaches graph-drawing methods, the list of graph-layouts for visualizing
non-structured networks is much longer, the illustration aims to give just an overview
of some algorithms.

There exist many approaches for visualizing graphs and these were applied in
various ways to visualize information. One of the main problems of arbitrary graph-
visualization is the complexity of huge amounts of nodes and edges. In particular, in
arbitrary graph visualizations, where the structure and classes are unknown [14], the
graph-visualization may become difficult for human to understand. Therefore many
approaches faced this problem from different point of views. Abello et al. for instance
proposed an approach for navigating in large graphs by displaying an overview of the
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graph and provide with this overview a navigation support [86]. This linked overview
further enables a filter functionality to collapse or expand sub-graphs in their detailed
graph visualization. van Ham and Perer [87] faced the same problem from an opposite
viewpoint. They proposed that the procedure of getting first an overview and then
detailed information (see Sect.2.4.2 for visual information seeking mantra), may
not be appropriate for all visualization tasks or groups. They applied the “Degree of
Interest” concept of Furnas [45] to graph-visualizations and proposed an interaction
model that starts with a user interest-based search on initial nodes [87, pp. 954-955].
The second step of their interaction model is show context that provides a sub-graph
of the focused node. Their model concludes with expand on demand step, where
users can decide to expand this sub-graph and get more contextual information or an
overview. They applied their model to a massive data-set of legal document citations
in order to provide a comprehensible view on complex court decisions.

May et al. used the degree-of-interest approach of van Ham and Perer and
enhanced it with a multiple focal node selection based on an enhanced focus plus
context metaphor [88]. Their approach uses a symbolic (arrows) representation to
point along the shortest-path to regions of interest in the graph that might be worth
exploring. Further they added landmarks as graphical cues to give information on
the context of the visible sub-graph.

Graph visualizations were applied in various domains, e.g. social networks
[139, 140] for heterogeneous tasks, e.g. threat detection [141] and with various
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methods [142, 143]. This thesis does not claim to give a comprehensive view on
graph visualizations or their algorithmic optimization methods. There exist a huge
number of literature that investigate the aspect of graph visualization, graph drawing
[82, 85, 144] and statistics [96] in depth. Further various surveys [84, 136, 145, 146]
exist that give an excellent overview on these graph visualization techniques.

Pixel-Oriented Visualizations

Pixel-oriented visualization techniques project each data value of a data-set to one
pixel of the screen and present them related to the dimensions [74, 147, 148]. This
visualization approach is appropriate for massive data, thus the screen provides a
huge amount of pixels and thereby huge visualization capabilities for an excellent
overview of massive data. The visualization of data values as pixel has limitations
too. One pixel may have the visual attributes of color, including brightness, hue, and
saturation or make use of the Grey-scale and its values [148]. Further variables, e.g.
shape or texture cannot be used on the pixel level. Massive data can be visualized
with the pixel-oriented visualizations with two main limitations: Firstly the amount of
visual variables, in most cases color, is limited to a certain range [149]. The second
limitation is about arranging the pixels related to the data set. The visualization
approach can be seen as a function that projects values from high-dimensional space
to a two-dimensional screen [148].

To face the problem of the limitation of visual variables in pixel-oriented visu-
alizations, Oelke et al. has investigated various visual variables for their “boosting”
effect [150]. For their work they investigated the visual properties of Ware [28, 29]
with respect to their applicability in pixel-oriented visualizations [150]. Whereas the
restriction of one data value per pixel could not be applied to many of the proposed
visual variables. Thus the variable halo for instance needs the space surrounding the
pixel, which visualizes the data value [150, p. 9]. They introduced a differentiation of
pixel-oriented visualization based on image-driven and data-driven boosting, which
was further subdivided into parse and dense data sets. They evaluated eight visual
variables based on the mentioned classification.

Keim proposed a differentiation of pixel-oriented visualization in Query-
Independent and Query-Dependent visualization techniques [147, p. 2]. While query-
independent visualizations visualizes data values by mapping them directly to color,
query-dependent visualizations consider the user intention, as her query on the data
set. Therefore the distances of attribute values to the query are mapped to colors. The
mapping of color in query-independent visualization can be performed by naturally
orders of data values [148] or by any other attribute of interest, e.g. by the quantity
of data value appearance [80]. Keim introduced the question of using subwindows
in various ways [148], e.g. as circle segment techniques or rectangular techniques.
The use of subwindows in pixel-oriented visualization is common, but there exist
various techniques that make use of a single window for visualizing the colored
pixel for conveying information. In this thesis we investigate some examples and
separate the pixel-oriented visualization techniques from the human point of view in
single-window visualizations and multi-window visualizations. For perceiving visual
information it is in our opinion important how information is visualized.
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Single-Window Pixel-Oriented Visualizations

According to Keim, single-window pixel-oriented visualizations make use of the
screen to project data values as colored pixel [148]. The order of the pixel depends on
the intention of the visualization, if the data value contains a natural order, e.g. quan-
titative values. The mapping is assigned to this order. May introduced an approach
for a single-window pixel-oriented visualization by applying the expressions of the
Karnaugh map [151] to the visual appearance [152]. His approach enables the visu-
alization of multi-dimensional data on a two-dimensional single-screen display and
provides the recognition and detection of visual patterns in the multi-dimensional
data-set [152, p. 227]. Another example for such a single-window pixel-oriented
visualization was brought by Stein et al. [153]. They used the single-window pixel-
oriented approach for visualizing social networks.

Multi-window Pixel-Oriented Visualizations

Pixel-oriented visualizations make maximum use of the screen. Thus each data value
can be mapped to one single pixel; the most common approaches are dividing the
screen into subwindows [148]. The multi-window approach provides more possi-
bilities to detect and recognize clusters, visual patterns, and correlations [148]. The
most common approach for subdividing the screen into multiple windows is rec-
tangular subwindows. Andrienko et al. introduced such an approach for visualizing
spatio-temporal data in a pixel-oriented multi-window visualization by using self-
organizing maps [154]. Although the rectangular subwindows are the most common
way of visualization in this context, there exist further approaches for sub-windowing
the visual area. Keim et al. proposed a multi-resolution approach for pixel-oriented
visualization in circle segments [155]. Their approach focused on improving the
scalability of pixel-oriented visualization by introducing a multi-resolution pixel-
oriented visual exploration approach for large data-sets. Therefore they combined
clustering techniques with pixel-oriented projections to preserve local clusters by
using circle segmentation, an enhanced type of CircleView.

2.7 Summary and Findings

This chapter introduced information visualization as canonical foundation of this
thesis. The terminological distinction aimed at clarifying the term information visu-
alization in contrast to visualization, scientific visualization and the recently rising
term of Visual Analytics. We defined information visualization in context of this
work as interactive visualization of abstract data that includes the visualization of
data models and provide an interactive character with interlinking to data and their
operands to amplify cognition and provide insights and knowledge. In context of this
work the human with his ability to perceive and process visual information is mainly
focused. We investigated human perception and human visual processing to give an
insight how human perceives visualizations. We could outline that beside heteroge-
neous classification of human visual processing, the so called parallel and sequential
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(or serial) processing plays an important role, in particular for choosing the proper
visual variables. Different research outcomes of studies in cognitive sciences were
introduced that prove at least a continuous differentiation of visual variables and the
way how and when they are perceived. Further the results of the studies can be used
to improve in particular the visual appearance of abstract data.

With the interactive character of information visualization, we could depict that
information visualization is more than only pictures. We introduced various classi-
fications of interaction in information visualization and selected one classification
to describe interaction on data and visual level. Thus the human interaction leads to
solving tasks with information visualization, different classifications of visualization
tasks were introduced. We could illustrate that a clear bisection between tasks and
interactions is not possible with the existing classifications. We introduced a high-
level tasks classification and tried to categorize the different existing classifications
into the abstract model, which was partially published in [2] and assigned catego-
rized the existing types of tasks into the abstract model. With visual perception, tasks
and interactions, we covered the human-interaction with visual information systems.
The data level completed the process of data transformation to an interactive visual
representation. In this context various classifications of data provided different views
on data, their value, and their dimensions or variables. For describing the data types
the three introduced classifications were merged into a slightly different classifica-
tion. The goal was to give a common understanding of the terms that was often used
ambiguously in context of data and visualizing data. We described the most common
appearances of data in context information visualization based on our classification.
The outcomes of the data structures, values and variables were used to introduce
information visualization methods and techniques. Therefore various classifications
were introduced that give different views on visualization techniques. We chose one
common classification and changed it slightly to introduce an overview of possi-
ble visualizations. Based on the introduced classification we introduced exemplary
visualization techniques and methods.

The main goal of this chapter was to give an overview of the various disciplines,
techniques, goals, and approaches that are coupled to interactive information visual-
ization: cognitive scientists investigates the perception of visual illustrations, algo-
rithmic methods optimize layouting, data models and visualization techniques, the
area of human computer interaction investigates the behavior of human and appropri-
ate reactions of computer systems, and further research areas, e.g. Visual Analytics
work on the optimization for coupling these methods. Further this chapter worked
out that information visualization as an interdisciplinary research area makes use
of ambiguous terms and classifies their approaches in various ways. Therefore it is
essential to have a common understanding of the terms at least in context of this
work.

The next two chapters will focus on specific domains of information visualization
and its applications. First we will introduce a general view on semantic technologies
and data. The goal is to give a more detailed view on the state of the art in semantics
visualization. Thereafter we introduce the general idea of adaptive systems and survey
the existing approaches on adaptive information visualizations.
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